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Abstract—Oil spills in the sea have both short-term
and long-term consequences that need proper management
and restoration. The damage can take years or even
decades to recover fully. Methods like absorbents, dispersants,
bioremediation, mechanical recovery, and in-situ burning are
used to mitigate the impacts of oil spills. Each method has
its limitations and should be chosen carefully based on the
severity of the spill to minimize environmental damage and
restore marine ecosystems effectively. This research considers a
one-dimensional mathematical model for an oil spill in a coastal
bay, incorporating delayed removal mechanisms. The governing
equation for an oil spill in this coastal bay context with
delayed removal is introduced, alongside the initial condition
and boundary conditions associated with oil spill scenarios. A
mathematical model is proposed to simulate delayed removal
mechanisms. The model solutions are approximated using
a fourth-order forward time-centered space finite difference
method. The simulations explore two scenarios: instant and
delayed removal mechanisms. In the instant removal scenarios,
simple average rates of oil removal and basic water flow
behaviors are modeled, while the delayed removal scenarios
simulate more realistic oil spill conditions. Consequently, the
concentration of oil relative to source rate over time is analyzed.
The simulations reveal that as the efficiency of the removal
mechanism improves, the oil concentration decreases over time.
Physically, this reflects that effective management of oil removal
leads to a progressive reduction in oil concentration as time
advances. According to the research, oil spill concentration is
reduced when oil removal mechanisms are more effective. By
contrasting a second forward time center space technique and
a fourth-order forward time center space technique, it shows
the significance of selecting the most effective method for a
given simulation circumstance. The simulation results indicate
that the concentration associated with the delayed removal
mechanism yields less favorable recovery outcomes compared
to the prompt removal mechanism across all scenarios. This
observation is consistent with the fundamental principle that
effective oil spill management should result in a reduction in
oil concentration within marine environments. The findings of
this study underscore that, in all cases, postponed oil removal
exacerbates the detrimental impact on seawater recovery
relative to expeditious removal. Consequently, the prompt and
efficient removal of oil spills is imperative in mitigating the
extent of oil contamination in marine waters.

Index Terms—Oil Spill, Coastal bay, Finite difference
method, FTCS, High-Order Accuracy
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I. INTRODUCTION

O IL spills in the ocean pose a severe environmental
threat and have widespread impacts on marine

ecosystems, including marine life, coastal areas, and
economies that rely on marine resources. The effects of oil
spills are not limited to the immediate aftermath but also
result in long-term consequences, which require extensive
time and resources for full recovery.

Starting with the impact on marine life, oil floating on the
water’s surface hinders the ability of sea creatures to breathe
and move normally. Marine animals living near the surface
may inhale or come into contact with oil and chemicals,
leading to respiratory and digestive issues. Seabirds that
fly and feed near the surface are at risk of having their
feathers coated with oil, which strips their feathers of their
waterproofing and temperature-regulating abilities, making it
impossible for them to fly and potentially leading to death
from exposure to cold.

Moreover, coral reefs, which are rich ecosystems with
high biodiversity, often suffer severe damage from oil spills.
Oil coating coral reefs disrupts photosynthesis and gas
exchange, halting their growth and increasing the risk of
coral death. Seagrass beds, another critical component of the
marine ecosystem, are similarly affected. Oil covering the
surface of seagrass limits photosynthesis, slowing growth,
and degrading areas that serve as food sources for some
marine species.

The impact on water quality and marine sediment is
another significant concern. Oil spills drastically reduce
water quality as oil forms a slick on the surface and
contaminates the water with harmful chemicals that are toxic
to marine life. Additionally, oil that settles into the seabed
accumulates in the sediment, becoming a long-term source
of toxins. Organisms living in the seabed and coastal areas
are directly and indirectly affected by the oil contamination
in these sediments.

The economic effects of oil spills are equally devastating,
particularly for the fishing and tourism industries.
Oil-contaminated marine resources lead to declining
fish populations, reducing catch volumes, and potentially
contaminating seafood, posing health risks to consumers.
Beaches covered in oil become unsuitable for tourism,
severely damaging the local tourism industry.

