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Abstract—We developed and analyzed two mathematical models
considering indirect and direct mutualism of two prey species
in the presence of predator species. The mutualism dynamics
are represented by taking into account a fixed and a produced
carrying capacities corresponding to different mutual interac-
tions between symbionts. As the death rate of the predator
increases, the indirect mutualism model goes through a trans-
critical bifurcation, whereas, in the direct mutualism model
shows a trans-critical bifurcation as well as a Hopf bifurcation.

Index Terms—Mutualism, Variable carrying capacity, Stability,
Limit cycle, Bifurcation

I. INTRODUCTION

Mathematical models for symbiosis have been developed
in several studies [1], [2], [3], [4], [5], [6]. The global
stability of mutualistic dynamics between two species with
harvesting is studied in [2]. A commensal symbiosis model
with a non-monotonic functional response is investigated
in [3]. Yukalov and his co-workers [1] introduced a prey-
prey model featuring distinct types of symbiotic interactions
and provided a detailed classification of possible dynamical
regimes. In this paper, we extend the prey-prey mutualism
model presented in [1] to a prey-prey-predator model and ex-
plore the stability and bifurcation behavior. While predator-
prey interactions are considered in many ecological models,
predation is generally not classified as a form of symbiosis.
This is because symbiosis is defined by the persistence of
interactions [7].

The Lotka-Volterra system was the first to model the dynamic
interactions between predator and prey, analyzing how each
affects the other [8], [9], [10], [11]. The standard two
species model has since been modified to account for more
specific factors influencing predator-prey interactions, such
as handling rate and herding behavior [12], [13]. Numerous
studies have also explored the dynamics of modified prey-
prey-predator models [14], [15], [16]. Inspired by the work
of [1], we investigate the dynamics of two mutualistic prey
species by incorporating the effects of a predator species.
One example of this is the multi-species herd consistes of
zebras and wildebeests, both of which are prey to lions
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and provide mutual protection against them. Coblentz and
his colleagues [22] examined how non-interaction and com-
petition between prey species affect predator populations.
Camacho et al. [23] demonstrated a shift between mutualism
and predation in the relationship between predator ants and
prey hemipterans. Feeney et al. [24] argued that predation is
a driving factor in the recurrent convergent evolution of fish-
anemone mutualism. Most recently, Lopez and colleagues
[25] analyzed a system of two mutualistic prey species and
one predator, incorporating a Crowley-Martin-type functional
response.

The paper is organized as follows. In Section II, we introduce
the mathematical formulation of variable carrying capacities
consisting of a fixed and a variable term produced by two
symbiotic species. In Section III, we develop the model
using variable carrying capacity representing the livelihood
that are influenced without direct interaction between both
prey populations in the presence of a predator. We analyze
the stability and bifurcation behavior after re-scaling. We
further develop a model using carrying capacity representing
the livelihood that are influenced with direct interaction
between both prey species in the presence of a predator
species in section IV and again analyze the stability and
bifurcation behavior after re-scaling. In Section V, we give
the concluding remark emphasizing ecological significance
of the two models and discuss the possible future research.

II. INDIRECT AND DIRECT MUTUALISM

Mutualism refers to a relationship in which two or more
species gain from interacting with each other. To construct
our mutualism model, we start with the Lotka-Volterra
framework [13] and modify it to include two prey species
that influence each other through mutualistic interactions, as
explored in [1]. So we start with :

dXi

dt
= AiXi −

µiX
2
i

Ni
, (1)

where Xi = Xi(t) are functions of time t ≥ 0. Here,
the parameters Ai > 0 are the logistic growth rates of i-
th species. The parameters µi > 0 are the intensity of the
mutual competition between the agents of the i-th species.
The important difference from standard logistic equation is
that the carrying capacity in mutualism is considered to be
a function

Ni = Ki + µiNi(X1, X2, ...) (2)

of the quantities Xi, for co-existing symbiotic species. The
first term Ki is the carrying capacity of the given surround-
ing livelihood. The second term characterizes the carrying
capacity produced by the other species through symbiotic
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influence. The parameter Ki is supposed to be nonzero,
which implies that the species could exist without their
symbionts. The symbiotic coefficient µi defines the positive
intensity of producing, or destroying, the carrying capacity
in the process of symbiosis relations. Thus we can assume
µi > 0 and the symbiosis function Ni(X1, X2, ...) to be
nonnegative. If the carrying capacity of the i−th species is
influenced by the j−th species without direct interactions
(the livelihood of each species is influenced by the presence
of another species without involving their direct interactions),
the carrying capacity can be described as

Ni = Ki +NiXj , i, j = 1, 2; i ̸= j. (3)

If the carrying capacity of the i− th species is influenced by
the j−th species involving direct interactions (the symbiotic
species influence the livelihood of each other by means of
mutual interactions), the carrying capacity can be described
as

Ni = Ki +NiXiXj , i = 1, 2; i ̸= j. (4)

In Sections III and IV, we extend this idea of symbiotic
relations using the carrying capacities described in (3) and
(4) for two species in the presence of a predator. This allows
us to investigate the dynamics of mutualism by considering
both indirect and direct interactions between the prey species.

