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Abstract—The successful implementation of energy
conservation and emission reduction policies relies on a
systematic examination of the factors driving industrial carbon
emissions. This study employs the Logarithmic Mean Divisia
Index (LMDI) model to decompose carbon emissions and
identify their primary determinants, enabling a quantitative
evaluation of the key drivers behind industrial carbon
emissions. The analysis utilizes energy consumption data
from 30 Chinese provinces spanning the period from 2010 to
2022. To assess the effects of individual factors on industrial
carbon emissions, a dynamic panel model within the STIRPAT
framework is developed, using system GMM estimation. The
results reveal distinct multi-stage variations in industrial
carbon emissions, characterized by an overall increasing trend.
Empirical evidence indicates that industrial population growth
and economic development contribute to higher emissions,
while innovation diffusion and energy structure adjustments
play a significant role in mitigating them.

Index Terms—Industrial carbon emissions, LMDI
decomposition model, STIRPAT model, Factor decomposition

I. INTRODUCTION

AS the world’s largest industrial economy, China faces
growing public scrutiny over its carbon emissions

amid intensifying global climate challenges. The nation’s
green transition, propelled by climate change mitigation
efforts and rapid industrialization, serves as a critical
driver for establishing a low-carbon economy and achieving
ecological civilization objectives. Notably, China contributes
significantly to global low-carbon industry development,
accounting for over 60% of worldwide new electricity
generation from solar photovoltaics, wind power, and electric
vehicle technologies. The proportion of solar photovoltaic
and wind power in China’s electricity generation mix
has risen significantly from 4% in 2015 to 15% in
2023, achieving parity with levels in advanced economies.
Furthermore, China’s electric vehicle adoption rate now
surpasses that of developed nations by more than twofold.
Nevertheless, reconciling sustained economic expansion with
meaningful emission mitigation continues to present a
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pressing challenge. Industrial carbon emissions are a key
target of carbon reduction policies. By forecasting future
carbon emission trends, governments and relevant authorities
can proactively identify potential emission increases and
formulate effective emission reduction policies and measures.
Existing research by Guan et al. [1] indicates that
variations in five key factors, namely industrialization
level, technological advancement, energy intensity, industrial
structure, and the energy sector, contribute to the
spatial correlation of industrial carbon emissions, thereby
influencing China’s overall industrial carbon emissions. Arto
Reiman et al. [2] argue that the Industrial Revolution
created the foundation for technological advancement and
identify key factors influencing industrial carbon emissions.
Their study further investigates the dynamic evolution of
China’s industrial carbon emissions and associated policy
interventions, with specific focus on industrial electricity
consumption patterns and regional disparities in emission
characteristics.

This study systematically decomposes the driving factors
of China’s industrial carbon emissions by integrating the
LMDI and STIRPAT analytical frameworks. Additionally,
the GM(1,1) grey prediction model is employed to forecast
the future trends of industrial carbon emissions in China.
Through empirical analysis, we quantify the relative
contributions of key determinants and examine their temporal
dynamics. Beyond environmental impacts, industrial carbon
emissions present substantial socioeconomic challenges that
warrant critical examination. Carbon-intensive industries
are especially vulnerable to energy price volatility and
regulatory shifts, which may increase operational costs
and erode their competitive advantage in the market. This
study yields critical insights into the intricate interplay
between industrial expansion and carbon emissions in
China, establishing an empirical basis for evidence-based
emission mitigation policies. The results carry significant
policy relevance for achieving China’s “dual carbon”
objectives while simultaneously promoting sustainable
economic development.

II. LITERATURE REVIEW

In pursuit of its ambitious “dual carbon” objectives,
China has implemented progressively stringent emission
regulations across all economic sectors in recent years.
The escalating climate imperative has focused considerable
research attention on identifying and analyzing the key
drivers of carbon emissions. This has generated a
substantial body of literature examining the determinants of
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industrial carbon emissions in China. Initial scholarly efforts
predominantly addressed three critical dimensions: carbon
efficiency optimization, emissions trading mechanisms, and
the equitable distribution of emission rights [3]. Song et
al. [4] employed the LMDI method to decompose the
influencing factors of China’s industrial carbon emissions
from energy consumption into four key aspects: economic
growth, energy intensity, energy structure, and industrial
structure. The analysis reveals that although enhanced
energy efficiency demonstrates a substantial mitigating effect
on carbon emissions, economic expansion remains the
predominant driver of emission growth, primarily through
its direct correlation with elevated energy demand. By
studying the spatiotemporal characteristics of industrial
carbon emissions in China’s Yangtze River Delta, Xu
et al. [5] found that industrial carbon emissions have
increased sharply, and adjusting the industrial structure can
effectively reduce carbon emissions. Areepong and Karoon
[6] developed the ARL formula to enhance the applicability
of the seasonal autoregressive model, which is widely utilized
in air pollution research. Furthermore, population dynamics
play a crucial role in influencing carbon dioxide emissions,
while economic conditions and activities significantly impact
both energy consumption and carbon emissions. As a
major economic power, China faces significant challenges
in controlling carbon emissions from industrial enterprises
[7], promoting the development of a low-carbon economy,
and identifying key influencing factors to achieve its dual
carbon goals.

