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Abstract—This study introduces a novel fuzzy
transform, developed as a generalization of the ZZ
transform, to effectively solve first-order fuzzy differ-
ential equations. We provide a thorough theoretical
foundation, including detailed discussions of essential
properties and associated theorems, to clarify the
principles underlying this fuzzy transform. The effi-
cacy and versatility of the proposed fuzzy ZZ trans-
form method are demonstrated through illustrative
examples, highlighting its ability to simplify fuzzy dif-
ferential equations into solvable algebraic forms. Our
findings suggest that this generalized fuzzy transform
significantly enhances analytical precision, offering
reliable solutions for practical problems within fuzzy
environments. This work contributes meaningfully to
the existing literature, opening avenues for broader
applications and deeper investigation into fuzzy in-
tegral transforms and their utilization in real-world
scenarios.

Index Terms—Fuzzy number, differential equation,
integral transform, ZZ transform.

I. Introduction

IN recent years, there has been growing interest in
studying the stability, existence of solutions, and

analytical approaches to various integral and differen-
tial equations, especially those involving random ker-
nels, fractional derivatives, and fuzzy environments. For
instance, in their work on Volterra integral equations
with random kernels, Qazza, Hatamleh, and Alodat ex-
amined crucial aspects related to solution stability [1].
Qazza and Hatamleh further investigated the existence
of solutions in semi-linear abstract differential equations
with infinite B-chains of the characteristic sheaf [2].
Altaie et al. applied the Homotopy Analysis Method in
a fuzzy setting to tackle partial differential equations
[3], while Saadeh et al. derived analytical solutions for
coupled Hirota–Satsuma and KdV equations [4]. Several
authors, including Hazaymeh et al. and Qawasmeh et
al., have made notable contributions to numerical radius
inequalities [5], [6], and Alzahrani et al. explored effective
methods for analyzing chaotic circuit models using novel
fractional derivatives [7]. More recently, Hazaymeh et
al. established a perturbed Milne’s Quadrature Rule
with Lp-error estimates [8]. Additionally, the work of
Gharib and Saadeh has provided valuable insights into
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the reduction of self-dual Yang–Mills equations to the
Sinh–Poisson form, offering exact solutions [9].

In recent decades, fuzzy differential equations have
found extensive applications across diverse scientific and
engineering disciplines due to their flexibility in modeling
uncertainty in complex real-world problems. Motivated
by the broad utility of these equations, this research
introduces an innovative fuzzy transform aimed at ef-
fectively solving first-order fuzzy differential equations.
The foundational concepts of fuzzy differential equa-
tions date back to the pioneering work of Chang and
Zadeh [10], who initially defined the fuzzy derivative.
Subsequent advancements were made by Kandel and
Byatt [11], who formally established fuzzy differential
equations. Abbasbandy and Allahviranloo [12] developed
numerical approaches to tackle fuzzy differential equa-
tions dynamically, while Seikkala [13] further generalized
fuzzy derivatives by extending the classical Hukuhara
derivative. Notably, comprehensive discussions on gen-
eralized fuzzy derivatives are found in works such as
those by Bede and Gal [14], which Bede et al. [15] study.
Building upon these foundational contributions, several
scholars have proposed fuzzy analogs of classical integral
transforms commonly used in crisp contexts, such as
the Fuzzy Emad-Falih and fuzzy Aboodh transforms
[16], [17]. Additionally, practical applications, such as
cost estimation using two-dimensional fuzzy systems,
have also been explored by researchers including Samer
et al.[18]. These prior contributions collectively provide
the theoretical foundation upon which our new fuzzy
transform is developed, extending the analytical tools
available for practical and theoretical exploration of fuzzy
differential equations.

II. Fundamental Preliminaries
To ensure clarity and completeness, we present the

essential concepts and theorems relevant to our research
in this area. These foundational elements are crucial for
understanding the theoretical framework upon which our
study is built.

Definition 2.1: [19] By R, the set of all real numbers
is represented as, the mapping D : R → [0, 1] is fuzzy
number if it fulfills

1) D is upper semi-continuous.
2) D is fuzzy convex, i.e., D(σX + (1 − σ)Y ) ≥

min{D (X) , D (Y )},for all X ,Y ∈ R and σ ∈ [0, 1].
3) D is normal i.e., ∃ X0 ∈ R for which D (X) = 1.
4) supp(D) = X ∈ R;D (X) > 0, and cl(Supp (D)) is

compact.
Let ϖ be the set of all fuzzy number on R. The σ -level
set of a fuzzy number D ∈ ϖ, 0 ≤ σ ≤ 1 denoted by [D]σ
is defined as

[D]σ =
{

{X ∈ R, D (X) ≥ σ} , 0 ≤ σ ≤ 1
cl (Supp (D)) , σ = 0
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Done [D]σ = [Dσ, Dσ], so the σ –level set[D]σ is a
bounded and closed interval for all σ ∈ [0, 1].