III. A MATHEMATICAL MODEL OF INDIRECT SYMBIOSIS

Consider a model of symbiosis involving three different
species, where the carrying capacity of the X(t) depends on
the Y (t) and vice versa, along with the influence of the Z(t).
As discussed in Section II, if the carrying capacity of the
X(t) is influenced solely by Y (t) without direct interaction,
the model can be expressed, after appropriate scaling and
normalization, as

dX

dt
= AX(1− X

1 + µY
)−BXZ,

dY

dt
= CY (1− Y

1 + νX
)−DY Z. (5)

dZ

dt
= −EZ + FXZ +GY Z,

The parameters A and C represent the logistic growth rates
of the respective prey species. The parameters B and D
denote the predation death rates. The parameter E is the
natural death rate of the predator. The parameters F and G
correspond the growth rates of the predator resulting from
interactions with the respective prey species. The parameters
µ > 0 and ν > 0 represent the extent to which symbiosis
affects the carrying capacity of the respective species.

Before advancing with the analysis of the steady state and
stability, it is necessary to perform some re-scaling to better
understand how the parameters influence the dynamics. To
this end, the variables are scaled as follows: x = X, y =
Y, z = B

AZ, tnew = told
A and other parameters are dimension-

less as: a = C
A , b = D

B , c = E
A , d = F

A , e = G
A , µ = α, ν = β.

With these changes system (5) becomes

dx

dt
= x(1− x

1 + αy
)− xz,

dy

dt
= ay(1− y

1 + βx
)− byz, (6)

dz

dt
= −cz + dxz + eyz,

which are still difficult to analyze qualitatively as it has seven
parameters. So we make the following three assumptions to
simplify the model.

Assumption 1: Both x and y species experience the same
predation death rates, which results in the parameter b being
equal 1.

Assumption 2: Both prey species exert the same positive
effects on the predator z, leading to d = e.

Assumption 3: Both prey have the same symbiotic effects on
each other, meaning α = β.

Then, the system becomes:

dx

dt
= x(1− x

1 + αy
)− xz,

dy

dt
= ay(1− y

1 + αx
)− yz, (7)

dz

dt
= −cz + dz(x+ y).

It is important to note that the parameters a, c, d, and α
always remain positive. Furthermore, for ecological analysis,
the region of interest in R3 is confined to H = {(x, y, z) ∈
R3| x ≥ 0, y ≥ 0, z ≥ 0}.

A. Steady states and stability

The model system (7) has seven steady states :

(i) complete extinction (0, 0, 0),
(ii) the prey x only (1,0,0),
(iii) the prey y only (0,1,0),
(iv) the prey x and predator z only ( cd , 0, d−c

d ),
(v) the prey y and predator z only (0, c

d , a(d−c)
d ),

(vi) the prey-prey only ( 1
1−α , 1

1−α ,0), and
(vii) coexistence, (x̄,ȳ,z̄), which is the solution to the system
of equations:

1− x̄

1 + αȳ
= z̄,

a(1− ȳ

1 + αx̄
) = z̄, (8)

c− dx̄

d
= ȳ.

More specifically, when a ̸= 1 the solutions are:

x̄± =
d(a+ 1) + cα(2a+ α(a− 1))± q

2dα(α+ 1)(a− 1)
,

ȳ± =
d(a+ 1) + cα(2 + α(1− a))± q

2dα(α+ 1)(1− a)
, (9)

z̄± =
(a+ 1)(d+ 2dα+ cα2)± q

2α(2d+ cα)
,

where

q =
√

d2(a+ 1)2 + 4acα(2d+ cα) + αm(a− 1)2, (10)
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with m = 4d2(α+1)+2αcd+4cdα2 + c2α3. We represent
the steady states (vii) as (x̄+, ȳ+, z̄+) and (x̄−, ȳ−, z̄−),
corresponding to the respective signs in front of q in (9)
. When a = 1, the coexistence steady state is given by
( c
2d ,

c
2d ,

2d+cα−c
2d+cα ), which holds ecological significance when

2d
c + α > 1. For a ̸= 1, we address the feasibility of these

steady states in the following lemma.

Lemma 1: For system (7) with positive parameters α, a, c,
d and a ̸= 1, the coexistence steady states

(a) (x̄+, ȳ+, z̄+) is infeasible; and
(b) (x̄−, ȳ−, z̄−) is feasible if and only if one of the

following set of conditions are satisfied:
i. a ̸= 1 and d < c < 2d;

ii. a ̸= 1, c > 2d, and 2d+ cα > c;
iii. a < 1, a+ c

d > 1 and c < d;
iv. 1 < a < d

d−c and c < d.

Proof: First of all, let us prove (x̄+, ȳ+, z̄+) is always
infeasible.

When a > 1, it is obvious that both numerator and denomi-
nator of x̄+ are positive, and thus x̄+ > 0.

Let r = d(a+ 1) + cα(2 + α(1− a)). If r ≥ 0, then r + q,
which is the numerator of ȳ+, is positive. If r < 0, then
q − r > 0 and q2 − r2 = q2 − (d(a + 1) + cα(2 + α(1 −
a)))2 = 4α(a− 1)(c+d(a− 1))(α+1)(d+ cα) > 0. Hence
q + r > 0, which implies the numerator of ȳ+ is positive.
However, when a > 1, the denominator of ȳ+ is negative.
Thus ȳ+ < 0.

Therefore, if a > 1, (x̄+, ȳ+, z̄+) is infeasible.

Similarly, we can prove that (x̄+, ȳ+, z̄+) is infeasible if a <
1.

Now we prove part (b).

( ⇐= ) is trivial.

( =⇒ ) We first discuss z̄−. Since both the denominator and
the conjugate of the numerator of z̄− are always positive, we
can multiply both the numerator and denominator of z̄− by
the conjugate of its numerator without changing the sign of
the numerator. As a result, the numerator becomes 4aα(α+
1)(2d+cα)(2d+cα−c), which indicates that the numerator
is positive when 2d+ cα > c.

