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Abstract—The Wiener index W (G) of a graph G is a
widely used topological invariant, which is defined as the sum
of the shortest path distances between all pairs of vertices
in G. It has significant applications in chemistry, network
theory, and combinatorial optimization, where distance-based
graph measures play a crucial role in understanding structural
properties. For a family Y of connected graphs, its Wiener index
is defined as the sum of the Wiener indices of its members, i.e.,
W (Y)=

∑
G∈Y W (G).

This study investigates a family of bicyclic graphs Ue,
each constructed by replacing an edge e of a tree T with
two fixed cycles, each containing at least three vertices and
sharing at least one common vertex. We establish a fundamental
relationship between the Wiener indices of the family {Ue|e ∈
E(T )} and the original tree T . To achieve this, analytical
expressions for the Wiener index of these transformed graphs
are derived based on the structural properties of T . Then,
we analyze how such modifications affect the overall distance
metric and provide theoretical insights into the impact of local
transformations on global graph invariants.

Our results extend existing knowledge on Wiener indices of
bicyclic graphs and offer a systematic approach for studying
similar graph modifications.

Index Terms—Wiener index; bicyclic graph; tree; graph
invariant.

I. INTRODUCTION

ALL graphs in this paper are assumed to be undirected,
connected, and simple, which means that they have

neither loops nor multiple edges. A graph G is defined by
its vertex set V (G) and edge set E(G). The order of G,
denoted by nG, is the number of vertices in V (G). The
distance dG(u, v) between two vertices u and v in G is
defined as the number of edges in the shortest path that
connects them. The total distance of a vertex v, also known
as its transmission, is the sum of its distances to all other
vertices in G, given by dG(v) =

∑
u∈V (G) dG(u, v). The

Wiener index is an invariant based on the distances between
all the vertices of a graph G, and it can also be applied to
acyclic organic molecules [19].

W (G) =
∑

u,v∈V (G)

d(vi, vj) =
1

2

∑
v∈V (G)

dG(v)

The Wiener index has notable applications in a variety
of fields, such as mathematical chemistry where it serves
as an important descriptor for molecular structure analysis.
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Specifically, in the study of acyclic organic molecules, it can
be used to predict physicochemical properties like boiling
points and stability [1, 9, 12, 13, 17, 18] [2, 8, 14–16]

This article investigates the families of graphs in terms
of their Wiener index, which may give rise to various
distinct structures. As a fundamental topological descriptor,
the Wiener index can be used to study various graph families
with distinct structural characteristics.

One notable transformation that affects the Wiener index is
bicyclic construction, where an edge in a graph is replaced
by two cycles, resulting in a bicyclic graph family. Such
transformations help reveal how structural modifications
impact graph distance metrics, which is particularly useful
in applications related to network theory and chemical graph
analysis.

Specifically, for a family of connected graphs
G={G1, G2, . . . , Gr}, its Wiener index is defined as
the sum of the Wiener indices of its individual members as
follows:

W (G) = W (G1) +W (G2) + . . .+W (Gr).

In this context, the structural characteristics of different
graphs influence the value of the Wiener index W (G). These
characteristics play a crucial role in determining the value
for each specific graph. When every graph in the family G
is isomorphic to either a simple path or a complete graph
of order n, then W (G) obtains extremal values among all
the families of the n-vertex graphs with the cardinality of
r. The properties of the Wiener index for certain families of
acyclic structures and benzenoid graphs have been rigorously
examined in prior research [4–7, 10, 19].

The simple path and the simple cycle of order n can
be denoted by Pn and Cn, respectively. Since the sum
of distances from a particular vertex in the path Pn to
the remaining vertices forms the sum of two arithmetic
progressions, it follows that the distance dpn(vm) = m2 −
(n + 1)m + (n2 + n)/2. Moreover, the Wiener index of
Pn is given by W (Pn) = n(n2 − 1)/6; where the distance
dCn(v) = n2/4 and the Wiener index of Cn is W (Cn) =
n3/8 for even n, and the distance dCn(v) = (n − 1)2/4
and the Wiener index of Cn is W (Cn) = n(n2 − 1)/8 for
odd n [20]. The graph Ge, which is the edge k-subdivision
of an edge e ∈ E(G), is obtained by replacing e in
the graph G with a path Pk+2=(v1, v2, . . . , vk). Vertices
vi,i = 1, 2, . . . , k, are called the subdivisionvertices of e
[7].

