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Abstract— Diagnosability is a critical metric for evaluating
the fault diagnosis capabilities of interconnection networks in
multiprocessor systems. Accurate assessment of diagnosability
requires system-level fault diagnosis models, which play a key
role in the design of new interconnection networks. In this
paper, we introduce a novel network, denoted as Pm ◦ Wn,
which represents the lexicographic product of a wheel and a
path. Under the PMC model, we prove that the diagnosability
of Pm ◦Wn is 3 + n and its h-edge tolerable diagnosability is
3 + n− h for 0 ≤ h < 3 + n, m ≥ 4, and n ≥ 7. These results
reveal that Pm ◦Wn exhibits strong fault diagnosis capabilities.
Furthermore, the lexicographic product offers a promising
approach to designing interconnection network architectures
for large-scale multiprocessor systems.

Index Terms—Lexicographic product, Diagnosability, PMC
model, Multiprocessor system, Wheels, Paths.

I. INTRODUCTION

Amultiprocessor system is a computing architecture
composed of multiple processors that share

memory and operate collaboratively. By leveraging
parallel computing, such systems enable multitasking,
enhanced data processing throughput, and improved
scalability. This offers computational power that far
surpasses traditional single-processor systems. These
capabilities make multiprocessor systems particularly
effective in handling complex tasks, including advanced
data analysis, machine learning, and real-time applications.
Consequently, they serve as the fundamental technological
support for high-performance computing domains such as
scientific simulations, big data processing, and engineering
computations. In a multiprocessor system, all processors
are interconnected via dedicated interconnection networks.
These networks play a critical role in determining the
system’s fault diagnosis capability and fault tolerance.
Additionally, they shape communication efficiency and
reliability. A well-designed interconnection network can
greatly enhance the system’s diagnosability, allowing for
efficient fault detection, isolation, and recovery. This ensures
the system’s sustained computational performance and
reliability, thereby maximizing its potential in high-demand
computing environments.

In the early days of multiprocessor systems, the number
of processors was relatively small, and these processors were
typically interconnected using simple networks such as bus
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networks. However, the inherent limitations of bus networks
significantly constrained the parallel processing capabilities
of such systems, restricting them to relatively basic tasks.
Moreover, processor failures often caused disruptions to
the entire system’s operation, since fault diagnosis was
typically conducted manually. The concept of fault diagnosis
capability refers to a system’s ability to detect and precisely
locate internal faults. An interconnection network with
robust fault diagnosis capability enables the system to
quickly and accurately identify faults, thereby streamlining
system maintenance and ensuring uninterrupted operation.
The diagnosability of a system provides a quantitative metric
for evaluating its fault diagnosis capability. Specifically,
if a system can accommodate up to t faulty processors
while accurately diagnosing all of them without requiring
component replacements, the system’s diagnosability is
defined as t.

To accommodate the increasing data volume,
multiprocessor systems have adopted more advanced
interconnection networks through various approaches, such
as graph products. Some of them such as mesh networks
and hypercubes are constructed by Cartesian products.
These interconnection networks not only increase the
number of processors but also significantly enhance the
system’s parallel processing and fault diagnosis capabilities.
However, as the number of processors continues to grow,
diagnosing faulty processors becomes increasingly difficult.
The emergence of system-level diagnostic models has
significantly improved this issue. Among these models,
the most commonly used are the PMC model proposed
by Preparata, Metze, and Chien [1]. In the PMC model,
topological graphs are commonly used to visually represent
the connections and relationships between processors
and links in a system. For instance, assuming a graph
G = (V (G) , E (G)) represents a multiprocessor system,
V (G) represents all the processors in the system, while
E (G) denotes all links connecting the processors. Each
edge in G represents a testing process. In the following
context, ‘vertices’ can represent processors, and ‘edges’
can represent links. Test results can be represented by 1 or
0. If (a, b) = 1 (= 0), it indicates that vertex a considers
vertex b to be faulty (fault-free). In [2], Chang et al. used
graph theory to transform complex networks into graphs
and analyzed the diagnosability of regular networks under
the PMC model and MM* model. Following this, the
diagnosability of more networks has been determined,
such as hypercubes and enhanced hypercubes [3], Möbius
hypercubes [4], crossed hypercubes [5], and star graphs [6].