Next, because the conjugates of the numerators of x̄− and ȳ−
are always positive, we can determine the conditions under
which x̄− and ȳ− are positive.

The numerator of x̄− multiplied by its conjugate is 4α(α+
1)(d+ cα)(a−1)(a(c−d)+d), with the relevant part being
(a − 1)(a(c − d) + d). The numerator of ȳ− multiplied by
its conjugate is −4α(α + 1)(d+ cα)(a− 1)(c+ d(a− 1)),
with the relevant part being −(a− 1)(c+ d(a− 1)).

For x̄− > 0, we require ac+ d > ad. For ȳ− > 0, we need
c+ad > d. Moreover, for z̄− > 0, the condition 2d+cα > c
must hold. Thus, to make the steady state exist, parameters
should satisfy all three conditions.

If a < 1, x̄− is positive. Also, if d < c < 2d, ȳ− and z̄− are
positive. However, when c > 2d, ȳ− is still positive, but we

also need 2d+ cα > c for z̄− to be positive. If c < d, then
z̄− is now positive, but c+ad > d is necessary for ȳ− to be
positive.

If a > 1, ȳ− is always positive. Like above, if d < c < 2d,
x̄− and z̄− are positive. However, when c > 2d, x̄− is still
positive, but we also need 2d+cα > c for z̄− to be positive. If
c < d, then z̄− becomes positive, but we also need a < d

d−c
for x̄− to be positive.

Thus we have shown the conditions for which (x̄−, ȳ−, z̄−)
is feasible.

Now, let us discuss the linear stability of these steady states
which is determined by considering the eigenvalues of the
Jacobian matrix,

J(x, y, z)

=

1−
2x

1+αy − z αx2

(1+αy)2 −x
aαy2

(1+αx)2 a− 2ay
1+αx − z −y

dz dz −c+ d(x+ y)

 ,

(11)
evaluated at each of these steady states.
1) Complete Extinction: x = 0, y = 0, z = 0: When the
Jacobian matrix (11) is evaluated at (0, 0, 0), the eigenvalues
are 1, a, and −c. Thus, (0, 0, 0) is unstable (saddle). This
means that when populations of all three species begin with
very small quantities, it is impossible for all of them go
extinct simultaneously.
2) The prey x only: x = 1, y = 0, z = 0: When the Jacobian
matrix (11) is evaluated at the prey x only steady state, the
eigenvalues are −1, a, and d−c. Thus the prey x only steady
state is always unstable.
3) The prey y only: x = 0, y = 1, z = 0: When the Jacobian
matrix (11) is evaluated at the prey y only steady state, the
eigenvalues are 1,−a, and d−c. Thus, the prey y only steady
state is always unstable.
4) The prey x and predator z only: x = c

d , y = 0, z = d−c
d :

When the Jacobian matrix (11) is evaluated at ( cd , 0,
d−c
d ),

the eigenvalues are c−d+ad
d and −c±

√
c(c+4cd−4d2)

2d . For this
steady state to be biologically feasible, we have d > c, which
implies 4cd − 4d2 < 0. Moreover, if c + 4cd − 4d2 ≥ 0,
since 4cd − 4d2 < 0, c + 4cd − 4d2 < c, eigenvalues
−c±

√
c(c+4cd−4d2)

2d are negative. If c+4cd−4d2 < 0, then it

is obvious that the real part of −c±
√

c(c+4cd−4d2)

2d is negative.
In addition, c−d+ad

d is negative if a+ c
d < 1. Therefore, the

steady state is stable when d > c and a + c
d < 1. It does

make sense since if the population of X grows much faster
than Y , and if the growth rate of Z due to the interaction
with X is greater than its death rate, then the prey Y will
die out.
5) The prey y and predator z only: x = 0, y = c

d ,
z = a(d−c)

d : When the Jacobian matrix (11) is evalu-
ated at (x, c

d ,
a(d−c)

d ), the eigenvalues are ac+d−ad
d and

−ac±
√

ac(ac+4cd−4d2)

2d . For this steady state to be significant,
we have d > c, which implies 4cd − 4d2 < 0. With
similar discussions as we did previously, either eigenvalues
−ac±

√
ac(ac+4cd−4d2)

2d or their real parts are negative. Also,
ac+d−ad

d is negative if ac+ d < ad. Hence, this steady state
is stable when a > d

d−c > 1. This is similar to the previous
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steady state. That is, if the population of Y grows much faster
than X , and if the growth rate of Z due to the interaction
with Y is greater than its death rate, then the prey X will
go extinct.

Note that both mathematically and logically, the “prey x and
predator z only” and “prey y and predator z only” steady
states cannot both be stable at the same time. That is because
a < 1 for the former to be stable while a > 1 for latter.

6) The prey x and y only: x = 1
1−α , y = 1

1−α , z = 0: When
the Jacobian matrix (11) is evaluated at this steady state,

the eigenvalues are 2d+cα−c
1−α and −(a+1)±

√
(a−1)2+4aα2

2 . To
be ecologically feasible, we obtain α < 1. The conjugate
eigenvalues are always negative and real. The steady state is
stable if 2d < c(1− α) and unstable otherwise. This means
that if the death rate of the predator Z is greater than the
growth rate of Z due to the interaction with both X and Y ,
then Z will go extinct.