Both SDA and IDA are widely employed to examine
the drivers of carbon emissions, though methodological
divergences persist across empirical applications. Among
these, LMDI is the most widely applied method [8].
Using LMDI and Tapio decoupling models, Qu et al.
[9] demonstrated that economic growth hinders industrial
emission reduction and decoupling, whereas energy intensity
and industrial structure act as key mitigating factors.
Additionally, adjustments in the energy structure present
significant potential for further reducing industrial carbon
emissions. To inform global carbon policy decisions, Chen
et al. [10] conducted a geographical analysis of provincial-
level industrial emission drivers. Meanwhile, Ren and Zhao
[11] employed the STIRPAT model to identify industrial
technological capacity, per-capita industrial production, and
population scale as the three dominant factors influencing
China’s industrial carbon emissions. Through gray prediction
modeling, their analysis revealed that per-capita industrial
production exerts the most substantial influence on industrial
carbon emissions. Complementing this, Tu et al. [12]
applied the LMDI decomposition approach to identify
key determinants of emission intensity, demonstrating that
declining energy intensity, as indicated by the decoupling
model, plays a crucial role in driving China’s industrial
carbon emissions reduction.

This study adopts the LMDI model to decompose the
driving factors of China’s industrial carbon emissions from
energy consumption, building upon established classification
frameworks in the literature. To enhance analytical rigor, we
complement the decomposition analysis with the STIRPAT
model and system GMM approach, thereby improving the
reliability and robustness of our findings. While existing

research predominantly employs single-model approaches to
investigate energy consumption and emission patterns, few
studies have integrated multiple analytical frameworks. Our
multi-method approach contributes to a more comprehensive
understanding of emission drivers, providing valuable
insights for achieving China’s “dual carbon” objectives.

III. RESEARCH METHODS

A. Carbon Emission Measurement

Industrial carbon emissions were calculated using energy
consumption data spanning 2010-2022 across China’s 30
provincial-level regions. The estimation incorporated ten key
energy sources: coal, coke, crude oil, gasoline, kerosene,
diesel, fuel oil, natural gas, coke oven gas, and liquefied
petroleum gas. The methodology followed the estimation
standards set by the Intergovernmental Panel on Climate
Change [13]. The specific formulas applied are follows.

Ci =
n∑

i=1

Bi × fi (1)

fi = NCVi × CCi × COFi ×
44

12
(2)

Among these variables, Ci represents the total industrial
carbon dioxide emissions resulting from the consumption
of ten types of energy. Bi denotes the energy consumption
of each province, converted into standard coal. fi is the
carbon dioxide emission coefficient, while NCVi refers to
the average net calorific value. CCi represents the carbon
content per unit of calorific value, and COFi denotes the
carbon dioxide emission factor. The term 44

12 serves as the
conversion coefficient from carbon atomic mass to carbon
dioxide molecular mass.

B. LMDI Decomposition Model

Originally proposed by Japanese economist Yoichi Kaya,
the Kaya identity has become a seminal analytical
framework for decomposing the key factors influencing
carbon emissions [14]. Building on the factor decomposition
method proposed by Guo and Zhang [15], this study develop
a tailored model for China’s industrial carbon emissions
that incorporates sector-specific structural characteristics.
The following equation (3) represents an augmented Kaya
identity that accounts for an expanded set of influential
variables beyond the original formulation.