As systems have grown increasingly complex, the nature
of faults has expanded beyond simple single-processor
failures to more intricate scenarios, including hybrid faults,
which refer to the simultaneous failures of both links and
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Fig. 1. An n-order wheel Wn

processors. To address such hybrid fault scenarios, Zhu et al.
[7] introduced the concept of h-edge tolerable diagnosability.
This concept is particularly well-suited for analyzing and
managing hybrid faults. Since its introduction, the h-edge
tolerable diagnosability of various specialized networks, such
as regular networks, has been extensively explored and
studied [8], [9], and [10]. Another notable advancement is
conditional diagnosability, first proposed by Lai et al. [11].
This concept has garnered significant attention in recent
years, becoming a popular topic of research [12], [13], [14],
[15], [16], [17], [18], and [19].

Nowadays, graph theory is commonly used to study most
properties of specific graphs or networks, as detailed in [26],
[27] and [28]. To determine the diagnosability of a system
using graph theory, it is essential to first understand some
fundamental concepts. In a graph G, the number of vertices
and edges are denoted by |V (G)| and |E (G)|, respectively,
where |V (G)| is also called the order of G. Let a and b be
any two vertices in G. If (a, b) ∈ E (G), then a and b are
said to be adjacent, and the edge (a, b) is considered incident
with both a and b.

The set of all vertices adjacent to a vertex a in graph G
is denoted by NG (a) and is referred to as the neighborhood
of a. The number of edges incident with a is called
the degree of vertex a, denoted by dG (a). In graph
G, the vertex with the smallest degree is known as the
minimum degree vertex, while the vertex with the largest
degree is referred to as the maximum degree vertex. These
are represented by δ (G) = min {dG(x)|x ∈ V (G)} and
∆(G) = max {dG (x)|x ∈ V (G)}, respectively.

Paths and wheels are special types of graphs. A path is
composed of distinct vertices connected by edges, where both
the edges and vertices are unique. If a path consists of m
vertices, denoted as p1, p2, · · · , pm−1, pm, it is represented as
Pm. In Pm, the vertices pi and pj are connected by an edge if
and only if i−j = ±1. A wheel, denoted as Wn, consists of a
cycle of length n−1 (n ≥ 4) and an additional central vertex
that is directly connected to every vertex in the cycle (see
Fig. 1). Given an edge set E ⊂ E (G), the graph obtained
by removing all edges in E from G is denoted as G − E.
Similarly, given a vertex set Q ⊂ V (G), the graph obtained
by removing the vertices in Q along with all edges incident
to these vertices is denoted as G − Q. For any two vertex
subsets F1, F2 ⊂ V (G), the symmetric difference between
F1 and F2 is denoted as F1△F2 and is defined as F1△F2 =

Fig. 2. Two distinguishable vertex sets F1 and F2

(F1 − F2) ∪ (F2 − F1) = (F1 ∪ F2) − (F1 ∩ F2). The set
of all test results produced by a multiprocessor system is
referred to as syndromes. Let W ⊂ V (G) represent a set of
faulty vertices. The syndromes produced by W are denoted
as σ (W ). Similarly, let F ⊂ V (G) be another set of faulty
vertices. If σ (W )∩σ (F ) = ∅, then W and F are said to be
distinguishable under the PMC model; otherwise, they are
considered indistinguishable.

Similar to the Cartesian product, the lexicographic product
is another significant method for constructing large networks
from smaller ones while preserving certain properties of
the smaller networks. Let two undirected finite graphs
G1 = (V (G1) , E (G1)) and G2 = (V (G2) , E (G2)) be
considered as factors. The lexicographic product of G1 and
G2 is denoted as G1 ◦ G2, with V (G1 ◦G2) = V (G1) ×
V (G2). In G1 ◦ G2, two distinct vertices (x1, y1) and
(x2, y2), where x1, x2 ∈ V (G1) and y1, y2 ∈ V (G2), are
adjacent if and only if one of the following conditions is
satisfied: x1 = x2 and (y1, y2) ∈ E (G2), or (x1, x2) ∈
E (G1).