Let Ue be a bicyclic graph formed by replacing an edge in
the tree T with a bicycle. In general, computing the Wiener
index involves calculating the distance between points u and
v in the tree T . The varying structures of the cycles yield
diverse graphical outcomes. Let Uc represent the collection
of replaced cycles; let Uc = {Ue|e ∈ E(T )}, which also
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facilitates the determination of the average value of the
Wiener index.

II. MAIN RESULT

Let Te,k and Te,m respectively represent the trees obtained
by performing a k- and an m-subdivision of an edge e of tree
T . That is, the corresponding vertices in the tree are defined
as subdivision vertices. The process of replacing an edge e
with a double loop Ck+m+2 can be viewed as the addition of
Te,k and Te,m, with a dividing line l that separates them. The
vertex connected to Te,m by the dividing line l is denoted as
up, and the point connected to Te,k is denoted as vq . In this
scenario, the large loop Ck+m+2 will be divided into two
smaller loops.

T
x y

e

Te,m

Te,k

x

x

y

y

u1

u2(up) um-1

um

v1

v2 vk-1

vk(vq)

x y

u1

u2(up) um-1

v2 vk-1

vk(vq)

Ue

vq

um

l l

ua
ua

Fig. 1. The edge e of a tree T is replaced with a bicyclic Ck+m+2.

The following two lemmas play a crucial role in
calculating the Wiener index of families of trees that are
obtained through edge subdivisions [7].

Lemma 1: For k-subdivision Te1 ,Te1 ,. . . ,Ten−1 of edges
e1,e2,. . . ,en−1 of a tree T of order n,

W (Te1) +W (Te2) + . . .+W (Ten−1)

= (3k + n+ 1)W (T ) + (n− 1)

(
k + 1

3

)
+ 2

(
k

2

)(
n

2

)
.

It should be noted that
(
k+1
3

)
represents the Wiener index

of path Pk. Throughout the analysis, we use a consistent
numbering of subdivision vertices across all the edges. The
total sum of distances between vertices from T in the newly
trees can also be expressed in terms of the Wiener index
of T . This index serves as a key metric in graph theory
for quantifying vertex pair distances. The following lemma
demonstrates that the Wiener index can also be utilized to
express the distances between all the vertices in a graph.

Lemma 2: For an n-vertex tree T, with edges
e1,e2,. . . ,en−1, the subdivision vertices v1,v2,. . . ,vk
are obtained by subdividing these edges as follows:

n−1∑
i=1

(dTei
(v1) + dTei

(v2) + . . .+ dTei
(vk))

= 2kW (T ) +
1

6
k(k − 1)(n− 1)(2k + 3n+ 2).

The family Yk+m+2 denotes a graph obtained through
the process described above; then, there exists a relationship
between W (T ) concerning the determination of bi-cycles.

Theorem 1: Regarding the Wiener index of the family

Yk+m+2,

W (Y) = (3k + n+ 2m− 1)W (T )

+
n− 1

6
[(k2 − 2k)(2k − 2)− (m2 + 2m)(2m+ 2)

+ 3mp(m− p+ 2) + 3pk(k + p− 2q + 2)

+ 3kq(k − q + 2m− 2a+ 4)

+ 3mq(m− q − 2a+ 4)]−m+ kn(k − 1)

+ (n− 1)[
n3
1 − 2n2

1 + n3
2 − 2n2

2

8
+ q2 +ma

+ p(2− p− q + a− aq) + aq(q + a− 1)

− km+ 2q2 − a2 −m− 3k − 1]