7) The Coexistence Steady State Behavior: From Lemma
1, we know that (x̄+, ȳ+, z̄+) is unfeasible. The stability of
(x̄−, ȳ−, z̄−) is presented in the following theorem.

Theorem 1: The coexistence steady state (x̄, ȳ, z̄) =
(x̄−, ȳ−, z̄−) given in equation (9) of the model system (7)
is aymptotically stable when exists.

Proof: The Jacobian matrix (11) evaluated at (x̄, ȳ, z̄)
is given as follows:

J(x̄, ȳ, z̄)

=

1−
2x̄

1+αȳ − z̄ αx̄2

(1+αȳ)2 −x̄

aαȳ2

(1+αx̄)2 a− 2aȳ
1+αx̄ − z̄ −ȳ

dz̄ dz̄ −c+ d(x̄+ ȳ)

 ,

which, in turn, yields a cubic characteristic polynomial
equation in λ, given by

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (12)

where the coefficients a1, a2, and a3 are expressed in terms
of parameters of (7) as

a1 = 2z̄ +
2aȳ

1 + αx̄
+

2x̄

1 + αȳ
+ c− d(x̄+ ȳ)− a− 1,

a2 = a− c− ac+ d(x̄+ ȳ) + ad(x̄+ ȳ)− z̄ − az̄

+2cz̄ + 2d(x̄+ ȳ)z̄ + z̄2

+
2acȳ + 2aȳz̄ − 2aȳ − 2adȳ(x̄+ ȳ)

1 + αx̄

+
2cx̄+ 2x̄z̄ − 2ax̄− 2dx̄(x̄+ ȳ)

1 + αȳ

+
4ax̄ȳ

(1 + αx̄)(1 + αȳ)
− ax̄2ȳ2α2

(1 + αx̄)2(1 + αȳ)2
,

a3 = ac− ad(x̄+ ȳ)− cz̄ − acz̄ − adx̄z̄ − dȳz̄

+d(x̄+ ȳ)z̄ + ad(x̄+ ȳ)z̄ + cz̄2 + dx̄2z̄2 + dȳz̄2

−d(x̄+ ȳ)z̄ +
adαx̄ȳ2z̄

(1 + αx̄)2
+

dαx̄2ȳz̄

(1 + αȳ)2

+
4acx̄ȳ − 4adx̄ȳ(x̄+ ȳ)

(1 + αx̄)(1 + αȳ)
+

2aȳd(x̄+ ȳ)

1 + αx̄

+
2acȳz̄ + 2adx̄ȳ2 − 2acȳ − 2ad(x̄+ ȳ)ȳz̄

1 + αx̄

+
2ad(x̄+ ȳ)x̄+ 2cx̄z̄ + 2dx̄ȳz̄ − 2acx̄

1 + αȳ

−2d(x̄+ ȳ)x̄z̄

1 + αȳ
.

Using (8), we can simplify the terms into

a1 =
x̄(1 + αx̄) + aȳ(1 + αȳ)

(1 + αx̄)(1 + αȳ)
,

a2 =
dx̄z̄ + dȳz̄(1 + αx̄)2(1 + αȳ)2 + ax̄ȳ

(1 + αx̄)2(1 + αȳ)2

+
aαx̄2ȳ + aαx̄ȳ2

(1 + αx̄)2(1 + αȳ)2
,

a3 =
dx̄ȳz̄(aαȳ(1 + αȳ)2 + a(1 + αx̄)(1 + αȳ)2

(1 + αx̄)2(1 + αȳ)2

+
αx̄(1 + αx̄)2 + (1 + αȳ)(1 + αx̄)2

(1 + αx̄)2(1 + αȳ)2
.

Applying the Routh-Hurwitz conditions, the coexistence
steady state (x̄, ȳ, z̄) is stable if a1 > 0, a3 > 0, and
a1a2 > a3. Since x̄, ȳ, z̄, and all parameters are positive,
it is evident that a1 > 0 and a3 > 0. The final condition,
a1a2 − a3 = dx̄2z̄(1 + αx̄)3(1 + αȳ) + a2x̄ȳ2(1 + αȳ)(1 +
αx̄+αȳ)+aȳ(1+αx̄)(αx̄3+x̄2(1+αȳ+dȳz̄(1+αȳ)3) > 0
ensures that a1a2 > a3. Thus (x̄, ȳ, z̄) is stable, provided it
is ecologically feasible.

To better understand the coexistence, Fig. 1 depicts the time
series plot for x, y, z versus t.

Fig. 1: The time series plot of the coexistence steady state
using parameters a = d = 0.25, α = 1 and c = 0.6 with
initial conditions (0.5, 0.5, 0.5)

Moreover, Fig. 2 shows the phase diagram of z versus x
and z versus y. It depicts that if the predator death rate is
sufficiently large, there are less prey that will be killed. In
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this case all three species will stay around. However, the prey
populations will not explode in growth due to the continual
presence of the predator.

Fig. 2: The phase portraits of z vs x and z vs y of the
coexistence steady state using parameters a = d = 0.25,
α = 1, and c = 0.6 with initial conditions (0.5, 0.5, 0.5)

B. Bifurcations

We now look at the stability of the system (7). Since we
can not explicitly compute the eigenvalues of the Jacobian
matrix (11), analytical techniques can not be used and
numerical computation techniques typically must be adopted
to follow the stable and unstable manifold. Using AUTO in
XPPAUT (ref. [17]) is helpful in this regard. In Fig. 3, a
bifurcation diagram is presented with the predator death rate
c as the bifurcation parameter. The vertical axis displays,
from bottom to top, the starting positions of the prey x and
predator z only steady state, the coexistence steady state,
and the prey x only steady state. From the diagram, we
observe that the system (7) shows transcritical bifurcation at
c = 0.1875. Ecologically, we can say that with some critical
value of parameter c, when the predator population is large
enough, it can cause one of the prey species to go extinct
from over hunting. In this case, the prey y goes extinct. Once
this happens, there is no longer an abundance of food for the
predator and its population stabilizes with the remaining prey
population.