C =
∑
i

Cit

Eit
× Eit

Mit
× Iit

GDPyit
× GDPyit

GDPit
× GDPit

Pit

× Pit =
∑
i

sit × eit × dit × hit × fit × git × pit (3)

In this context, C represents China’s industrial carbon
emissions, where i denotes the 30 provinces and
municipalities, and t represents the year. E refers to
the total industrial energy consumption, while M denotes
the number of enterprises above the designated size.
I represents the number of effective invention patents
held by industrial enterprises above the designated size.
GDPy corresponds to industrial added value, whereas
GDP refers to the GDP, adjusted for price factors. P
represents industrial employment. Due to the unavailability
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TABLE I
DESCRIPTION OF FACTORS INVOLVED IN THE MODEL

Symbol Meaning Note

C Industrial carbon emissions
s Energy mix
e Energy intensive
d Innovation distribution
h Innovate efficiency
f Industrial structure
g Level of economic development
p Number of people employed in industry

of direct industrial employment statistics, we adopt the
National Bureau of Statistics’ methodology by calculating
industrial employment as secondary sector employment
minus construction sector employment. Variable definitions
are detailed in Table I.

Equation (4) presents the LMDI decomposition model for
industrial carbon emissions derived from the extended Kaya
identity in equation (3).

∆C = Ct − C0 = ∆Cs +∆Ce +∆Cd

+ ∆Ch +∆Cf +∆Cg +∆CP (4)

In equation (4), ∆Cs represents the energy mix,
∆Ce denotes energy intensity, ∆Cd refers to innovation
distribution, ∆Ch signifies innovation efficiency, ∆Cf

corresponds to industrial structure, ∆Cg reflects the level
of economic development, and ∆Cp represents the number
of people employed in industry. The LMDI decomposition
method quantifies the contribution of each determinant factor
to industrial carbon emissions, with the respective effect
expressions provided in equation (5).

∆Cs =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
sti
s0i

∆Ce =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
eti
e0i

∆Cd =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
dti
d0i

∆Ch =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
ht
i

h0
i

(5)

∆Cf =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
f t
i

f0
i

∆Cg =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
gti
g0i

∆Cp =
∑
i

Ct
i − C0

i

lnCt
i − lnC0

i

× ln
pti
p0i

C. STIRPAT Model

This study utilizes the STIRPAT model to examine the
determinants of China’s industrial carbon emissions. The
STIRPAT model was developed by York et al. [16] as an
enhanced version of the IPAT framework, overcoming its
structural limitations. The model specification is presented
below.

I = aP bAcT de (6)

In this model, I represents the environmental impact, P
denotes population size, A indicates the level of affluence,
and T reflects the level of technology. The parameter a is
the model coefficient, while b, c, d are the exponents to be
estimated. The term e represents the error term.

The STIRPAT model, a well-established framework for
emission analysis, shares conceptual foundations with the
LMDI decomposition approach employed in this study.
Building upon this theoretical alignment, we utilize the
STIRPAT framework to examine the principal determinants
of China’s industrial carbon emissions. To account for
China’s distinctive socioeconomic and industrial context,
we develop an augmented STIRPAT specification that
incorporates country-specific modifying factors. As shown
in equation (7).

lnC = ln a+ t ln s+ u ln e+ v ln d+ w lnh

+ x ln f + y ln g + z ln p+ ln q (7)

C represents carbon emissions from industrial energy
consumption. s is energy mix, e represent energy intensive,
d reflects the level of innovation, measured by the ratio
of the number of effective invention patents of industrial
enterprises above the designated size to the total number
of such enterprises, representing the technological level. h
isinnovate efficiency, f reflects industrial structure, g is
GDP per capita, calculated as the ratio of GDP to the
industrial population (excluding price factors), represents
the degree of affluence. p denotes the number of industrial
employees, serving as the population size factor. The specific
definitions of each factor correspond to Table I. a is the
model coefficient, while t, u, v, w, x, y, z are the elasticity
coefficients of each variable, indicating the percentage
change in the dependent variable when the corresponding
independent variable changes by 1%. q represents the error
term.

D. Data Sources

This study examines industrial data spanning 2010-2022
across 30 Chinese provinces and municipalities. Due to
data availability constraints, Tibet, Hong Kong, Macao, and
Taiwan are excluded from the analysis. Primary data sources
include official publications from China’s National Bureau
of Statistics (China Industrial Statistical Yearbook, China
Energy Statistical Yearbook), the Wind financial database,
and provincial statistical yearbooks. Table II displays the
carbon emission factors and standard coal conversion
coefficients for relevant energy sources, calculated following
the Guidelines for Provincial Greenhouse Gas Inventories.