To compute the addition of two fuzzy numbers D
and Ω defined on the fuzzy space ϖ, Zadeh’s extension
principle specifies the following relation:

(D ⊕ Ω)(X) = sup
Y ∈R

(min{D(Y ),Ω(X − Y )}) , X ∈ R.

Moreover, scalar multiplication for a fuzzy number is
defined by:

(ρ⊙D)(X) =

D
(

X
ρ

)
, ρ ̸= 0,

0̂, ρ = 0,
with 0̂ ∈ ϖ.

The following properties are universally recognized and
hold true across all levels:

[D ⊕ Ω]σ = [ D]σ + [Ω]σ , [ρ ⊙D]σ = ρ [ D]σ .

Definition 2.2: [20] A parametrically defined pair
(D,D) represents a fuzzy number, where D(σ) and D(σ)
are functions for σ ∈ [0, 1], satisfying the following
conditions:

1) D(σ) is a continuous function that is non-decreasing,
with a right limit at 0 and a left limit over (0, 1].

2) D(σ) is a bounded, non-increasing function, contin-
uous from the right at 0 and from the left over (0, 1].

3) D(σ) ≤ D(σ) for all σ ∈ [0, 1].
For arbitrary D = (D (σ) , D (σ)), D = (D (σ) , D (σ)),
0 ≤ σ ≤ 1 and β > 0 we define:

1) Addition D⊕ Ω = (D (σ) + Ω (σ) , D (σ) + Ω (σ)).
2) Subtraction D ⊖h Ω = (D (σ) − Ω (σ) , D (σ) −

Ω (σ)).
3) Multiplication

D ⊙D =
(

min
{
D (σ) Ω (σ) , D (σ)D (σ) ,

D (σ) Ω (σ) , D (σ)DΩ (σ)
}
,

max
{
D (σ) Ω (σ) , D (σ) Ω (σ) ,

D (σ) Ω (σ) , D (σ) Ω (σ)
})
.

4) Scalar multiplication

β ⊙D =
{

(β D, βD ), β ≥ 0,(
β D, β D

)
, β < 0.

If β = 1 then β ⊙D = −D.
Definition 2.3: [15] Let D and Ω be fuzzy numbers.

The Hausdorff distance between these fuzzy numbers is
defined as:

Ξ : ϖ ×ϖ → [0,+∞],

Ξ (D,Ω) = sup
σ∈[0,1]

max
{

|D(σ) − Ω(σ)| ,
∣∣D(σ) − Ω(σ)

∣∣} .
where D =

(
D (σ) , D (σ)

)
, D =

(
Ω (σ) ,Ω (σ)

)
⊂

R and following properties are well known:
1) Ξ (D ⊕ π,Ω ⊕D) = Ξ (D , Ω) , ∀ D,Ω, π ∈ ϖ.
2) Ξ (β ⊙D,β ⊙ Ω) = |β| Ξ (D,Ω) ,∀D,Ω ∈ ϖ,β ∈ R.
3) Ξ (D ⊕ Ω, π ⊕ h) ≤ Ξ (D,Ω) + Ξ (π, h) ,

∀ D,Ω, π, h ∈ ϖ.
4) (Ξ, ϖ) is a complete metric space.

Definition 2.4: [20] Let ψ : R → ϖ be a fuzzy-valued
function. For a fixed point X0 ∈ R and any ϵ > 0,
there exists δ > 0 such that if |X − X0| < δ, then
Ξ (ψ(X), ψ(X0)) < ϵ. In this case, D is referred to as
a continuous fuzzy-valued function.