Ultimately, the environmental impacts of oil spills can
persist for years. Oil residues left in the sea or along the
coastline may take years to be fully removed, and in some
cases, the damage may be irreversible, slowing or even
preventing the recovery of ecosystems. Affected ecosystems
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may lose food sources and habitats for marine animals,
causing a significant imbalance in the natural environment.

In 1994, W.D. Henshaw [1] A method is presented for
solving the time-dependent incompressible Navier-Stokes
equations using finite differences on curvilinear overlapping
grids in two or three space dimensions. In 2001, W.F. Spotz
and G.F. Carey [2] introduced an extension of our prior
approaches for steady-state higher-order compact (HOC)
difference methods, adapting them to tackle time-dependent
problems. Numerical experiments are provided to
demonstrate the stability, accuracy, and the oscillatory and
dissipative behavior of the methods. In 2005, Y. Zlochower
et.al [3] introduced techniques for conducting numerical
relativity simulations of binary black holes with fourth-order
accuracy. These simulations are implemented within a
new coding framework that supports higher-order finite
differencing for the Baumgarte-Shapiro-Shibata-Nakamura
formulation of Einstein’s equations. They calculates
gravitational waveforms and demonstrates substantial
improvements in waveform accuracy over second-order
methods at commonly achievable numerical resolutions.

In 2006, S. Krenk [4] presented a fourth-order
accurate time integration algorithm with exact energy
conservation for linear structural dynamics. This algorithm
is derived by integrating the phase-space representation
and evaluating the displacement and velocity integrals
through integration by parts, substituting time derivatives
from the original differential equations. The method
demonstrates unconditional stability, with a fourth-order
relative phase error. In 2010, L. Rusu [5] presented
the results of a straightforward yet effective model
system, ISSM. Additionally, simulations were conducted
using the SHORECIRC model as an alternative approach.
Lastly, as a case study, the potential spread of pollution
toward the Romanian coast, stemming from a hypothetical
accident at the Gloria drilling platform, was evaluated.
In 2011, J.B.Chen [6] derived a stability formula for
Lax-Wendroff methods with fourth-order accuracy in time
and arbitrary-order accuracy in space. Additionally, He
proved the instability of methods that apply high-order
finite-difference approximations directly to the second
temporal derivative, thereby addressing and resolving
Bording’s conjecture.

In 2012, B. Sjögreen and N.A. Petersson [7] presented
a fourth-order accurate finite difference method for the
two-dimensional elastic wave equation in its second-order
formulation. This fourth-order discretization of second
derivatives can also be applied to achieve stable, fourth-order
accurate discretizations of other partial differential equations
beyond the elastic wave equation. In 2015, S. Krenk
[8] developed by integrating the differential state-space
equations of motion over the time increment and evaluating
the resulting time integrals for the inertia and stiffness
terms using integration by parts. In 2017, A. Yaghoubi [9]
addressed the one-dimensional advection-diffusion equation
(ADE) using a high-order finite difference approach and
compare the computed results to the exact solution. In
2022, M.E. Ali [10] have implemented three different finite
difference methods to solve a one-dimensional diffusion
equation and analyzed their resulting computations. This
investigation may assist researchers in identifying more

precise and stable schemes, contributing to the improved
numerical solution of diffusion-based equations.

In 2024, Y. Li et.al [11] developed based on
one-dimensional nonlinear shallow water equations,
with fuel consumption serving as the source term. The
simulation results were validated against experimental data
from continuously released n-heptane spill fires, showing
strong agreement between the two sets of results. S.
Mohammadiun et.al [12] presented the development of a
multi-agent decision support system designed to effectively
coordinate mechanical containment and recovery (MCR)
operations for spilled oil, as well as the management of oily
wastewater (OWM). T.H.H. Nguyen et.al [13] developed
an integrated model to analyze the Sanchi oil spill event
that occurred in the East China Sea in January 2018.
The model utilizes results from the Advanced Research
Weather Research and Forecasting model (WRF-ARW) for
meteorological forecasting and the Princeton Ocean Model
(POM) for hydrodynamic simulations.

Water contamination models are detailed through
numerical simulations in [14] – [17]. Mathematical models
for shoreline evolution with groin structures are presented
in [18] – [24], with extensions incorporating the impact of
wavelength on structural behavior in the system.