In [20], [21], and [22], various properties of the
lexicographic product have been studied in greater detail.
Interconnection networks generated by the Cartesian product
of simple graphs, such as hypercubes and grid networks,
are widely employed in multiprocessor systems. However,
based on recent research on lexicographic products, it has
become evident that, in certain respects, the lexicographic
product outperforms the Cartesian product. Consequently, it
is reasonable to hypothesize that interconnection networks
constructed using the lexicographic product could contribute
to improving and optimizing multiprocessor systems. To
explore the application of the lexicographic product
in multiprocessor systems, this paper investigates the
lexicographic product of a path and a wheel, Pm ◦ Wn. It
is determined that, under the PMC model, the diagnosability
of Pm ◦Wn is 3+n, and its h-edge tolerable diagnosability
is 3 + n − h when 0 ≤ h < 3 + n. MATLAB simulations
were conducted to compare these properties with those of
the hypercube. The experimental results demonstrate that the
fault diagnosis capability of Pm ◦Wn is superior to that of
the hypercube.

II. MAIN RESULTS

The previous section has outlined the essential concepts
required for the subsequent proofs. For additional details
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Fig. 3. Two types of t-order extending star

on these concepts, refer to [23]. Lemma 1 and Definition
2 play a fundamental role in determining the diagnosability
of interconnection networks.

Lemma 1. [1] Given a multiprocessor system G = (V,E),
let F1, F2 ⊂ V (G) be any two distinct sets of faulty vertices
in G. Under the PMC model, F1 and F2 are distinguishable
if and only if there exists a vertex y ∈ V − (F1 ∪ F2) such
that NG (y) ∩ (F1△F2) ̸= ∅ (see Fig. 2).

Definition 2. [2] In a multiprocessor system G = (V,E),
consider two distinct sets of faulty vertices F1 and F2. If
|F1| ≤ t, |F2| ≤ t, and F1 and F2 are distinguishable, then
the system is t-diagnosable. The maximum integer t for which
the system G remains t-diagnosable under the PMC model
is called the diagnosability of the system and is denoted by
t (G).

Lemma 1 and Definition 2 transform the problem of
determining a network’s diagnosability into the task of
representing the system as a graph and identifying two
distinguishable faulty sets within the graph that include the
maximum number of vertices.

Definition 3. [7] Given a multiprocessor system G = (V,E)
and two non-negative integers h and t, let A ⊆ E(G)
represent the set of faulty edges in G, where |A| ≤ h. For any
two distinct faulty sets F1 and F2 with |F1| ≤ t and |F2| ≤ t,
if F1 and F2 are distinguishable under the PMC model in
G−A, then G is said to be h-edge tolerable t-diagnosable
under the PMC model. The maximum integer t such that G
is h-edge tolerable t-diagnosable is defined as the h-edge
tolerable diagnosability of G, denoted by th(G).

In [25], Hsu and Tan proposed two innovative structures,
referred to as the extending star (illustrated in Fig. 3).
These structures establish an elegant connection between the
diagnosability of the network and its vertices.

Lemma 4. [25] For a multiprocessor system G = (V,E),
if an extending star of order t is rooted at any vertex in G,
then the diagnosability of G is t.

Before determining the diagnosability of Pm ◦ Wn, it
is essential to first examine its structure. To facilitate this,
we will perform an in-depth examination using a specific
example. Let V (P5) = {p1, p2, p3, p4, p5} and V (W5) =
{1, 2, 3, 4, 5}, where the central vertex of W5 is 1. The
structure of P5 ◦ W5 is illustrated in Fig. 4. By examining

Fig. 4. The structure of P5 ◦W5

Fig. 4 and combining it with the construction method of the
lexicographic product, we can obtain Pm ◦Wn by replacing
m vertices in Pm with m copies of Wn and then connecting
each vertex in every Wn to every vertex in the neighboring
Wn. According to the definitions of wheels and paths, we
have δ (Wn) = 3 and ∆(Wn) = n − 1, while δ (Pm) = 1
and ∆(Pm) = 2. Thus,

By examining Fig. 4 and considering the construction
method of the lexicographic product, we can obtain Pm◦Wn

by replacing the m vertices of Pm with m copies of Wn,
and then connecting each vertex in every Wn to every vertex
in the neighboring Wn. According to the definitions of Wn

and Pm, we have δ(Wn) = 3 and ∆(Wn) = n − 1, while
δ(Pm) = 1 and ∆(Pm) = 2. Thus,

δ (P5 ◦W5) = δ (W5) + δ (P5)× |V (W5)| = 8. (1)

and,

∆(P5 ◦W5) = ∆ (W5) + ∆ (P5)× |V (W5)| = 14. (2)

From this, we can derive Corollary 5.

Corollary 5. If G = Pm ◦ Wn, then δ (G) = 3 + n and
∆(G) = 3n− 1.