IV. THE RESULTS ANALYSIS

A. Industrial Carbon Emission Characteristics

China’s industrial carbon emissions during 2010-2022
were calculated using Equations (1) and (2). To better
characterize emission trends, we employ industrial carbon
intensity (defined as total industrial carbon emissions divided
by industrial value-added) as our primary metric, which
reflects emissions per unit of industrial output. Using
constant 2010 prices for industrial value-added calculations
eliminates price fluctuation effects. The results are shown in
Figure 1.
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TABLE II
DISCOUNTED STANDARD COAL COEFFICIENT AND CARBON EMISSION

COEFFICIENT OF MAJOR ENERGY SOURCES

Types of energy
Discounted standard
coal factor

Carbon emission
coefficient

Raw coal 0.7143 1.9
Coke 0.9714 2.86
Crude oil 1.4286 3.02
Gasoline 1.4714 2.93
Kerosene 1.4714 3.02
diesel 1.4571 3.1
Fuel oil 1.4286 3.17
Natural gas 1.33 2.07
Coke oven gas 6.143 0.76
Liquefied petroleum gas 1.7143 3.1
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Fig. 1. China’s industrial carbon emissions and carbon intensity.

Figure 1 demonstrates a general upward trend in global
industrial carbon emissions, punctuated by a distinct decline
in 2012 and subsequent recovery following the 2013
minimum. During this period, the Chinese government
implemented multiple mitigation measures - including
clean energy adoption and large-scale ecological initiatives
- which contributed to decelerating the growth rate
of industrial emissions. Despite the persistent increase
in global atmospheric CO2 concentrations during 2010-
2022, China’s proactive implementation of clean energy
transitions and large-scale ecological programs substantially
contributed to decelerating the growth rate of global
CO2 levels. Consequently, China has achieved near-zero
growth in industrial carbon emissions while maintaining
robust industrial output. This accomplishment coincides
with measurable progress in climate change mitigation,
as evidenced by a consistent decline in industrial carbon
intensity during the 2010-2022 period. The observed
decoupling of industrial production growth from emission
trajectories reflects both enhanced energy efficiency and
structural transitions toward environmentally sustainable
industrial practices.

Figures 2-5 display the spatial distribution of China’s
provincial industrial carbon emissions for 2010, 2014, 2018,
and 2022, respectively. Generated through ArcGIS spatial
analysis, these thematic maps employ a five-tier classification
scheme with graduated color shading, where darker hues
correspond to higher emission intensities, enabling intuitive
cross-provincial comparisons.

Comparative analysis of Figures 2-5 reveals distinct spatial
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Fig. 2. Spatial characteristics of China’s industrial carbon emissions in
2010
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Fig. 3. Spatial characteristics of China’s industrial carbon emissions in
2014

heterogeneity in China’s industrial carbon emissions from
2010 to 2022, with consistently lower emission levels in
central, western, and northeastern regions relative to eastern
coastal areas. This spatial disparity principally stems from
the eastern seaboard’s geographic and economic advantages,
which have concentrated energy-intensive industries through
agglomeration effects. Consequently, this region exhibits
advanced urbanization and industrialization, characterized
by dense clustering of energy-intensive and heavy chemical
industries. The resultant carbon emissions remain elevated
due to these sectors’ substantial fossil fuel consumption,
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Fig. 4. Spatial characteristics of China’s industrial carbon emissions in
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Fig. 5. Spatial characteristics of China’s industrial carbon emissions in
2022

particularly coal and petroleum products. Furthermore,
accelerating urbanization in these regions amplifies energy
demand for both infrastructure expansion and transportation
systems, thereby generating additional carbon emissions.
The overall color intensity in the maps becomes darker,
and regional polarization gradually decreases, reflects
increasing national carbon emissions during 2014-2018. This
period witnessed accelerated industrialization, yet persistent
reliance on obsolete technologies and suboptimal industrial
configurations contributed to rising sectoral emissions -
a pattern corroborated by the temporal trends in Figure

1. By 2022, industrial carbon emissions demonstrated
increasing spatial heterogeneity. While overall emissions
continued to rise, emissions in most provinces started to
decline. This reduction can be attributed to provinces’
efforts to integrate resources, reduce the share of energy-
intensive industries, regulate high-carbon-emission activities,
and promote the modernization and optimization of industrial
structures. These coordinated measures effectively advanced
energy conservation, emission mitigation, and sustainable
development objectives.

Overall, China’s industrial carbon emissions exhibit a high
proportion of characteristic patterns and a substantial total,
as the country is still in the process of industrialization
and relies heavily on energy, particularly coal and other
fossil fuels. This emission profile stems from structural
economic imbalances, wherein energy-intensive industries
remain disproportionately prominent. Due to the considerable
disparities in industrial carbon emissions between provinces,
it is essential to promote interprovincial resource integration
and technical collaboration to collectively reduce China’s
industrial carbon emissions.