In this paper, we introduce a one-dimensional numerical
model to simulate oil spills in a coastal bay, incorporating a
delayed removal mechanism.

II. GOVERNING EQUATION

Modeling oil spills presents several challenges, including
the complexity of oil behavior, environmental variability,
and limitations in available data. Oil behavior is intricate
due to the diverse properties of oil mixtures, which can
vary significantly. Additionally, ocean conditions are highly
dynamic, with factors like currents, waves, and temperature
changing rapidly, all of which influence the movement of
oil. Furthermore, the availability of accurate data on oil
characteristics, environmental conditions, and specific details
of the spill is often limited, making it difficult to create
precise models for predicting oil spill behavior.

This research will focus on a basic one-dimensional
Eulerian oil spill model, despite the limited availability of
data on oil properties, environmental conditions, and spill
characteristics.

A one-dimensional dispersion-advection with removal
mechanism equation is introduce be Eq.(1)

Fig. 1: Oil is spilling into a coastal bay.
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∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
+ S(t)−Q(t), (1)

where C is the oil concentration (mg/L), u is the water flow
velocity (m/hr), D is the diffusive tensor (m2/hr), S(t)
is point sourse function that reoresents growing of oil spill
concentration (m3/d) and Q(t) is the removal mechanism
(m3/d).

Initial condition: Due to there is some oil concentration
present before it spreads throughout the entire domain,

C(x, 0) = C0, (2)

where C0 is given oil spill concentration before it’s leaked.
Boundary conditions: assuming that the shoreline will

absorb the spilled oil, the absorption boundary can be defined
by specific conditions,

∂C

∂x
(L, t) = Cs, (3)

where Cs is the absorbance rate of shoreline along simulation
time. Assuming that the oil spill point source concentration
is represented by

C(0, t) = f(t) (4)

where f(t) is a interpolation function of oil spilling
concentration at the point oil spilling source.

III. A DELAYED REMOVAL MECHANISM MODEL

An oil spill occurs when petroleum or other oil-based
products are accidentally released into the environment,
whether on land, in freshwater, or in the ocean. Such spills
can result in severe harm to marine life, wildlife, and
the ecosystem. The spill caused extensive damage to the
coastline.

There are several methods for addressing oil spills, such
as using containment measures like booms or barriers to
stop the spread of oil. Skimmers can be used to remove
oil from the water’s surface. Chemical dispersants can break
the oil into smaller droplets, facilitating biodegradation.
Bioremediation employs microorganisms to break down the
oil naturally. Another approach is burning the oil on the
water’s surface, though this may lead to air pollution.
Manual beach cleanup helps remove oil from shorelines.
Environmental restoration, such as planting mangroves, aids
in repairing damaged ecosystems. Additionally, monitoring
and assessing the long-term impacts on the shoreline is
essential.

Delays in responding to oil spills can have severe
consequences for both the environment and local economies.
Quick and efficient action is crucial to reducing damage when
a spill occurs. However, any delay can worsen the situation,
resulting in greater environmental destruction.

Common causes of delays in oil spill response include
inadequate preparedness, bureaucratic obstacles, limited
resources, unfavorable weather conditions, and geographical
challenges. These delays in response and the functioning of
removal mechanisms can be represented by Q(t) as

Q(t) =

{
0 for all 0 ≤ t ≤ Dt

g(t) for all Dt < t ≤ T

where Dt is a delay in the oil spill response period of time.

IV. NUMERICAL TECHNIQUES

In this section, we will use the finite difference
method to approximate the solution of the one-dimensional
advection-diffusion equation, which is a time-dependent
problem. We will perform it during 0 < t < T and
on a domain that is a unoform grid: xj = j∆x where
j = 1, 2, 3, . . . , L and tk = k∆t where k = 0, 1, 2, 3, . . . , T.