IV. MATHEMATICAL MODEL OF DIRECT SYMBIOSIS

Now, consider a second model of symbiosis between three
different species, where the carrying capacity of the X(t)
populations depend on both a fixed factor and a variable
factor involving X(t) and Y (t), reflecting the direct symbi-
otic influence between them. Similarly, the carrying capacity
of Y (t) species in the presence of the predator Z(t). Thus,
as argued in Section III, using appropriate scaling and
normalization of symbiotic carrying capacities the modified
model system can be expressed as

Fig. 3: The bifurcation diagram of the x population vs the
predator death rate parameter c. The other parameters are
a = d = 0.25, α = 1. The thick curve corresponds to stable
steady states while the thin curve corresponds to unstable
steady states. The system shows the existence of trans-critical
bifurcation at c = c∗ = 0.1875.

dX

dt
= AX(1− X

1 + µXY
)−BXZ,

dY

dt
= CY (1− Y

1 + νXY
)−DY Z, (13)

dZ

dt
= −EZ + FXZ +GY Z,

The parameters A and C represent the logistic growth rates
of the respective prey species. The parameters B and D
denote the predation death rates. The parameter E is the
natural death rate of the predator. The parameters F and G
correspond the growth rates of the predator resulting from
interactions with the respective prey species. The parameters
µ > 0 and ν > 0 show how much symbiosis affect the
respective species’ carrying capacity.

Before advancing with stability analysis, some re-scaling
needs to take place so as to be better able to understand how
the parameters affect the dynamics. To this end, the variables
are scaled as: x = X, y = Y, z = B

AZ, tnew = atold. We
now redefine the parameters as follows: a = C

A , b = D
B , c =

E
A , d = F

A , e = G
A , µ = α, ν = β. Moreover, under the

assumptions 1, 2, and 3 for indirect model, we have

dx

dt
= x(1− x

1 + αxy
)− xz,

dy

dt
= ay(1− y

1 + αxy
)− yz, (14)

dz

dt
= −cz + dz(x+ y).

Note that our parameters a, c, d, and α are positive, and
for ecological study, the region of interest in R3 remains in
H = {(x, y, z) ∈ R3| x ≥ 0, y ≥ 0, z ≥ 0}.

A. Steady states and stability Analysis

There are eight steady states of model system (14):
(i) complete extinction (0, 0, 0),
(ii) the prey x only (1, 0, 0),
(iii) the prey y only (0, 1, 0),
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(iv) the prey x and predator z only ( cd , 0,
d−c
d ),

(v) the prey y and predator z only (0, c
d ,

a(d−c)
d ),

(vi) the prey x and y only, and the two steady states are
( 1+

√
1−4α
2α , 1+

√
1−4α
2α , 0) and ( 1−

√
1−4α
2α , 1−

√
1−4α
2α , 0), and

(vii) coexistence, (x̄, ȳ, z̄), which is the solution to the system
of equations

1− x̄

1 + αx̄ȳ
= z̄,

a(1− ȳ

1 + αx̄ȳ
) = z̄, (15)

c− dx̄

d
= ȳ.

More specifically, when a ̸= 1, the coexistence steady state
is

x̄± =
d(a+ 1) + cα(a− 1)± q

2dα(a− 1)
,

ȳ± =
d(a+ 1) + cα(1− a)± q

2dα(1− a)
, (16)

z̄± =
a((4d2 + αc2 − cd)(a+ 1)± cq)

2(d2(a+ 1)2 + aαc2)
,

where

q =
√

(4d2α+ (d− cα)2)(a− 1)2 + 4ad2. (17)

We denote these coexistence steady states as (x̄−, ȳ−, z̄−)
and (x̄+, ȳ+, z̄+), corresponding to the respective signs in
front of q in (16). It is easy to see when a = 1, the
coexistence steady state is ( c

2d ,
c
2d ,

4d2+c2α−2cd
4d2+c2α ), which is

ecologically feasible when α > 2d(c−2d)
c2 . The following

lemma further guarantees the existence of feasible coexis-
tence steady state.

Lemma 2: For system (14) with positive parameters α, a, c,
d and a ̸= 1, the coexistence steady states (16)

(a) (x̄+, ȳ+, z̄+) is infeasible, and
(b) (x̄−, ȳ−, z̄−) is feasible if and only if one of the

following set of conditions is met:
i. a ̸= 1 and d < c < 2d;

ii. a ̸= 1, c > 2d, and α > 2d(c−2d)
c2 ;

iii. a < 1, c < d, and a+ c
d > 1;

iv. 1 < a < d
d−c and c < d.

Proof: By the similar arguments as we did in Lemma
1, we can show that when a < 1, x̄+ < 0 and ȳ+ > 0 and
when a > 1, x̄+ > 0 and ȳ+ < 0. Thus (x̄+, ȳ+, z̄+) is not
biologically significant.

Now, for part (b), ( ⇐= ) is trivial.