B. Carbon Emission Projections

China’s industrial carbon emissions exhibited an overall
upward trend with notable fluctuations during 2010-2022.
The initial period (2010-2012) saw rapid emission growth,
primarily driven by robust economic expansion, intensified
industrial activity, and elevated energy consumption. A
temporary decline occurred in 2013, likely attributable
to economic restructuring and strengthened environmental
regulations. The subsequent phase (2014-2017) was marked
by growth rate moderation and fluctuation as policy
adjustments took effect. From 2018 onward, emissions
resumed a steady upward trajectory, with particularly
pronounced increases post-2018. The 2020-2022 period
experienced anomalous emission patterns due to COVID-19
pandemic disruptions to industrial production systems.

China has pledged to achieve peak carbon emissions by
2030 and carbon neutrality by 2060. Predicting industrial
carbon emissions can help assess current emission reduction
progress, identify critical future milestones, and provide
scientific support for the government in formulating effective
carbon reduction pathways. Given the industrial sector’s
dominant contribution to national emissions, such forecasts
enable targeted identification of high-emission industries
and facilitate structural optimization. Moreover, emission
trajectory modeling helps anticipate potential peak timing or
rebound risks, thereby preventing economic instability from
overzealous short-term mitigation measures. Accordingly,
this study applies the GM(1,1) grey prediction model to
forecast China’s industrial carbon emissions (units: billion
tons), with detailed results presented in Table III.

The close alignment between observed and predicted
values demonstrates the model’s strong predictive capability
for tracking industrial carbon emission dynamics. Both
datasets exhibit remarkably consistent upward trajectories,
mirroring the sustained growth of emissions accompanying
economic expansion. Projections for 2023-2035 indicate
persistent emission growth, with significant increases
anticipated beyond 2030. This trajectory suggests that
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TABLE III
PREDICTED VALUES OF CHINA’S INDUSTRIAL CARBON EMISSIONS

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Original value 43.58 46.86 48.04 44.06 47.65 48.00 49.17 49.20 50.10 52.76 54.60 54.30 55.58
Predicted value 43.58 45.15 45.98 46.83 47.70 48.57 49.47 50.38 51.31 52.25 53.21 54.20 55.20
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
Predicted value 56.21 57.24 58.30 59.37 60.47 61.58 62.71 63.87 65.05 66.25 67.47 68.71 69.97

achieving China’s peak emissions target will require
accelerated implementation of three key measures: energy
mix optimization, low-carbon technological innovation, and
industrial structure upgrading. The findings further imply that
realizing both the 2030 peak and 2060 neutrality targets may
necessitate more stringent policy interventions.

C. LMDI Decomposition Results
To determine the contribution of each decomposition

factor, this study utilized the additive LMDI factor
decomposition method. The calculations were performed
using Stata 17, based on formulas (3)-(5). A positive value
indicates a driving influence on carbon emissions, while a
negative value represents a mitigating effect. The strength
of the driving force is reflected in the absolute value of the
result. The decomposition results for the driving factors are
presented in Table IV.

China’s industrial carbon emissions demonstrate an overall
increasing trend, primarily driven by three key factors:
fossil fuel-dominant energy structure, innovation efficiency,
and rapid economic development. However, emissions are
being reduced by factors like energy intensity, innovation
distribution, and industrial structure. The impact of industrial
labor force size exhibits temporal variability, showing
inconsistent directional effects. The aggregate positive
drivers have outweighed mitigation factors, resulting in
continued growth of industrial carbon emissions.

The decomposition analysis reveals distinct patterns
among key drivers: economic expansion and energy
efficiency improvements paradoxically emerge as dominant
contributors to emission growth, whereas industrial
restructuring and innovation diffusion demonstrate stronger
mitigation effects. This pattern reflects China’s persistent
reliance on energy-intensive industries, particularly those
dependent on raw coal combustion. Notably, the energy
structure’s impact remained positive in all study years except
2010 and 2011, consistently exacerbating industrial carbon
emissions. The National Energy Administration’s research
indicates that 2011, marking the inception of China’s
12th Five-Year Plan period, represented a transitional
phase characterized by steady energy-economic growth
and balanced demand-supply dynamics. Although the
economy had not yet established a stable emissions-growth
equilibrium, a gradual recovery persisted throughout
2011. Globally, the decelerated rise in carbon emissions
correlated with increasing corporate patent filings, revealing
a non-linear, complex relationship between industrialization
and emission trajectories. This complexity stems from
industrialization’s dual effect of elevating energy demand
and associated emissions, while enabling structural
transitions that may accelerate emission growth during
transitional phases.