Definition 2.5: [21] A mapping ψ : R × ϖ −→ ϖ is
said to be continuous at a point (τ0, X0) ∈ R ×ϖ if, for
any fixed σ0 ∈ [0, 1] and arbitrary ε > 0, there exists a
δ(ε, σ) such that

Ξ ([ψ (τ,X)]σ , [ψ (τ0, X0)]σ) < ε

whenever

|τ − τ0| < δ(ε, σ) and Ξ ([X]σ , [X0]σ) < δ(ε, σ)

for all τ ∈ R and X ∈ ϖ.
Theorem 2.1: [22] Let Ψ(χ) be a fuzzy-valued function

defined on [e,∞), represented as
(
Ψ(χ, σ),Ψ(χ, σ)

)
. For

any fixed σ ∈ [0, 1], assume that Ψ(χ, σ) and Ψ(χ, σ) are
Riemann-integrable on [p, q]. If, for every q ≥ p, there
exist two positive functions θ(σ) and θ(σ) such that∫ q

p

|Ψ(χ, σ)| dχ ≤ θ(σ) and
∫ q

p

∣∣Ψ(χ, σ)
∣∣ dχ ≤ θ(σ),

then the fuzzy number is improperly fuzzy Riemann-
integrable, and Ψ(χ) is said to be improperly fuzzy
Riemann-integrable on [p,∞]. That is,∫ ∞

p

Ψ(χ) dχ =
[∫ ∞

p

Ψ(χ, σ) dχ,
∫ ∞

p

Ψ(χ, σ) dχ
]
.

Definition 2.6: [21] Let D,D ∈ ϖ. If there exists π ∈
ϖ such that D = D ⊕ π, then π is referred to as the H-
differential of D and is denoted by D⊖D. In this context,
the symbol "⊖" consistently represents the H-difference.
It is important to note that

⊖ ̸= ⊖h and D ⊖D ̸= D + (−1)D.

Definition 2.7: [23] A function Ψ : (p, q) → ϖ with
χ0 ∈ (p, q) is said to be strongly generalized differentiable
at χ0 if there exists an element Ψ′(χ0) ∈ ϖ such that one
of the following conditions holds:

i. ℘ > 0 that is adequately little, there are
Ψ (χ0 + ℘) ⊖ Ψ (χ0), Ψ (χ0 ) ⊖ Ψ (χ0 − ℘), where

lim
℘→0

Ψ (χ0 + ℘) ⊖ Ψ (χ0 )
℘

℘

= lim
℘ →0

Ψ (χ0 ) ⊖ Ψ (χ0 − ℘)
℘

= Ψ′(χ0).

or
ii. ∀℘ > 0 that is adequately little, there are Ψ (χ0) ⊖

Ψ (χ0 + ℘) ,Ψ (χ0 − ℘) ⊖ Ψ (χ0) where

lim
℘→0

Ψ (χ0 ) ⊖ Ψ (χ0 + ℘)
−℘

= lim
℘ →0

Ψ (χ0 − ℘) ⊖ Ψ (χ0)
−℘

= Ψ′(χ0).

or
iii. ∀℘ > 0 that is adequately little, there are

Ψ (χ0 + ℘) ⊖ Ψ (χ0), Ψ (χ0 − ℘) ⊖ Ψ (χ0) where

lim
℘→0

Ψ (χ0 + ℘) ⊖ Ψ (χ0)
℘

= lim
τ→0

Ψ (χ0 − ℘) ⊖ Ψ (χ0)
−℘

= Ψ′(χ0).
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or
iv. ∀℘ > 0 that is adequately little, there are Ψ (χ0) ⊖

Ψ (χ0 + ℘) ,Ψ (χ0) ⊖ Ψ (χ0 − ℘) where

lim
℘→0

Ψ (χ0) ⊖ Ψ (χ0 + ℘)
−℘

= lim
℘→0

Ψ (χ0) ⊖ Ψ (χ0 − ℘)
℘

= Ψ′ (χ0) .

Theorem 2.2: [24] Let Ψ(χ) : R → ω be a function
represented as Ψ(χ) =

(
Ψ(χ, σ),Ψ(χ, σ)

)
for every σ ∈

[0, 1]. Then:
1) If Ψ(χ) is differentiable in form (i), then Ψ(χ, σ) and

Ψ(χ, σ) are differentiable functions, and

Ψ′(χ) =
(

Ψ′(χ, σ),Ψ′(χ, σ)
)
.

2) If Ψ(χ) is differentiable in form (ii), then Ψ(χ, σ)
and Ψ(χ, σ) are differentiable functions, and

Ψ′(χ) =
(

Ψ′(χ, σ),Ψ′(χ, σ)
)
.