( =⇒ ) Since we know the conjugates of numerators of
x̄−, ȳ−, and z̄− are always positive, we can use them to find
the conditions for when (x̄−, ȳ−, z̄−) is in positive octant.

The numerator of x̄− multiplied by its conjugate gives
4dα(a − 1)(a(c − d) + d). The relevant part is (a −
1)(a(c − d) + d). The numerator of ȳ− multiplied by its
conjugate is 4dα(1− a)(c+ d(a− 1)). The relevant part is
(1 − a)(c + d(a − 1)). The numerator of z̄− multiplied by
its conjugate is 4a2(−2cd+4d2+ c2α)((a+1)2d2+ac2α).

The relevant part is (−2cd + 4d2 + c2α). The component
z̄− is positive when 4d2 + c2α > 2cd, which is the same as
α > 2d(c−2d)

c2 . This condition is guaranteed if c < 2d.

If a < 1, the numerator of x̄− needs to be negative and
the numerator of ȳ− needs to be positive. Thus we need
ac+d(1−a) > 0 and c+ad−d > 0, and the second inequality
requires additional conditions. If c < d, then c+ ad > d. If
d < c < 2d, no other conditions are necessary. If c > 2d,
then α > 2d(c−2d)

c2 is needed to make z̄− positive.

If a > 1, the numerator of x̄− needs to be positive and
the numerator of ȳ− needs to be negative. Thus we need
ac+d−ad > 0 and c+d(a−1) > 0, while the first inequality
requires additional conditions. If c < d, then a(c−d)+d > 0,
which is the same as a(d− c) < d. If d < c < 2d, no other
conditions are necessary. If c > 2d, then α > 2d(c−2d)

c2 is
needed to make z̄− positive.

Thus we have shown the conditions for which (x̄−, ȳ−, z̄−)
is positive.

Like our first model, the linear stability of these steady states
is determined by considering the eigenvalues of the Jacobian
matrix of the system (14),

J(x, y, z)

=


1− x(2+αxy)

(1+αxy)2
− z αx3

(1+αxy)2
−x

aαy3

(1+αxy)2
a− ay(2+αxy)

(1+αxy)2
− z −y

dz dz −c+ d(x+ y)

 ,

(18)
evaluated at each of these steady states.
1) Complete extinction (the zero population steady state):
x = 0, y = 0, z = 0: When the Jacobian matrix (18) is
evaluated at this steady state, the eigenvalues are 1, a, and
−c. For the entire system, this means that the zero population
steady state is unstable.
2) The prey x only: x = 1, y = 0, z = 0: When the Jacobian
matrix (18) is evaluated at (1, 0, 0), the eigenvalues are −1,
a, and d − c. This means the prey x only steady state is
unstable.
3) The prey y only: x = 0, y = 1, z = 0: When the Jacobian
matrix (18) is evaluated at the steady state (0, 1, 0), the
eigenvalues are 1,−a, and d − c. This means the prey y
only steady state is unstable.
4) Prey x and predator z only: x = c

d , y = 0, z = d−c
d :

When the Jacobian matrix (18) is evaluated at this steady

state, the eigenvalues are c−d+ad
d and −c±

√
c(c+4cd−4d2)

2d .
For this steady state to be ecologically significant, we have
d > c, which implies 4cd − 4d2 is negative. Following the

similar discussions as before, either −c±
√

c(c+4d(c−d))

2d , if c+

4d(c − d) > 0, or the real part of −c±
√

c(c+4d(c−d)

2d , if c +
4d(c − d) < 0, is always negative. Thus the prey x and
predator z only steady state is stable when a+ c

d < 1. This
stability behavior is the same as in the indirect interaction
model. If the population of X grows much faster than Y ,
and if the growth rate of Z due to the interaction with X is
greater than its death rate, then the prey Y will die out.
5) Prey y and predator z only: x = 0, y = c

d ,
z = a(d−c)

d : When the Jacobian matrix (18) is evalu-
ated at this steady state, the eigenvalues are ac+d−ad

d and
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−ac±
√

ac(ac+4cd−4d2)

2d . For this steady state to be ecologi-
cally significant, we obtain d > c, which implies 4cd−4d2 is

negative. As the same as before, either −ac±
√

ac(ac+4cd−4d2)

2d

or the real part of −ac±
√

ac(ac+4cd−4d2)

2d is always negative.
Thus prey y and predator z only steady state is stable when
a > d

d−c > 1. This means that if the population of Y grows
much faster than X , and if the growth rate of Z due to the
interaction with Y is greater than its death rate, then the prey
X will go extinct.

Note that this and the previous steady state cannot both be
stable. That is because a < 1 is for the previous steady state
to be stable while a > 1 is for this steady state to be stable.
The behavior of the prey y and predator z only steady states
agrees with those found in the corresponding steady state of
the indirect symbiosis model.
6) Prey x and prey y only: ( 1+

√
1−4α
2α , 1+

√
1−4α
2α , 0) and

( 1−
√
1−4α
2α , 1−

√
1−4α
2α , 0): We denote the two prey species

only steady states as follows:

(x̄1, ȳ1, 0) = (1−
√
1−4α
2α , 1−

√
1−4α
2α , 0) and

(x̄2, ȳ2, 0) = ( 1+
√
1−4α
2α , 1+

√
1−4α
2α , 0).

Note that for either steady state to be ecologically significant,
we have 0 < α ≤ 0.25, which indicates 1 >

√
1− 4α.