Proof. Let T be an arbitrary tree of order n. For an edge
e = (x, y) of T , let Ue be a bicyclic graph obtained by
replacing e with cycle Ck+m+2, where k ≥ 0 and m ≥ k.
Therefore, the definition of graph Ue is as follows: First,
by employing k- and m- subdivision vertices, the edge e
of tree T is partitioned into two segments. Second, the
corresponding vertices in graph T are identified (Figure
1), where one edge is subdivided into Te,m and Te,k.
Third, the dividing line between the two circular diagrams
is designated as l, which connects Te,m at point up and
connects Te,k at vq , as depicted in Figure 1. Additionally, it
is essential to compare the lengths of paths (u1, u2, . . . , up)
and (vq, vq+1, . . . , vk) when calculating the Wiener index
of Ue. For computational purposes, let the length of path
(u1, u2, . . . , up) be less than that of path (u1, u2, . . . , um),
and let the length of path (vq, vq+1, . . . , vk) be less than
that of path (vq, vq+1, . . . , vk). Subsequently, the shortest
path from v ∈ {u1, u2, . . . , up} to v ∈ {vq, vq+1, . . . , vk} is
through the path (u1, u2, . . . , up, vq, vq+1, . . . , vk). However,
two distinct scenarios emerge when tracing from v ∈
{up, up+1, . . . , um} to v ∈ {v1, v2, . . . , vq}. It can be
observed that within the path(up, up+1, . . . , um), there exists
a vertex ua such that including the subdivisions on its left
reach the shortest path to v ∈ {v1, v2, . . . , vq} through path
(ua, ua−1, . . . , up, vq), whereas those on its right traverse
path (ua, ua+1, . . . , um, y, vk, vk−1, . . . , vq) to reach v ∈
{v1, v2, . . . , vq}. Through the equation (m− a) + 2 + (k −
q) = (a − p) + 1, tis process allows us to determine this
vertex ua. Finally, since m ≥ k, it is evident that for all
v ∈ {u1, u2, . . . , um},dUe(v)=dTe,k

(v). Then,

W (Ue)

= W (Te,k) +
m∑
i=1

dUe(ui)−W (Pm) +
m∑
i=1

k∑
j=1

dUe(ui, vj)

= W (Te,k) +
m∑
i=1

dTe,m(ui)−W (Pm) +
m∑
i=1

k∑
j=1

dUe(ui, vj).

By calculating the Wiener index of the cycle Ck+m+2, the
last term of equation (1) can be expanded as given below.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1844-1848

 
______________________________________________________________________________________ 



m∑
i=1

k∑
j=1

dUe(ui, vj)

= WC(x,up,vq)
− dC(x,up,vq)

(x)

−
p∑

1≤i<j

dP (ui, uj)−
q∑

1≤i<j

dP (vi, vj)

+WC(y,up,vq)
− dC(y,up,vq)

(y)

−
m∑

p≤i<j

dP (ui, uj)−
k∑

q≤i<j

dP (vi, vj)

− d(up, vq) +WP (u1, u2, . . . , up, vq, . . . , vk)

−WP (k − q + 2) + d(up, vq)−WP (p+ 1)

+WP (ua, ua−1, . . . , up, vq, vq−1, . . . , v1)−WP (a− p+ 2)

+WP (q + 1) + d(up, vq)−WP (k + 1)

+WP (ua+1, ua+2, . . . , um, y, vk, vk−1, . . . , v1)

−WP (k − q +m− a+ 2) +WP (k − q + 2)

Given d(up,vq) = 1, the above equation can be deduced to
the following.

m∑
i=1

k∑
j=1

dUe(ui, vj)

= WC(x,up,vq)
− dC(x,up,vq)

(x)−WP (u1, up)−WP (v1, vq)

+WC(y,up,vq)
− dC(y,up,vq)

(y)

−WP (p+ 1)−WP (q + 1)− 1

+WP (u1, u2, . . . , up, vq, . . . , vk)

−WP (p+ 1)−WP (q + 1) + 1

+WP (ua, ua−1, . . . , up, vq, vq−1, . . . , v1)−WP (a− p+ 2)

+WP (q + 1) + 1

+WP (ua+1, ua+2, . . . , um, y, vk, vk−1, . . . , v1)

−WP (k + 1)−WP (k − q +m− a+ 2) +WP (k − q + 2)
(1)

Then, Equation (2) can be summed for all the edges e ∈
E(T ).

W (Yk+m+2) =
∑

e∈E(T )

W (Ue)

=
∑

e∈E(T )

W (Te,k) +
∑

e∈E(T )

m∑
i=1

dTe,m(ui)

− (n− 1)W (Pm) + (n− 1)
m∑
i=1

k∑
j=1

dUe(ui, vj)

By substituting the results from Equation (2), Lemma
1, and Lemma 2 into this expression, the proof is thereby
concluded.

When both m and k are small, the Wiener index of the
family can be correlated through organic chemistry. Similar
graphs are given below.