In this paper, we use an explicit forward-difference
approximation for the time dericative (FT) and 4th−central
difference approximation for the space derivation (CS). We
called 4th−forward time centered space (4th−FTCS). We
use this method for derive the governing equation Eq.(1),
we have

Cn+1
m − Cn

m

∆t
+

u

(
−Cn

m+2 + 8Cn
m+1 − 8Cn

m−1 + Cn
m−2

12∆x

)
=

D

(
−Cn

m+2 + 16Cn
m+1 − 30Cn

m + 16Cn
m−1 − Cn

m−2

12∆x2

)
+ S(t)−Q(t).

(5)

Rearrange Eq.(5), we get

Cn+1
m = (−α− β)Cn

m+2 + (8α+ 16β)Cn
m+1

+ (1− 30β)Cn
m + (−8α+ 16β)Cn

m−1

+ (α− β)Cn
m−2 + ∆t(Sn −Qn),

(6)

where, α =
u∆t

12∆x
, β =

∆tD

12∆x2
, ∆t = 0.01 and

∆x = 0.25, respectively. At the left and right boundaries of
the domain, fictitious points appear. Therefore, we eliminate
them by using the central space method.

V. NUMERICAL EXPERIMENTS

In this section, we will discuss the values of the various
parameters used in this research. We assume that the quantity
and source of the oil spill are known, so the value of the
removal mechanism is constant. Additionally, we assume that
the water velocity is gradually increasing. We will use Eq.(6)
to calculate the numerical results.We will present in case
1.1-1.4

TABLE I: The paremeter is used in case 1.1

Case No. D u Q

1.1.1 1.71× 10−6 0.2556| sin(0.1t)| 0.0001
1.1.2 1.71× 10−6 0.2556| sin(0.1t)| 10× 0.0001

1.1.3 1.71× 10−6 0.2556| sin(0.1t)| 20× 0.0001

1.1.4 1.71× 10−6 0.2556| sin(0.1t)| 40× 0.0001

1.1.5 1.71× 10−6 0.2556| sin(0.1t)| 80× 0.0001

TABLE II: The paremeter is used in case 1.2

Case No. D u Q

1.2.1 1.71× 10−6 10× 0.2556| sin(0.1t)| 0.0001
1.2.2 1.71× 10−6 10× 0.2556| sin(0.1t)| 10× 0.0001

1.2.3 1.71× 10−6 10× 0.2556| sin(0.1t)| 20× 0.0001

1.2.4 1.71× 10−6 10× 0.2556| sin(0.1t)| 40× 0.0001

1.2.5 1.71× 10−6 10× 0.2556| sin(0.1t)| 80× 0.0001
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TABLE III: The paremeter is used in case 1.3

Case No. D u Q

1.3.1 1.71× 10−6 20× 0.2556| sin(0.1t)| 0.0001
1.3.2 1.71× 10−6 20× 0.2556| sin(0.1t)| 10× 0.0001

1.3.3 1.71× 10−6 20× 0.2556| sin(0.1t)| 20× 0.0001

1.3.4 1.71× 10−6 20× 0.2556| sin(0.1t)| 40× 0.0001

1.3.5 1.71× 10−6 20× 0.2556| sin(0.1t)| 80× 0.0001

TABLE IV: The paremeter is used in case 1.4

Case No. D u Q

1.4.1 1.71× 10−6 40× 0.2556| sin(0.1t)| 0.0001
1.4.2 1.71× 10−6 40× 0.2556| sin(0.1t)| 10× 0.0001

1.4.3 1.71× 10−6 40× 0.2556| sin(0.1t)| 20× 0.0001

1.4.4 1.71× 10−6 40× 0.2556| sin(0.1t)| 40× 0.0001

1.4.5 1.71× 10−6 40× 0.2556| sin(0.1t)| 80× 0.0001

The numerical results of the instant removal mechanism
are show in Figure 2-11. When S(x, t) = 0.01 ×

(
L−x
L

)
+

0.005| sin(0.1t)|

Fig. 2: Oil spill concentration when delayed removal
mechanism; Q = 0.0001 and u = 10× 0.2556| sin(0.1t)|
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Fig. 3: Oil spill concentration of cases 1.1.1-1.1.5 with
several instant removal mechanism rates.
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Fig. 4: Oil spill concentration of cases 1.2.1-1.2.5 with
several instant removal mechanism rates.
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Fig. 5: Oil spill concentration of cases 1.3.1-1.3.5 with
several instant removal mechanism rates.
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Fig. 6: Oil spill concentration of cases 1.4.1-1.4.5 with
several instant removal mechanism rates.
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Fig. 7: Oil spill concentration with S(x, t) = 0.01 ×(
L−x
L