When the Jacobian matrix (18) is evaluated at the steady state
(x̄1, ȳ1, 0), the eigenvalues are d(1−s)−cα

α and α(a+1)±r
−(1−s) ,

where r =
√

2a(1− s)− 8aα+ 4aαs+ (a+ 1)2α2 and
s =

√
1− 4α. The second eigenvalue α(a+1)+r

−(1−s) is obviously
always negative with our assumptions that the parameters
a and α are positive and 1 >

√
1− 4α. The third eigen-

value α(a+1)−r
−(1−s) is negative when α(a + 1) > r, that is

2a(1− s− 4α+ 2αs) < 0. Following this, we need to have
1− 4α < s(1− 2α). Since 1− 4α > 0 and s(1− 2α) > 0,
this is equivalent to (1 − 4α)2 < (s(1 − 2α))2, which is
the same as 1 − 4α < 1 − 4α + 4α2. This is always true
due to our assumptions 4α2 > 0. Thus, the third eigenvalue
is always negative. This means, (x̄1, ȳ1, 0) is stable when
the first eigenvalue d(1−s)−cα

α is negative, which is when
αc2 < 2d(c− 2d).

Similarly, when the Jacobian matrix (18) is evaluated at the
steady state (x̄2, ȳ2, 0), the eigenvalues are d(1+s)−cα

α and
−α(a+1)±u

1+s , where s =
√
1− 4α and

u =
√
2a(1 + s)− 8aα− 4aαs+ (a+ 1)2α2. In this case,

we can show that the third eigenvalue, −α(a+1)+u
1+s , is always

positive. To do this, we need u > α(a+ 1), which is true if
2a(1+ s)− 8aα− 4aαs = 2a(1+ s− 4α− 2αs) = 2a((1−
4α) + (1 − 2α)s) > 0. It is obvious with our assumptions.
Thus, (x̄2, ȳ2, 0) is always unstable.

Ecologically, this is reasonable because a high predator death
and low growth would result in the extinction of the predator.
The prey populations support each other’s growth, but not to
the extent that there is an excess of prey for the predator to
consume.
7) Behavior of Coexistence Steady State: As demonstrated
in Lemma 2, the coexistence steady state exists when spe-
cific parameter conditions are met. The following theorem
establishes the stability of the coexistence steady state in our
direct mutualism model (14).

Theorem 2: For the parameter values a, c, d, and α satisfy-
ing the conditions in Lemma 2, the steady state (x̄, ȳ, z̄) =
(x̄−, ȳ−, z̄−) is asymptotically stable if

(1 + αx̄ȳ − 2aαȳ2)

d(x̄2 + aȳ2)(1 + αx̄ȳ)2
>

(−1 + x̄+ αx̄2ȳ(αȳ − 1))

x̄2(x̄+ aȳ)
.

(19)

Proof: First, we evaluate the Jacobian matrix (18) at
x = x̄, y = ȳ, and z = z̄ and obtain

J(x̄, ȳ, z̄)

=


1− 2x̄

1+αx̄ȳ − z̄ αx̄2

(1+αx̄ȳ)2 −x

aαȳ2

(1+αx̄ȳ)2 a− 2aȳ
1+αx̄ȳ − z̄ −ȳ

dz̄ dz̄ −c+ d(x̄+ ȳ)

 ,

whose characteristic equation is

λ3 + a1λ
2 + a2λ+ a3 = 0, (20)

where

a1 = 2z̄ +
(x̄+ aȳ)(2 + αx̄ȳ)

(1 + αx̄ȳ)2
+ c− d(x̄+ ȳ)− a− 1,

a2 = a− c− ac+ d(x̄+ ȳ) + ad(x̄+ ȳ)− z̄ − az̄

+2cz̄ + dx̄z̄ + dȳz̄ − 2d(x̄+ ȳ)z̄ + z̄2

+
(2 + αx̄ȳ)(−ax̄+ cx̄− aȳ + acȳ − dx̄(x̄+ ȳ))

(1 + αx̄ȳ)2

+
(2 + αx̄ȳ)(−adȳ(x̄+ ȳ) + x̄z̄ + aȳz̄)

(1 + αx̄ȳ)2

+
ax̄ȳ(2 + αx̄ȳ)2 − aα2x̄3ȳ3

(1 + αx̄ȳ)4
,

a3 = ac− ad(x̄+ ȳ)− cz̄ − acz̄ − adx̄z̄ − dȳz̄

+d(x̄+ ȳ)z̄ + ad(x̄+ ȳ)z̄ + cz̄2 + dx̄2z̄2 + dȳz̄2

−d(x̄+ ȳ)z̄ +
2dx̄ȳz̄ + 2adx̄ȳz̄ + dαx̄3ȳz̄

(1 + αx̄ȳ)2

+
dαx̄2ȳ2z̄ + adαx̄2ȳ2z̄ + adαx̄ȳ3z̄

(1 + αx̄ȳ)2

+
(2 + αx̄ȳ)((c− ac)(x̄+ ȳ) + (ad− d)(x̄+ ȳ)2)

(1 + αx̄ȳ)2

+
adα2x̄3ȳ3(x̄+ ȳ) + acx̄ȳ(2 + αx̄ȳ)2

(1 + αx̄ȳ)4

−acα2x̄3ȳ3 + adx̄ȳ(x̄+ ȳ)(2 + αx̄ȳ)2

(1 + αx̄ȳ)4
.

Using (15), we can simplify the terms to

a1 =
x̄+ aȳ

(1 + αx̄ȳ)2
,

a2 =
(dx̄z̄ + dȳz̄)(1 + αx̄ȳ)3 + x̄2(1 + αx̄ȳ − 2aαȳ)

(1 + αx̄ȳ)3
,

a3 =
dx̄ȳz̄(1 + a+ αx̄2 + aαȳ2

(1 + αx̄ȳ)2
.