Let Wa(Y) be the average Wiener index of family
Y .Wa(Y) = W (Y)/ |Y|. From Theorem 1, it can be inferred
that Wa(Y) is determined by the structure of the graph and
the specified cycles, with its value possibly being fractional.

III. FOR TWO ODD CYCLES

If an edge of the tree is replaced by two odd cycles (n1, n2

are odd), then k = m. This particular insertion method can
be easily implemented for composition.

T
32

64 64

64 65 68

117 117

117 119 125

194 194

194 196 202

(3,3)

(3,5)

(5,5)

Fig. 2. Families of graphs with combinations of (3,3), (3,5), and (5,5).

Corollary 1: Consider a family of bicyclic graphs Y2k+3

that is derived from a tree T of order n by substituting its
edges with two odd cycles C2k+2,k ≥ 0,m = k. Then,

W (Y2k+2)

= (5k + n+ 1)W (T ) +
n− 1

6
[(k2 − 2k)(2k − 2)

− (k2 + 2k)(2k + 2) + 3kp(k − p+ 2)

+ 3pk(k + p− 2q + 2) + 3kq(3k − q − 2a+ 4)

+ 3kq(k − q − 2a+ 4)]

+ (n− 1)[
n1(n

2
1 − 1)− 2(n2

1 − 1) + n2(n
2
2 − 1)− 2n2

2

8
− k + kn(k − 1) + p(2− p− q + a− aq)

+ aq(q + a− 1) + q2 + ka− k2 + 2q2 − a2 − 4k − 1],
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and the average value of the Wiener index for the graphs in
the family is

W (Y2k+2)

= (
5k + 2

n− 1
+ 1)W (T ) +

1

6
[(k2 − 2k)(2k − 2)

− (k2 + 2k)(2k + 2) + 3kp(k − p+ 2)

+ 3pk(k + p− 2q + 2) + 3kq(3k − q − 2a+ 4)

+ 3kq(k − q − 2a+ 4)]

+
n1(n

2
1 − 1)− 2(n2

1 − 1) + n2(n
2
2 − 1)− 2(n2

2 − 1)

8
− k + kn(k − 1) + p(2− p− q + a− aq) + aq(q + a− 1)

+ q2 + ka− k2 + 2q2 − a2 − 4k − 1.

The final expression can be used to approximate the
Wiener index of trees that have undergone edge cyclization.
In a bicyclic graph, the average value of the Wiener index
can be divided by n − 1. For certain small bicyclic graphs,
the familial Wiener index can be directly computed.

For bicomplete graphs, consider the example where the
bicomplete graph is (3,3), (3,5), or (5,5), as depicted in
Figure 2. The Wiener index is denoted alongside graph
diagrams. According to Corollary 3.1, W (Y3,3)=(3 + 6 +
2 − 1) · 32 + 5

6 · (−12) + 15 = 325 for k = 1, m = 1,
p = 1, q = 1, a = 1, W (Y3,5)=(6 + 6 + 4 − 1) · 32 +
5
6 · (78) + 50 = 595 for k = 2, m = 2, p = 1, q = 1,
a = 2,W (Y5,5)=(6 + 9 + 6− 1) · 32 + 5

6 · (300) + 90 = 980
for k = 3, m = 3, p = 2, q = 2, a = 3. Here, the value of
Wa(Y3,3)=65, Wa(Y3,5)=119, and Wa(Y5,5)=196.

IV. FOR TWO EVEN CYCLES

When the edges of a tree are substituted by two even cycles
(where n1 + n2 is even), then both n1 and n2 are either
even or odd. Consequently, the two cycles can be inserted at
suitable locations.

Corollary 2: Let a family bicyclic graph Y2k+2 be
obtained from a tree T of order n by replacing its edges
with even cycles C2k+2, k ≥ 0, m = k, or m = k + 2, and
the value of n1 + n2 is even. Then,

W (Y2k+2)

= (5k + n+ 1)W (T ) +
n− 1

6
[(k2 − 2k)(2k − 2)

− (k2 + 2k)(2k + 2) + 3kp(k − p+ 2)

+ 3pk(k + p− 2q + 2) + 3kq(3k − q − 2a+ 4)

+ 3kq(k − q − 2a+ 4)] + (n− 1)[
n3
1 − 2n2

1 + n3
2 − n3

2)

8
− k + kn(k − 1) + p(2− p− q + a− aq) + aq(q + a− 1)