)
+0.005 sin(0.1t) and Q = 0.0001, 10×0.0001, 20×

0.0001, 40 × 0.0001 and 80 × 0.0001, respectively and
u = 0.2556| sin(0.1t)|.
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Fig. 8: Oil spill concentration with S(x, t) = 0.01 ×(
L−x
L

)
+0.005 sin(0.1t) and Q = 0.0001, 10×0.0001, 20×

0.0001, 40 × 0.0001 and 80 × 0.0001, respectively and
u = 10× 0.2556| sin(0.1t)|.
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Fig. 9: Oil spill concentration with S(x, t) = 0.01 ×(
L−x
L

)
+0.005 sin(0.1t) and Q = 0.0001, 10×0.0001, 20×

0.0001, 40 × 0.0001 and 80 × 0.0001, respectively and
u = 20× 0.2556| sin(0.1t)|.
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Fig. 10: Oil spill concentration with S(x, t) = 0.01 ×(
L−x
L

)
+0.005 sin(0.1t) and Q = 0.0001, 10×0.0001, 20×

0.0001, 40 × 0.0001 and 80 × 0.0001, respectively and
u = 40× 0.2556| sin(0.1t)|.
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Fig. 11: The comparison of the concentration of oil between
the 2nd−order FTCS and the 4th−order FTCS in the
case of an instant removal mechanism when u = 40 ×
0.2556| sin(0.1t)|.

TABLE V: The convergence and divergence values of this
simulation where u = 0.2556| sin(0.1t)|

∆x ∆t α β 2nd−FTCS 4th−FTCS

25 1 0.0852 2.28×10−10 Stable Stable
2.5 1 0.000852 2.28×10−8 Stable Stable

0.25 1 0.0852 2.28×10−6 Stable Stable
0.25 0.1 0.00852 2.28×10−7 Stable Stable
0.25 0.01 0.000852 2.28×10−8 Stable Stable
0.025 1 0.852 2.28×10−4 Stable Unstable
0.25 10 0.0852 2.28×10−6 Stable Unstable
0.25 20 0.0852 2.28×10−6 Stable Unstable
0.25 100 0.0852 2.28×10−6 Unstable Unstable

VI. DISSUSSION

All of the graphs that were shown in the previous section
will be thoroughly explained in this section, which will
divide our investigation into two basic scenarios. Let’s
assume that the removal mechanism maintains uniformity
in Case 1. Their parameters for this assumption are provided
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in Table 1. It adds the influence of a point source, which is
introduced in Case 2, and treats it as a function of both x
and t. For Case 1, we conduct a numerical analysis using
a fixed value of D = 1.71 × 10−6. The values of Q(t) in
this case vary incrementally as 0.0001, 10 × 0.0001, 20 ×
0.0001, 40 × 0.0001 and 80 × 0.0001. Similarly, the water
flow velocity u is modeled as 0.2556| sin(0.1t)| followed
by incremental values of 10 × 0.2556| sin(0.1t)|, 20 ×
0.2556| sin(0.1t)| and 40 × 0.2556| sin(0.1t)| respectively.
Figures 3-6 present these values graphically. These figures
illustrate that the values utilized in the 4th−order FTCS
method exhibit different behaviors compared to those of
the 2nd−order FTCS method. The graphs make it evident
that as the magnitude of the removal mechanism increases,
the concentration of oil correspondingly decreases. This
shows the impact of a consistent removal mechanism on
the diminishing concentration over time. In Case 2, we add
a point source term to the equation, making it a function
of both x and t. For this scenario, we adopt a slightly
different diffusion coefficient, with D = 1.71 × 10−6,
and use the same range of water flow velocity values
u = 0.2556| sin(0.1t)|, 10 × 0.2556| sin(0.1t)|, 20 ×
0.2556| sin(0.1t)| and 40 × 0.2556| sin(0.1t)|, respectively.
Figures 7-10 illustrate the results for this case. From these
figures, we observe that with an increase in the values of the
removal mechanism, there is a corresponding decrease in the
concentration of oil. When the removal mechanism is strong
enough, the oil concentration approaches zero, highlighting
the effectiveness of increased removal in reducing oil
concentration. Finally, in Figure 11, we compare the accuracy
and behavior of the 2nd−order FTCS and 4th−order FTCS
methods. While the 4th−order FTCS method offers greater
accuracy, Table V indicates that it exhibits faster divergence
compared to the 2nd−order FTCS method. This comparison
underlines that although higher-order methods may provide
better precision, they may also introduce higher instability
or divergence in certain conditions. In order to obtain
dependable findings in real-world applications, the method
selection process thus requires finding a balance between
accuracy and stability.