Next, we will prove the diagnosability and h-edge
tolerable diagnosability of Pm ◦Wn.

Corollary 6. Given a multiprocessor system G = Pm ◦Wn

under the PMC model, t (Pm ◦Wn) ≤ 3 + n.

Proof: Let x be a vertex with the minimum degree in
Pm◦Wn. According to Corollary 5, we have δ (Pm ◦Wn) =
dPm◦Wn(x) = 3+n. By utilizing the neighborhood of x and
x itself, we construct two vertex sets, F1 and F2. Specifically,
we define F1 = {x} ∪NPm◦Wn

(x) and F2 = NPm◦Wn
(x).

It is evident that |F1| = 3+n+1 and |F2| = 3+n. Then
F1△F2 = {x} and F1 ∪ F2 = {x} ∪NPm◦Wn

(x). We can
conclude that NPm◦Wn

(F1△F2)∩ (Pm ◦Wn − F1 ∪ F2) =
∅. Obviously F1 and F2 are indistinguishable vertex sets
according to Lemma 1, and by Definition 2, we have
t (Pm ◦Wn) ≤ 3 + n.

It is evident that |F1| = 3 + n + 1 and |F2| = 3 + n.
Furthermore, we have F1△F2 = {x} and F1 ∪ F2 =
{x} ∪ NPm◦Wn (x). Consequently, we can conclude that
NPm◦Wn (F1△F2) ∩ (Pm ◦Wn − F1 ∪ F2) = ∅. Clearly,
F1 and F2 are indistinguishable according to Lemma 1.
Therefore, by Definition 2, we obtain t (Pm ◦Wn) ≤ 3+ n.
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Fig. 5. An n+ 3-order extending star of Case 1

Fig. 6. An n+ 3-order extending star of Case 2

Corollary 6 provides an upper bound for t (Pm ◦Wn).
Next, we aim to establish its lower bound to determine the
exact value of t (Pm ◦Wn).

Theorem 7. Given a multiprocessor system G = Pm ◦Wn,
when m ≥ 4 and n ≥ 7, under the PMC model, we have
t (Pm ◦Wn) = 3 + n.

Proof: By Lemma 4, to determine the lower bound of
t (Pm ◦Wn), it is sufficient to identify the minimum order
of the extending star that can be formed at each vertex in
Pm◦Wn. As shown in Fig. 5, when m ≥ 4 and n ≥ 7, based
on the properties of the lexicographic product, Pm ◦Wn can
be divided into m segments of Wn, denoted as xWn, where
1 ≤ x ≤ m.

There are two distinct cases suitable for constructing an
extending star of order n+ 3.

Case 1: In any subgraph xWn within Pm ◦Wn, we can
select a vertex of minimum degree, denoted as u. By the
properties of Wn, the vertex u can form a 3-order extending
star rooted at itself within the subgraph xWn. Furthermore,
according to the properties of the lexicographic product, the
corresponding vertices in (x + 1)Wn and (x + 2)Wn are
adjacent, thereby forming an n-order extending star rooted
at u. Consequently, the vertex u can construct an n+3-order
extending star, as illustrated in Fig. 5.

Case 2: If n is even, an n-order extending star rooted at
u can be formed by connecting to the adjacent vertices in
subgraphs (x−1)Wn and (x+1)Wn. Conversely, if n is odd,
an extending star of order ⌈n/2⌉ can be constructed through
the adjacent subgraph (x − 1)Wn, while an extending star
of order ⌊n/2⌋ can be constructed through (x + 1)Wn. In

Fig. 7. The minimal neighborhood set(xy ∈ E (Pm ◦Wn −A))

Fig. 8. The minimal neighborhood set(xy /∈ E (Pm ◦Wn −A))

summary, the vertex u can construct an n+3-order extending
star, as illustrated in Fig. 6. In summary, an extending star
of at least order n + 3 can be constructed at any vertex
in Pm ◦ Wn. According to Lemma 4, we conclude that
t (Pm ◦Wn) ≥ 3+n. Combined with the result of Corollary
6, Theorem 7 is thus proved.