+ q2 + ka− k2 + 2q2 − a2 − 4k − 1],

and the average Wiener index of the graphs in the family is

W (Y2k+2)

= (
5k + 2

n− 1
+ 1)W (T ) +

1

6
[(k2 − 2k)(2k − 2)−

(k2 + 2k)(2k + 2) + 3kp(k − p+ 2) + 3pk(k + p− 2q + 2)

+ 3kq(3k − q − 2a+ 4) + 3kq(k − q − 2a+ 4)]

+
n3
1 − 2n2

1 + n3
2 − n3

2 − 1)

8
− k + kn(k − 1)

+ kn(k − 1) + p(2− p− q + a− aq) + aq(q + a− 1)

+ q2 + ka− k2 + 2q2 − a2 − 4k − 1.

If m = k and it is an even cycle, then there might be
combinations, such as (4,4), (4,6), and so on. For example,
consider a bicomplete graph composed of (4,4) and (4,6), as
shown in Figure 3. Based on Corollary 4.1,W (Y4,4)=(6+4+
6−1)·32+ 5

6 ·(78)+45 = 590 for k = 2, m = 2, p = 1, q = 2,
a = 2, W (Y4,6)=(6+9+6−1) ·32+ 5

6 · (570)+85 = 1295
for k = 3, m = 3, p = 1, q = 2, a = 3. Here, the value of
Wa(Y4,4)=118 and Wa(Y4,6)=259.

116 116

116 118 124

257 257

257 259 265

(4,4)

(4,6)

Fig. 3. Families of graphs with combinations of (4,4) and (4,6).

V. FOR ONE ODD AND ONE EVEN

For a bicomplete graph consisting of one odd and one even
cycle, where n1 + n2 is odd and k + m is also odd: when
the cycles are evenly distributed, the bicomplete graph can
be appropriately positioned.

Corollary 3: Consider a family of bicyclic graphs Y2m+3

or Y2m+2 constructed from a tree T of order n by
substituting its edges with even cycles C2k+2, where k ≥ 0,
m = k or m = k+2, and the value of n1+n2 is even, then

W (Y2k+2)

= (5k + n+ 1)W (T ) +
n− 1

6
[(k2 − 2k)(2k − 2)

− (k2 + 2k)(2k + 2) + 3kp(k − p+ 2)

+ 3pk(k + p− 2q + 2) + 3kq(3k − q − 2a+ 4)

+ 3kq(k − q − 2a+ 4)]

+ (n− 1)[
n3
1 − 2n2

1 + n2(n
2
2 − 1)− 2(n2

2 − 1)

8
− k

+ kn(k − 1) + p(2− p− q + a− aq) + aq(q + a− 1)

+ q2 + ka− k2 + 2q2 − a2 − 4k − 1],
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and the average Wiener index of the graphs in the family is

W (Y2k+2)

= (
5k + 2

n− 1
+ 1)W (T ) +

1

6
[(k2 − 2k)(2k − 2)

− (k2 + 2k)(2k + 2) + 3kp(k − p+ 2)

+ 3pk(k + p− 2q + 2) + 3kq(3k − q − 2a+ 4)

+ 3kq(k − q − 2a+ 4)]

+
n3
1 − 2n2

1 + n2(n
2
2 − 1)− 2(n2

2 − 1)

8
− k + kn(k − 1)

+ p(2− p− q + a− aq) + aq(q + a− 1)

+ q2 + ka− k2 + 2q2 − a2 − 4k − 1.

86 86

84 86 92

150 150

148 151 160

151 151

149 152 161

(4,3)

(4,5)

(3,6)

Fig. 4. Families of graphs with combinations of (3,4), (4,5), and (3,6).

In this example, cases such as (4,3), (4,5), (6,3), and so
on can be provided. From Corollary 5.1, it follows that
W (Y4,3)=(6 + 6 + 4 − 1) · 32 + 5

6 · (24) + 30 = 434 for
k = 1, m = 2, p = 1, q = 1, a = 2,W (Y4,5)=(6 + 6 + 6−
1)·32+ 5

6 ·(174)+70 = 759 for k = 2, m = 3, p = 1, q = 1,
a = 2, W (Y6,3)=(6+6+6−1) ·32+ 5

6 · (144)+100 = 746
for k = 2, m = 3, p = 1, q = 1, a = 3. All the average
values are fractional.
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