III. Fuzzy Generalization of ZZ Transform
The fuzzy version of the ZZ transform provides a

powerful tool for addressing fuzzy initial and boundary
value problems linked to fuzzy differential equations.
By extending the ZZ transform to the fuzzy domain,
it simplifies fuzzy differential equations into algebraic
problems, significantly easing their solution. This tran-
sition from calculus-based operations to algebraic ma-
nipulations through transformations is referred to as
operational calculus, a critical and practical branch of
mathematics.

A. Generalization of ZZ Transform
Let Ψ (χ) be function defined ∀χ ≥ 0. The general ZZ

transform of Ψ (χ) is defined as:

Hð [Ψ (χ)] = q(s, v)
∫ ∞

0
Ψ (χ) e−p(s,v)χ dχ,

where q and p are functions of a parameters s and v [25].
Definition 3.1: Let Ψ(χ) be a fuzzy-valued continuous

function. Assume that q(s, v)Ψ(χ) ⊙ e−p(s,v)χ is improp-
erly fuzzy integrable in the Riemann sense on [0,∞).
Then,

q(s, v)
∫ ∞

0
Ψ(χ) ⊙ e−p(s,v)χ dχ

is referred to as the fuzzy generalization of the ZZ
transform and is defined as

Ĥð [Ψ(χ)] = q(s, v)
∫ ∞

0
Ψ(χ) ⊙ e−p(s,v)χ dχ,

q(s, v)
∫ ∞

0
Ψ(χ) ⊙ e−p(s,v)χ dχ

=
(
q(s, v)

∫ ∞

0
Ψ(χ, σ) ⊙ e−p(s,v)χ dχ,

q(s, v)
∫ ∞

0
Ψ(χ, σ) ⊙ e−p(s,v)χ dχ

)
.

Using the definition of the classical generalization of
the ZZ transform, we obtain:

Hð [Ψ(χ, σ)] = q(s, v)
∫ ∞

0
Ψ(χ, σ) ⊙ e−p(s,v)χ dχ,

Hð
[
Ψ(χ, σ)

]
= q(s, v)

∫ ∞

0
Ψ(χ, σ) ⊙ e−p(s,v)χ dχ.

Thus,

Ĥð [Ψ(χ)] =
(
Hð [Ψ(χ, σ)] ,Hð

[
Ψ(χ, σ)

])
.

Theorem 3.1: Let Ψ (χ), Y (χ) be continuous fuzzy-
valued functions d1 and d2 are constants, then

1) Ĥð [d1 ⊙ Ψ (χ)] = d1 ⊙ Ĥð [Ψ (χ)].
2) Ĥð [(d1 ⊙ Ψ (χ)) ⊕ (d2 ⊙ Y (χ))] =(

d1 ⊙ Ĥð [Ψ (χ)]
)

⊕
(
d2 ⊙ Ĥð [Y (χ)]

)
Proof:

Ĥð [d1 ⊙ Ψ (χ)] =
(
Hð [d1Ψ (χ, σ)] ,Hð

[
d1Ψ (χ, σ)

])
=
(
q(s, v)

∫ ∞

0
d1Ψ (χ, σ) e−p(s,v)χ dχ,

q(s, v)
∫ ∞

0
d1Ψ (χ, σ) e−p(s,v)χdχ

)

=
(
d1q(s, v)

∫ ∞

0
Ψ (χ, σ) e−p(s,v)χ dχ,

d1q(s, v)
∫ ∞

0
Ψ (χ, σ) e−p(s,v)χ dχ

)

= d1

(
q(s, v)

∫ ∞

0
Ψ (χ, σ) e−p(s,v)χ dχ,

q(s, v)
∫ ∞

0
Ψ (χ, σ) e−p(s,v)χ dχ

)
= d1

(
Hð [Ψ (χ, σ)] ,Hð

[
Ψ (χ, σ)

])
= d1 ⊙ Ĥð [Ψ (χ)]

(2) Suppose Ψ (χ) = (Ψ (χ, σ) ,Ψ (χ, σ) and Y (χ) =
(Y (χ, σ) , Y (χ, σ)

Ĥð [Ψ (χ)] = q(s, v)
∫ ∞

0
Ψ (χ) ⊙ e−p(s,v)χ dχ,
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Ĥð [(d1 ⊙ Ψ (χ)) ⊕ (d2 ⊙ Y (χ))]

=
(
Hð [ d1 Ψ (χ, σ) + d2Y (χ, σ)] ,

Hð
[
d1 Ψ (χ, σ) + d2Y (χ, σ)

])
=
(
q(s, v)