As a core element of corporate intellectual property,
innovation diffusion serves as both an indicator of
technological competitiveness and a determinant of
market positioning for knowledge-intensive enterprises.
Contemporary research in energy and environmental
management underscores innovation’s pivotal role in
energy intensity reduction, particularly through green
technological advancements that substantially influence
industrial emission patterns. Given the industrial sector’s
dominant contribution to national energy consumption
and carbon output, technological innovation emerges as
a critical pathway for achieving sustainable development
objectives. Additionally, optimizing the industrial structure
contributes to reducing industrial carbon emissions. This
optimization not only significantly enhances green total
factor productivity but also promotes improvements in
energy efficiency.

The decomposition analysis further reveals the variable
impact of industrial workforce dynamics on carbon
emissions. While industrial employment growth typically
elevates material consumption and associated emissions,
parallel improvements in workforce education and technical
skills can partially offset these effects. A system to
reduce carbon emissions can be established by streamlining
the industrial structure, enhancing energy efficiency, and
transforming certain industries. These findings provide
an empirical foundation for formulating evidence-based
emission reduction policies.

In conclusion, this study identifies two pivotal strategies
for industrial carbon mitigation: strengthening green
innovation capacity, particularly in low-carbon technologies,
and optimizing industrial structure through sectoral
rebalancing. These policies foster efficiency improvements
and technological advancements, both of which are crucial
for ensuring the long-term sustainability of China’s industrial
sector.

D. Empirical Results of System GMM
This study investigates the determinants of China’s

industrial carbon emissions through an integrated
econometric framework employing LMDI decomposition
analysis. Yang et al. [17] employ the STIRPAT model and
system GMM to explore the factors affecting industrial
carbon emissions. A dynamic panel data model is developed
based on the static model analysis and derived from the
STIRPAT framework in equation (8), incorporating the
dynamic persistence characteristics of carbon emissions.

lnC = ln a+ θL. lnC + t ln p+ u ln g + v ln d

+ w ln s+ x ln e+ y lnh+ z ln f + ln q (8)

The temporal dynamics of emission evolution are
more precisely captured by including a one-period lagged
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TABLE IV
LMDI DECOMPOSITION RESULTS OF INFLUENCING FACTORS OF CHINA’S INDUSTRIAL CARBON EMISSIONS FROM 2010 TO 2022

Year Energy mix Energy intensive
Distribution
of innovations

Innovation
efficiency

Industrial
structure

Economic
development

Population

2010-2011 -899.65 165633.6 -224065.1 14727.7 28668.06 33545.49 15181.17
2011-2012 244.40 -19341.25 -91782.82 88423.77 -10462.82 61677.89 -16900.84
2012-2013 3429.34 -76487.59 -46834.44 55832.61 -17052.63 28147.84 13128.10
2013-2014 4088.52 24432.61 -29269.8 16556.57 -15037.29 32504.31 2602.45
2014-2015 2080.62 1433.997 11402.55 -6411.075 -38678.48 57209.28 -23508.71
2015-2016 1053.11 32187.48 -79370.25 47084.05 -21064.34 45159.38 -13344.48
2016-2017 712.34 18637.12 -80767.58 25745.13 3308.542 47584.15 -14877.81
2017-2018 4259.21 -2267.677 -55974.82 32297.57 -1670.806 44226.50 -12329.26
2018-2019 920.05 40558.56 -76646.66 43476.57 -11731.17 46034.42 -15563.12
2019-2020 1157.65 -14005.54 -75919.89 108405.6 -14760.21 -1147.613 14617.49
2020-2021 754.79 -59387.29 -28470.05 -18984.38 62649.83 31927.98 8532.64
2021-2022 2575.10 -27112.44 -13858.88 22095.39 12580.89 37633.37 -21143.92

TABLE V
DESCRIPTIVE STATISTICAL RESULTS

Variables Average Standard deviation Minimum Maximum

lnC 13.11 0.07 12.98 13.23
lnp 5.92 0.98 3.77 7.78
lng 3.79 0.52 2.7 5.48
lnd 4.23 0.7 2.27 6.73
lns 0.92 0.1 0.52 1.1
lne 4.22 0.83 2.42 6.3
lnh 5.16 0.7 3.23 6.66
lnf 3.59 0.28 2.58 4.22

term of industrial carbon emissions in the regression
specification, thereby accounting for persistence effects in the
emission trajectory [18]-[19]. L. lnC denotes the industrial
carbon emissions lagged by one period [20].The dynamic
specification demonstrates superior methodological rigor
and empirical validity relative to static counterparts, as
it explicitly accounts for temporal dependencies inherent
in emission processes. The analysis accounts for multiple
determinants of industrial carbon emissions, including both
modeled and extraneous factors [21]. The incorporation
of lagged variables serves to mitigate the influence of
uncontrolled covariates, thereby improving the empirical
robustness of the regression estimates. Table V presents the
descriptive statistics for all model variables.