Therefore, according to the Routh-Hurwitz conditions, we
can conclude that (x̄, ȳ, z̄) is stable if a1 > 0, a3 > 0, and
a1a2 > a3. Since x̄, ȳ, z̄, and all parameters are positive,
it is evident that a1 > 0 and a3 > 0. Also, a1a2 − a3 =
x̄2(x̄+aȳ)(1+αx̄ȳ−2aαȳ2)−d(x̄2+aȳ2)(1+αx̄ȳ)2(−1+
x̄+αx̄2ȳ(αȳ− 1)) > 0, if the stability inequality (19) hold.
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To better understand the solution behavior, we present the
time plots and phase portraits of the solution for different
values of c. Fig. 4 shows the time series plots of the stable
and unstable periodic solutions for different values of c, and
Fig. 5 presents the z versus x diagram and the z versus y
diagram.

It is evident, from these two figures, that when the death
rate parameter c = 0.55, the trajectory spirals in toward the
coexistence steady state, and when c = 0.60 the trajectory
spirals out from the coexistence steady state.

Fig. 4: The time series plots of x, y, z vs. t of coexistence
steady state using parameters a = d = 0.25, α = 1, and
c = 0.55 (bottom of the left) / c = 0.6 (top of the right)
with initial conditions are (0.5, 0.5, 0.5)

Fig. 5: The phase portraits of z vs. x and z vs. y of
coexistence steady state with parameters a = d = 0.25,
α = 1, and c = 0.55 (top) / c = 0.6 (bottom) using initial
conditions (0.5, 0.5, 0.5)

Moreover, using XPPAUT (see, [17]), we plot the phase dia-
gram in Fig. 6, for the death rate parameter c = 0.56, which
illustrates the existence of an unstable periodic solution.

Fig. 6: The phase portrait of z vs. x with c = 0.56, a = d =
0.25 and α = 1. The initial conditions are (2.5, 0.5, 0.6) and
(1.5, 0.7, 0.5) respectively

Ecologically, this suggests that as the predator death rate
increases, fewer prey are killed, allowing all three species to
persist. However, after a certain point, the prey population
experiences unchecked growth, leading to system instability.
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Fig. 7: The bifurcation diagram of the x population vs the
predator death rate parameter c. The thick curve corresponds
to stable steady states while the thin curve corresponds to
unstable steady states. The open circle denotes the maximum
and minimum values of the unstable periodic solution branch
which begins at c = 0.45 and terminates at the Hopf
bifurcation value c = 0.5642.

This is likely due to the enhanced mutualistic impact on
carrying capacity when direct interactions occur between the
symbiotic species.

B. Bifurcations

Now we look at the dynamics of model system (14). Because
of the complexity of computing eigenvalues of the Jacobian
matrix (18) explicitly, we adopt AUTO in XPPAUT [17], as
we did in the indirect symbiosis model. Fig. 7 illustrates that
as the death rate parameter c increases, the system undergoes
both a trans-critical bifurcation and a Hopf bifurcation, with
the other parameters set to a = d = 0.25 and α = 1. The red
curve represents a stable steady state, while the black curve
indicates an unstable steady state. For the unstable periodic
solutions, the maximum and minimum values of x(t) are
shown as blue open circles. Along the vertical axis, from
bottom to top, the starting positions are the prey x and the
predator z only steady state, the coexistence steady state, and
the x only steady state. It is noteworthy that as c increases the
system goes through a transcritical bifurcation at c = 0.1875,
and then the periodic solution branch begins at c = 0.45. The
open circle denotes the maximum and minimum values of the
unstable periodic solution branch which begins at c = 0.45
and terminates at the Hopf bifurcation value c = 0.5642.

Ecologically, we can say that when the predator’s death rate
parameter is sufficiently small, the predator population is
large enough to cause one of the prey species to go extinct
from over-hunting. In this case, the prey x goes extinct. Once
this happens, there is no longer an abundance of food for the
predator and their population stabilizes with the remaining
prey population.

Conversely, when the predator death rate is too large, there
are not enough predators to control the prey population and
they grow uncontrollably. The unstable limit cycles prior to
the Hopf bifurcation represent the possibility of unstable
growth for the populations given sufficiently large initial
conditions.

V. CONCLUSION

In this paper, we have explored two symbiosis models that
simulate the effects of indirect and symmetrically direct
symbiosis in a two prey, one predator system. These models
can alternatively be interpreted as two mutualistic species
resisting the impact of a predator, which contrasts with
previously studied models of mutualism and predation (e.g.
[18], [20], [21]). In both models, at most one species will
go extinct. They also share a transcritical bifurcation (ex-
change stability) arise as the predator death rate parameter c
increases.

As anticipated, the models with different functional re-
sponses exhibit distinct behaviors. The symbiosis involving
indirect interactions maintains the stability fo the coexistence
steady state, similar to the classical predator-prey model
with a constant carrying capacity [18], [19]. Ultimately, the
coexistence steady state becomes unstable when the predator
death rate increases. In contrast, the symbiosis with direct
interaction can lead to unstable limit cycles as the predator
death rate parameter rises. This unbounded growth is akin
to other mutualism models. Future research will discuss
commensalism, parasitism as well as the specific mutualistic
cases, such as the multi-species herds using a square root
functional response in [12], [13].
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