The results of this study are not just theoretical;
they hold significant implications for real-world situations,
particularly in environmental management and disaster
response. Consider, for instance, an oil spill in a river or
coastal area. The ability to model the diffusion and removal
of pollutants accurately can inform strategies to minimize
environmental damage and protect aquatic ecosystems.
By aligning our findings with practical scenarios, this
study bridges the gap between computational analysis and
actionable solutions, emphasizing the role of advanced
numerical methods in tackling real-world environmental
challenges.

Therefore, the concentration of oil in marine environments
will be substantially diminished if oil spill removal is
conducted promptly and efficiently.

VII. CONCLUSION

In this study, we construct a one-dimensional mathematical
model to examine the complex dynamics of an oil spill
in a coastal bay, with a particular emphasis on the
effects of delayed removal mechanisms. We introduce a

governing equation that characterizes the behavior of oil
spills under these delayed conditions and define the initial
and boundary conditions to realistically reflect the coastal
bay environment. To incorporate the delays in removal,
a mathematical framework is proposed, and solutions
are approximated using the finite difference approach,
specifically the 4th−order forward time-centered space
(4th-FTCS) method. The equation’s right boundary is
approximated using a centered space method, ensuring
accuracy in the boundary handling. The simulations explore
two primary scenarios: one involving instant removal
mechanisms and another focused on delayed removal
mechanisms. In the instant removal scenario, we test a
range of simple average removal rates alongside water flow
currents to observe basic removal dynamics. In the delayed
removal scenario, we model more realistic oil spill events,
taking into account both the oil spill source rates and
the varying rates of removal over the entire simulation
period. The results illustrate that as the effectiveness of
the removal mechanism increases, the concentration of oil
correspondingly decreases. Moreover, a comparative analysis
between the 2nd−FTCS and 4th−order FTCS methods
demonstrates that the 4th−FTCS method achieves greater
accuracy but diverges at a faster rate compared to the
2nd−FTCS method. This comparison focuses attention
on the compromise between accuracy and stability in
numerical methods for modeling oil spills, demonstrating
how important it is to select the most efficient technique
depending on specific simulation settings and purposes.

The additional section highlights the practical implications
of the study in real-world scenarios, particularly in
environmental management and disaster response. In
Case 1, the findings demonstrate the effectiveness of
consistent removal mechanisms, such as scheduled cleanups
or absorbent materials, in gradually reducing pollutant
concentrations. Case 2 reflects situations where pollutants
are continuously introduced, emphasizing the importance
of addressing both the source and removal strategies to
mitigate long-term impacts. Furthermore, the comparison of
2nd-order and 4th-order FTCS methods underscores the
trade-off between accuracy and stability in computational
modeling, offering valuable insights for industries and
agencies using simulations for decision-making.

This study not only advances the understanding of
the dynamics of oil spill concentration over time,
but also underscores the critical importance of timely
intervention in mitigating environmental damage. By
offering a more precise prediction of the consequences
of delayed removal mechanisms, this research supports
informed decision-making for disaster response teams
and policymakers. The findings can be instrumental
in refining oil spill management strategies, potentially
shaping the development of more effective response
protocols, optimizing resource allocation, and enhancing
public awareness initiatives. Ultimately, this study provides
a valuable framework for strengthening environmental
protection efforts, reducing the long-term impacts of oil
spills, and ensuring the sustainability of coastal ecosystems.
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