The empirical analysis employs the system GMM
estimator, implemented through both one-step and two-
step approaches [22]-[24]. The AR(1) and AR(2) tests are
conducted to check for serial correlation in the random
disturbance terms, while the Hansen test is used to assess
the validity of the instrumental variables. The p-value of
the Hansen test, ranging from 0.1 to 0.25 as shown in
Table VI(3), indicates that the instrumental variables are
valid. The lack of second-order autocorrelation in the model
is confirmed by the p-value of AR(1), which is less than
0.01, and the p-value of AR(2), which is greater than
0.1, thereby validating the GMM model statistics. The
conclusions from the two-step estimation are presented in
Table VI, which includes the random effects regression(1),
fixed effects regression(2), and the GMM two-step estimation
results(3).

TABLE VI
EMPIRICAL RESULTS

Variables re fe GMM

L.lnC 0.224**
(2.08)

lnp 0.025*** 0.198*** 0.143**
(5.20) (10.49) (2.52)

lng 0.0632*** 0.220*** 0.148 ***
(6.59) (13.58) (3.29)

lnd -0.069*** -0.028* -0.130**
(-5.83) (-1.93) (-2.2)

lns -0.151*** -0.077 -0.44**
(-4.22) (-1.44) (-2.05)

lne 0.019*** 0.015 0.073*
(2.76) (1.42) (1.82)

lnh -0.029** -0.013 -0.107
(-2.23) (-0.84) (-1.57)

lnf 0.002 0.01 0.014
(0.17) (0.53) (0.17)

Constant 13.214*** 11.265*** 9.913***
(78.55) (33.75) (6.62)

Sample size 390 390 360
AR(1) p-value 0.001
AR(2) p-value 0.617
Hansen p-value 0.196

The findings in Table VI indicate that the energy
structure and innovation distribution significantly reduce
carbon emissions across the fixed effects, random effects
and system GMM models. The degree of technological
advancement, as reflected in the distribution of innovation,
suggests that higher levels of innovation are associated
with lower industrial carbon emissions. These findings are
consistent with the innovation diffusion effects identified
in the LMDI decomposition analysis. The energy structure
effect, which is calculated as the ratio of industrial carbon
emissions to total industrial energy consumption, captures
the intensity of carbon emissions per unit of energy
consumed in industrial operations, reflecting the efficiency
of energy use in the industrial sector. Furthermore, the
lagged industrial carbon emissions coefficient is significantly
positive, indicating that industrial carbon emissions exhibit
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persistence [25]. This temporal dependency suggests that
industrial carbon emissions exhibit notable inertia, wherein
historical production patterns and energy use behaviors
continue to influence future emission trajectories.

Industrial carbon emissions demonstrate significant
dependence on both workforce scale and economic
development levels. Expansion of the industrial labor
force precipitates intensified production activity, which
in turn elevates energy demand and associated carbon
emissions.With more workers involved in manufacturing
processes, the demand for raw materials, intermediate
goods, and final products rises, requiring additional energy
to support production equipment and operations. As a result,
industrial carbon emissions are substantially amplified,
particularly in energy-intensive foundational industries
like steel and cement production that underpin economic
modernization. As economic development progresses, the
demand for material goods continues to grow, driving up
industrial output and energy consumption, both of which are
major contributors to carbon emissions. The composition
of industrial sectors constitutes a critical determinant of
carbon emissions, particularly due to the disproportionate
environmental impact of energy-intensive industries.
Structural transitions within these sectors may initially
elevate emissions before yielding long-term mitigation
benefits-a phenomenon observed in heavy manufacturing
and primary material production. This challenge persists
within the broader context of global emission escalation
trends. Energy intensity, which refers to the total energy
used per unit of industrial production, also has a significant
impact on carbon emissions. Although energy efficiency in
China has improved, technological advancements may have
a greater influence on economic growth than on energy
conservation and emission reduction, potentially leading
to an overall increase in carbon emissions. To effectively
reduce industrial carbon emissions, it is essential to leverage
market processes and implement a comprehensive set of
emission reduction policies. These measures will not only
support sustainable and high-quality economic development
but also contribute to the reduction of carbon emissions.