In practical applications, multiprocessor systems face
extremely large, complex, and difficult tasks, and the scale
of the systems themselves is immense. Thus, system failures
are inevitable. If only the processors experience failures,
the diagnosability can effectively measure the system’s fault
diagnosis capability at that time. However, in real-world
scenarios, link failures are also unavoidable, and the h-edge
tolerable diagnosability proposed by Zhu et al. [7] can
better reflect the fault diagnosis capability of multiprocessor
systems under hybrid faults of links failures and processors
failures. In practical applications, multiprocessor systems are
required to handle extremely large, complex, and challenging
tasks, and the systems themselves often operate on a massive
scale. As a result, system failures are inevitable. When only
processor failures occur, diagnosability serves as an effective
metric to evaluate the system’s fault diagnosis capability.
However, in real-world scenarios, link failures are also
unavoidable. The h-edge tolerable diagnosability, proposed
by Zhu et al. [7], provides a more comprehensive measure
of a multiprocessor system’s fault diagnosis capability under
hybrid faults, encompassing both link and processor failures
simultaneously.

In Pm ◦ Wn (m ≥ 4, n ≥ 7), if all the links of a
minimum-degree vertex fail, that vertex becomes isolated.
Since an isolated processor cannot be diagnosed by the
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Fig. 9. Indistinguishable faulty vertex sets A and B in P5 ◦W5

system, such link failures have the greatest impact on system
performance. To address this issue, we define a worst-case
scenario where link failures in a multiprocessor system
preferentially occur at the processor with the minimum
degree. In the following discussion, we assume that the
number of faulty edges h is less than 3 + n. The h-edge
tolerable diagnosability in this worst-case scenario effectively
measures the system’s minimum fault diagnosis capability
when link failures occur anywhere in the system. Next,
we present the h-edge tolerable diagnosability for Pm ◦
Wn (m ≥ 4, n ≥ 7).

Corollary 8. Given a multiprocessor system Pm ◦Wn, when
0 ≤ h < 3+n and m ≥ 4, n ≥ 7, in the worst-case scenario,
we have th (Pm ◦Wn) ≤ 3 + n− h.

Proof: We will analyze two cases based on the value of
h:

Case 1: When h = 0, no link failures occur in the
system. In this case, we have th (Pm ◦Wn) = t (Pm ◦Wn).
Based on the proof above, it follows that when h = 0,
th (Pm ◦Wn) ≤ 3 + n− h = 3 + n.

Case 2: When 0 < h < 3 + n, let A ⊂ E (Pm ◦Wn)
represent the set of faulty links in the system, and assume
|A| ≤ 3 + n. Let x be a vertex with the minimum
degree in Pm ◦ Wn. In the worst-case scenario, the links
incident with the minimum-degree vertex fail first, resulting
in dPm◦Wn−A (x) = 3+n−h. Define B = NPm◦Wn−A (x)
and C = NPm◦Wn−A (x) ∪ {x}. Then, we have |B| =
3 + n − h and |C| = 4 + n − h, with B△C = {x}.
Based on the construction of B and C, it follows that
(B△C) ∩ (Pm ◦Wn −A−B ∪ C) = ∅. Thus, by Lemma
1, B and C are indistinguishable. Combining these results
with Definition 3, we conclude that when 0 < h < 3 + n,
th (Pm ◦Wn) ≤ 3 + n− h.

Theorem 9. Given a multiprocessor system Pm ◦Wn, when
0 ≤ h < 3+n and m ≥ 4, n ≥ 7, in the worst-case scenario,
we have th (Pm ◦Wn) = 3 + n− h.

Proof: By Definition 2 and the result of Corollary 8,
it follows that we only need to prove that either B or
C contains at least 3 + n − h + 1 vertices. Under the
PMC model, assume A ⊂ E (Pm ◦Wn) represents the set
of all faulty links in Pm ◦ Wn, and |A| ≤ h. Let B,
C ⊂ V (Pm ◦Wn) denote two distinct indistinguishable
faulty vertex sets in Pm ◦ Wn − A, satisfying |B| <

Fig. 10. Two indistinguishable faulty vertex sets in P5◦W5−(p5, 4, p5, 5)

3 + n − h + 1 and |C| < 3 + n − h + 1. Since
|A| < 3 + n, by the definition of lexicographic product,
Pm ◦ Wn − A remains a connected graph. Furthermore,
since B and C are indistinguishable, by Lemma 1, we
have NPm◦Wn−A (B△C) ∩ (Pm ◦Wn −A−B ∪ C) = ∅.
Clearly, NPm◦Wn−A (B△C) ⊆ (B ∩ C), which implies
|B ∩ C| ≥ |NPm◦Wn−A (B△C)| and |B△C| + |B ∩ C| ≥
|B△C|+ |NPm◦Wn−A (B△C)|.