∫ ∞

0
e−p(s,v)χ (d1Ψ (χ, σ) + d2Y (χ, σ)) dχ,

q(s, v)
∫ ∞

0
e−p(s,v)χ

(
d1Ψ (χ, σ) + d2Y (χ, σ)

)
dχ

)

=
(
q(s, v)

∫ ∞

0
e−p(s,v)χd1 Ψ (χ, σ) dχ,

q(s, v)
∫ ∞

0
d1Ψ (χ, σ) e−p(s,v)χdχ))

)

+
(
q(s, v)

∫ ∞

0
e−p(s,v)χd2 Y (χ, σ) dχ,

q(s, v)
∫ ∞

0
d2Y (χ, σ) e−p(s,v)χdχ))

)

= d1

(
q(s, v)

∫ ∞

0
e−p(s,v)χ Ψ (χ, σ) dχ,

q(s, v)
∫ ∞

0
Ψ (χ, σ) e−p(s,v)χdχ))

)

+ d2

(
q(s, v)

∫ ∞

0
e−p(s,v)χ Y (χ, σ) dχ,

q(s, v)
∫ ∞

0
Y (χ, σ) e−p(s,v)χdχ))

)

= d1

(
Hð [Ψ (χ, σ)] ,Hð

[
Ψ (χ, σ)

])
+ d2

(
Hð [Y (χ, σ)] ,Hð

[
Y (χ, σ)

])
=
(
d1 ⊙ Ĥð [Ψ (χ)]

)
⊕
(
d2 ⊙ Ĥð [Y (χ)]

)
IV. Fuzzy Generalization of ZZ Transform for

First -Order Fuzzy Differential Equation

Solving high-order fuzzy differential equations neces-
sitates an analysis of the fuzzy generalization of the
ZZ transform applied to the first-order derivative under
the framework of generalized H-differentiability. This
approach allows for the transformation of fuzzy differ-
ential equations into a more manageable algebraic form,
facilitating their solution.

Theorem 4.1: Let Ψ(χ) be the primitive of Ψ′(χ) on
[0,∞), and assume Ψ(χ) is an integrable fuzzy-valued
function. Then:
(a) If Ψ(χ) is (i)-differentiable, then

Ĥð [Ψ′(χ)] = p(s, v) ⊙ Ĥð [Ψ(χ)] ⊖ q(s, v) ⊙ Ψ(0).

(b) If Ψ(χ) is (ii)-differentiable, then

Ĥð [Ψ′(χ)] = (−q(s, v) ⊙ Ψ(0))

⊖
(

−p(s, v) ⊙ Ĥð [Ψ(χ)]
)
.

Proof: (a) For a fixed, arbitrary 0 ≤ σ ≤ 1,

p(s, v) ⊙ Ĥð [Ψ(χ)] ⊖ q(s, v) ⊙ Ψ (0)

=
(
p(s, v)Hð [Ψ (χ, σ)]

− q(s, v)Ψ (0, σ) , p(s, v)Hð
[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ)

)
.

Since
Hð
[
Ψ′(χ, σ)

]
= p(s, v)Hð [Ψ (χ, σ)]

− q(s, v)Ψ (0, σ) ,Hð

[
Ψ′ (χ, σ)

]
= p(s, v)Hð

[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) .

Since Ψ(χ) is differentiable in the form (i) according
to Theorem 2.2, the following holds:

Ψ′ (χ, σ) = Ψ′ (χ, σ) ,Ψ′ (χ, σ) = Ψ′ (χ, σ) ,

Hð [ Ψ′ (χ, σ)] = Hð
[

Ψ′ (χ, σ)
]

= p(s, v)Hð [Ψ (χ, σ) ] − q(s, v)Ψ (0, σ) ,

Hð
[

Ψ′ (χ, σ)
]

= Hð

[
Ψ′ (χ, σ)

]
= p(s, v)Hð

[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) ,

p(s, v)Ĥð [Ψ(χ)] ⊖ q(s, v)Ψ (0)
=
(
Hð [Ψ′ (χ, σ)] ,Hð

[
Ψ′ (χ, σ)

])
= Ĥð [Ψ′(χ)] .

(b)(
− q(s, v) ⊙ Ψ (0)

)
⊖
(

−p(s, v) ⊙ ÊF [Ψ (χ)]
)

=
(

− q(s, v)Ψ (0, σ) + p(s, v)Hð
[
Ψ (χ, σ)

]
,

− q(s, v)Ψ (0, σ) + p(s, v)Hð [Ψ (χ, σ)]
)
.