V. CONCLUSIONS AND POLICY RECOMMENDATIONS

To validate the observed marginal changes, Yupaporn
Areepong and Kotchaporn Karoon [26] proposed an
autoregressive model based on the DEWMA technique, a
method widely employed in economic studies involving real-
world data. This study examines the influence of multiple
determinants using industrial data from China. Specifically,
it estimates industrial carbon emissions across Chinese
provinces using energy consumption data and applies
the Kaya identity to construct an LMDI decomposition
model. This model decomposes carbon emissions into
key driving factors, including population size, industrial
structure, economic development, innovation efficiency,
energy structure, energy intensity, and spatial distribution.
Additionally, a dynamic panel model is developed within
the STIRPAT framework, incorporating system GMM
estimations to analyze the effects of these factors on
industrial carbon emissions.

The analysis based on the grey system theory’s
GM(1,1) grey prediction model indicates that, under current

development trajectories, China’s industrial carbon emissions
will continue to rise steadily. The model’s results show
that from 2023 to 2035, industrial carbon emissions will
experience significant growth. These projections highlight
a considerable gap between existing emission reduction
policies and the dual-carbon targets. To meet the strategic
goals of reaching carbon peaking by 2030 and achieving
carbon neutrality by 2060, it is crucial to accelerate
industrial restructuring and upgrading, promote energy
system transformation, enhance carbon pricing mechanisms,
and foster innovation and application of green technologies.
A comprehensive policy approach is necessary to achieve
meaningful progress in the industrial sector’s low-carbon
transition.

The LMDI decomposition results reveal that China’s
industrial carbon emissions are primarily driven by the
energy structure effect, innovation efficiency effect, and
economic development effect, all of which exert positive
influences. In contrast, the energy intensity effect, innovation
distribution effect, and industrial structure effect contribute
to emission reductions. Notably, the impact of industrial
population size on carbon emissions remains statistically
inconclusive. A more detailed analysis shows that economic
growth and energy efficiency play dominant roles in
increasing emissions, while industrial restructuring and
innovation distribution serve as more significant mitigating
forces. Overall, the positive drivers outweigh the negative
ones, leading to an overall increase in China’s industrial
carbon emissions.

Within the STIRPAT framework, industrial carbon
emissions are used as a proxy for environmental pressure,
encompassing all relevant component factors. A dynamic
regression analysis is conducted using the GMM estimator,
with results compared against conventional regression
models. The analysis reveals a significant persistence effect
in China’s industrial carbon emissions, as evidenced by the
strongly positive coefficient of the lagged emissions term.
Furthermore, the findings indicate that innovation distribution
and energy structure contribute to emission reductions, while
industrial population size and economic development level
have significant positive effects, thereby driving carbon
emissions upward.

Based on the findings from the regression analysis
and decomposition model, this study presents policy
recommendations organized into three key dimensions.

First, enhancing innovation capacity and transitioning to
cleaner energy systems should be prioritized. Key measures
include accelerating the integration of renewable energy
sources, such as wind and solar power, across industrial
sectors to reduce dependence on fossil fuels. Additionally,
implementing stringent carbon intensity standards,
particularly for energy-intensive industries in China’s
more developed eastern regions, is essential. Strengthening
institutional support for research and development, as
well as fostering collaboration between research institutes
and enterprises, will be crucial for accelerating the
commercialization of low-carbon technologies.

Second, the dual objectives of enhancing industrial
productivity while decarbonizing production processes
must be pursued in tandem. Given the empirically
established positive relationship between economic growth
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and emissions, particular emphasis should be placed on
improving energy efficiency during periods of economic
expansion. To mitigate emissions, optimizing supply chain
management is crucial. This can be achieved through the
adoption of green logistics, the optimization of transportation
routes, and the promotion of a low-carbon revolution
throughout the entire supply chain. Furthermore, industrial
enterprises must develop and implement comprehensive
environmental management strategies that prioritize waste
reduction and resource recycling. Employee engagement
and training are also essential for raising awareness of
environmental protection and energy conservation, thereby
fostering a cultural shift towards sustainability within
organizations.

Third, at the national level, China must proactively
fulfill its international climate commitments, strengthen
collaboration with the global community, and jointly address
the pressing challenge of climate change. The country should
establish and enforce rigorous industrial carbon emission
standards, foster the development and adoption of low-carbon
technologies and clean energy, and incentivize enterprises
to transition to green practices. Concurrently, regulatory
oversight and evaluation mechanisms must be bolstered to
ensure the effective implementation of policies and measures,
ultimately achieving carbon peak and carbon neutrality
within the industrial sector. These recommendations aim
to substantially reduce carbon emissions while advancing
sustainable industrial development.
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