Next, we analyze the value of |B△C| by examining
different cases.

Case 1: If |B△C| = 1, without loss of generality, let
B△C = B−C = {x}, in this situation, obviously B∩C =
C. Therefore, we have

|B| = |B − C|+ |B ∩ C|
≥ 1 + |NPm◦Wn−A (B△C)|
≥ 1 + |NPm◦Wn−A (x)| − |A|
≥ 1 + 3 + n− h.

(3)

Therefore, when |B△C| = 1, it follows that |B| ≥ 3 + n−
h+ 1.

Case 2: If |B△C| = 2, without loss of generality, let
B△C = {x, y}. In this case, we need to consider whether
x and y are adjacent. If xy ∈ E (Pm ◦Wn −A), based
on the structural analysis of the network in the previous
section, the scenario where the number of neighboring
vertices of x and y is minimized is shown in Fig.7
(the neighboring vertices of x and y are highlighted with
red circles), so |NPm◦Wn−A (B△C)| ≥ (3 + n) − h. If
xy /∈ E (Pm ◦Wn −A), then according to Fig.8, it is
clear that |NPm◦Wn−A (B△C)| > (3 + n) − h. Since
NPm◦Wn−A (B△C) ⊆ (B ∩ C), we can conclude:

|B|+ |C| = |B ∪ C|+ |B ∩ C|
= |B△C|+ |B ∩ C|+ |B ∩ C|
≥ 2 + 2× |NPm◦Wn−A (B△C)|
> 2 + 2× {(3 + n)− h}
> 2 + 2× (3 + n)− 2h.

(4)

Obviously it follows that |B| ≥ 3 + n − h + 1 and |C| ≥
3 + n− h+ 1.

Case 3: When |B△C| ≥ 3, in this case, if |B| ≤ 3+n−h
and |C| ≤ 3+n−h, obviously, |B ∩ C| < 3+n−h. Based on
the structural analysis of Pm◦Wn, when 0 ≤ h < 3+n, m ≥
4, and n ≥ 7, |NPm◦Wn−A (B△C)| ≥ 3+n− h, contradict
to NPm◦Wn−A (B△C) ⊆ (B ∩ C). So when |B△C| ≥ 3,
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Fig. 11. Diagnosability of Pm ◦Wn, Pm ×Wn and Qn

Fig. 12. The th of Pm ◦Wn, Pm ×Wn and Qn

we have |B| ≥ 3 + n− h+ 1 and |C| ≥ 3 + n− h+ 1. In
summary, Theorem 9 is proven.

III. APPLICATION AND NUMERICAL SIMULATION

When a failure occurs in a multiprocessor system, it is
crucial to diagnose faulty processors quickly and adjust
task allocation in parallel computing to maintain normal
operation. Therefore, a strong fault diagnosis capability is
a fundamental requirement for a high-quality multiprocessor
system. Modern high-performance multiprocessor systems
incorporate complex interconnection networks to connect a
large number of processors. When certain processors or links
within the system fail, manual handling significantly reduces
the system’s operational efficiency. The only effective
solution is system-level fault diagnosis, autonomously
performed by the system itself. Consequently, studying the
diagnosability of interconnection networks is essential to
ensure stable and efficient operation. Graph products serve as
a key method for constructing new interconnection networks.
In this paper, we focus on the interconnection network
Pm ◦Wn, generated by the lexicographic product of a path
and a wheel. Specifically, we examine its diagnosability
and h-edge tolerable diagnosability. To conclude, we will
illustrate our findings with a concrete example.

Example. Given a multiprocessor system P5 ◦ W5, its
diagnosability is 8. In the worst-case scenario, when 0 ≤
h < 8, its h-edge tolerable diagnosability is 8− h.

First, we provide the structure of P5 ◦ W5, as shown
in Fig.10. If the vertices enclosed by the red circle in
Fig.10 form a faulty vertex set A, with |A| = 9, and the
vertices enclosed by the green circle form a faulty vertex
set B, with |B| = 8, then clearly A△B = {p1, 5}, and
NP5◦W5

(A△B) ∩ (P5 ◦W5 −A ∪B) = ∅, making A and
B indistinguishable. Obviously, in Fig. 10, any two distinct
faulty vertex sets with a vertex count less than or equal to 8
are distinguishable. Therefore, t (P5 ◦W5) = 8.