Since
EF
[
Ψ′(χ, σ)

]
= p(s, v)Hð [Ψ (χ, σ)] − q(s, v)Ψ (0, σ) ,

Hð

[
Ψ′ (χ, σ)

]
= p(s, v)Hð

[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) .

Since Ψ(χ) is differentiable in the form (i) according
to Theorem 2.2, the following holds:

Ψ′ (χ, σ) = Ψ′ (χ, σ) ,Ψ′ (χ, σ) = Ψ′ (χ, σ)

Hð [ Ψ′ (χ, σ)] = Hð

[
Ψ′ (χ, σ)

]
= p(s, v)Hð

[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) ,

Hð
[
Ψ′ (χ, σ)

]
= Hð

[
Ψ′ (χ, σ)

]
= p(s, v)Hð [Ψ (χ, σ)] − q(s, v)Ψ (0, σ) ,

(−q(s, v) ⊙ Ψ (0)) ⊖
(

−p(s, v) ⊙ Ĥð [Ψ (χ)]
)

=
(
Hð [ Ψ′ (χ, σ)] ,Hð

[
Ψ′ (χ, σ)

])
= Ĥð [Ψ′(χ)] .

Example 4.1: Consider a fuzzy initial value problem:

Ψ′ (χ) = Ψ (χ) , Ψ (0, σ) = (σ − 1, 1 − σ) , 0 ≤ σ ≤ 1.

Solution. Apply both sides’ fuzzy generalization of ZZ
transforms to get

Ĥð [Ψ′ (χ)] = Ĥð [Ψ (χ)] .
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Case (1) Ψ (χ) be (i)-differentiable,

q(s, v) ⊙ Ĥð [Ψ(χ)] ⊖ q(s, v) ⊙ Ψ (0) = Ĥð [Ψ′(χ)] .

Using upper and lower functions to have
q(s, v)Hð [Ψ (χ, σ)] − q(s, v)Ψ (0, σ)

= Hð [Ψ (χ, σ)] , q(s, v)Hð
[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) =

[
Ψ (χ, σ)

]
,

(q(s, v) − 1)Hð [Ψ (χ, σ)] = q(s, v) (σ − 1) ,
(q(s, v) − 1) Hð

[
Ψ (χ, σ)

]
= q(s, v)(1 − σ),

Hð [Ψ (χ, σ)] = 1
(q(s, v) − 1) q(s, v) (σ − 1) ,

Hð
[
Ψ (χ, σ)

]
= 1

(q(s, v) − 1)q(s, v)(1 − σ),

Ψ (χ, σ) = (Hð)−1
(

1
(q(s, v) − 1) q(s, v) (σ − 1)

)
,

Ψ (χ, σ) = (Hð)−1
(

1
(q(s, v) − 1)q(s, v) (1 − σ)

)
.

Using inverse generalization of ZZ transform

Ψ (χ, σ) = (σ − 1) eχ, Ψ (χ, σ) = (1 − σ) eχ.

Case (2) Ψ (χ) be (ii)-differentiable,

Ĥð [Ψ′(χ)] = (−q(s, v) ⊙ Ψ (0))⊖
(

−q(s, v) ⊙ Ĥð [Ψ (χ)]
)
.

Using upper and lower functions, to have

q(s, v)Hð [Ψ (χ, σ)] − q(s, v)Ψ (0, σ) = Hð
[
Ψ (χ, σ)

]
,

q(s, v)Hð
[
Ψ (χ, σ)

]
− q(s, v)Ψ (0, σ) = EF [Ψ (χ, σ)] ,

q(s, v)EF [Ψ (χ, σ)] = q(s, v) (σ − 1) + Hð
[
Ψ (χ, σ)

]
,

q(s, v)Hð
[
Ψ (χ, σ)

]
= q(s, v) (1 − σ) + Hð [Ψ (χ, σ)] .

With simple calculation and Using inverse generaliza-
tion of ZZ transform, we obtained the solution of case
(2)

Ψ (χ, σ) = (σ − 1) e−χ, Ψ (χ, σ) = (1 − σ) e−χ.

V. Conclusion
Using the extremely extended differentiability notion,

we have developed the fuzzy generalization of ZZ trans-
form to solve fuzzy initial-value problems for first-order
linear fuzzy differential equations. This might lead to
solutions whose support fluctuates over time.
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