Since, in the worst-case scenario, link failures occur
preferentially on the edges incident with the minimum-degree
vertex, let us illustrate the case when h = 1. Taking the
minimum-degree vertex p5, 4 in P5 ◦ W5 as an example,
suppose the edge (p5, 4, p5, 5) fails, as shown in Fig. 9.
In Fig. 9, the red dashed line (p5, 4, p5, 5) represents the
faulty link. The vertices enclosed by the red circle form
a faulty set A with |A| = 8, while the vertices enclosed
by the green circle form a faulty set B with |B| = 7. In
this case, A△B = {p5, 4}, and NP5◦W5−(p5,4,p5,5) (A△B)∩
V (P5 ◦W5 − (p5, 4, p5, 5)−A ∪B) = ∅.

Therefore, based on Lemma 1, A and B are
indistinguishable faulty vertex sets. Furthermore, as
illustrated in Fig. 9, any two distinct faulty vertex sets with
a vertex count less than or equal to 7 are distinguishable.
This observation leads to the conclusion that, when h = 1,
t1 (P5 ◦W5) = 7, with the proof for other values of h
following a similar approach.

In fact, graph products can generate many network
structures with excellent properties, such as the hypercube
Qn generated by the Cartesian product. Qn not only
exhibits an efficient topological structure but also possesses
excellent fault diagnosis capabilities. These features make it
widely used in the construction of interconnection networks
for large-scale parallel computing systems. In fact, the
diagnosability and h-edge tolerable diagnosability of the
hypercube have been extensively studied, as presented in
[7] and [24], respectively. Building upon this foundation,
we conducted simulations to evaluate the fault diagnosis
performance of the network structure generated by the
lexicographical product. Specifically, we tested Pm ◦ Wn,
Pm ×Wn, and Qn using Matlab, with the results presented
in Fig.11 and Fig.12. The simulation results, when 0 ≤
h < 3 + n and m ≥ 4, n ≥ 7, reveal that
Pm ◦ Wn outperforms Qn in terms of both diagnosability
and h-edge tolerable diagnosability. This demonstrates the
potential of the lexicographic product as a promising method
for designing interconnection networks and highlights its
potential for further research.

In multiprocessor systems, if each processor is connected
to every other processor via physical links, the resulting
network provides a complete communication path, offering
low communication latency and load balancing advantages.
These features significantly enhance the system’s parallel
computing capabilities. However, the hardware and cost
burden associated with such a network structure is
exceedingly high, and it substantially increases energy
consumption, making it less practical for real-world
applications. In contrast, the Pm ◦ Wn network structure
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offers a more efficient solution. Each processor maintains
close connections with its neighboring processors, while
long-distance links improve overall communication
efficiency. The layered connection design not only
effectively reduces communication latency but also
enhances fault diagnosis capabilities. Furthermore, the
existence of multiple paths ensures system redundancy,
enabling the network to remain operational even in the
event of failures. This network structure is particularly
well-suited for high-performance computing scenarios, such
as distributed deep learning, distributed data processing,
large-scale data centers, distributed neural network training,
and social network analysis. However, it may not be ideal
for small-scale tasks or applications that are highly sensitive
to network overhead.

IV. CONCLUSION

For high-performance multiprocessor systems, excellent
fault diagnosis capability is indispensable. Researching
methods to develop interconnection networks with
outstanding diagnosability is therefore of significant
importance. This paper establishes that the diagnosability
of the lexicographic product of a path and a wheel,
Pm ◦Wn (m ≥ 4, n ≥ 7), under the PMC model, is 3 + n.
Additionally, for 0 ≤ h < 3 + n, its h-edge tolerable
diagnosability, which is suitable for hybrid fault scenarios,
is 3 + n − h. A comparative simulation with Qn was
conducted, and the results demonstrate that, when n is
the same, Pm ◦ Wn exhibits superior fault diagnosis
capabilities. This finding suggests that lexicographic
products are a promising approach for designing large-scale
interconnection networks. But when implemented at
scale, Pm ◦ Wn introduces significant hardware costs and
operational complexity, which necessitates weighing these
trade-offs against application-specific requirements. Future
research will focus on investigating the fault diagnosability
of lexicographic products involving more specialized graphs,
as well as exploring the strengths and limitations of the
lexicographic product as a method for generating new
network structures.
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