
 

 

Abstract— In many places, there may emerge a situation in 

which a certain group of individuals or components need to be 

partitioned into many groups in order to meet certain 

requirements. To investigate the characteristics and nature of a 

network, our mathematicians create a variety of partitioning 

techniques. Usage of graph theoretical method simplifies the 

partitioning procedure. On the vertex set of graph G, we define 

a partition 𝝅𝒌 consisting of k partition classes. 𝝅𝒌 is said to be a 

similar degree partition of G if the absolute difference of the sum 

of the degrees of all vertices between any two partition classes is 

at most 1. The largest value k across all the similar degree 

partition of the graph G is defined to be the degree partition 

number of G and is denoted by 𝝍𝑫(𝑮). This partition suits the 

need for partitioning any resource into groups of almost equal 

strength. In this paper we have established some interesting 

facts and theorems regarding the degree partition number of 

some derived graphs. 

 

Index Terms— Degree Partition Number, Graph 

Partitioning, Partitions of sets. 

I. INTRODUCTION 

n this paper, we consider finite, undirected simple graphs. 

Graphs serve as mathematical models to analyse many 

concrete real-world problems. For the basic definitions and 

notations of graph theory, we refer the text book by Harary 

[5]. The vertex set and edge set of 𝐺 are denoted by 𝑉(𝐺) and 

𝐸(𝐺) respectively. A graph G of order 𝑝 and size 𝑞 is referred 

to as a (𝑝, 𝑞) 𝑔𝑟𝑎𝑝ℎ. (1,0) graph is called trivial graph. 

For a vertex 𝑣, the number of vertices adjacent to 𝑣 in 𝐺 is 

called its degree and is denoted by deg𝐺(𝑣) or simply 

deg(𝑣). A vertex 𝑣 of G with 𝑑𝑒𝑔(𝑣)  =  1 is a pendant 

vertex. If 𝑣 is a vertex of degree 0, then 𝑣 is called an isolated 

vertex. A graph G is called 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 if 𝑑𝑒𝑔(𝑣)  =  𝑟 for 

each 𝑣 ∈  𝑉 (𝐺). The graph is known to be (𝑟, 𝑘) − biregular 

if any vertex of G is of degree either 𝑟 or 𝑘. The minimum 

and maximum degree among the vertices of G is denoted by 

𝛿(𝐺) and ∆(𝐺) respectively. A graph of order 𝑛 is said to be 

complete if 𝛿(𝐺) = ∆(𝐺) = 𝑛 − 1 and it is denoted by 𝐾𝑛. 

The set of vertices adjacent to 𝑣 is called the open 

neighbourhood of 𝑣. It is denoted by 𝑁(𝑣). The set 𝑁(𝑣) ∪

 {𝑣} is called the closed neighbourhood of 𝑣 which is denoted 

by 𝑁[𝑣]. A closed path is called a cycle. The path and cycle 

with 𝑛 vertices are denoted by 𝑃𝑛 and 𝐶𝑛 respectively. 

The join of two graphs 𝐺 and 𝐻, denoted by 𝐺˅𝐻 is 

obtained by joining each vertex of 𝐺 to every other vertices 

of 𝐻 by means of edges. The wheel graph 𝑊𝑛(𝑛 ≥ 4) is 

nothing but 𝐾1˅𝐶𝑛−1.  

The cartesian product of two graphs 𝐺 and 𝐻 denoted by 

𝐺□𝐻 is defined such that 𝑉(𝐺□𝐻) = 𝑉(𝐺) × 𝑉(𝐻) and the 

two vertices (𝑢1, 𝑢2) and (𝑣1, 𝑣2) are adjacent if 𝑢1 = 𝑣1 and 

𝑢2 is adjacent to 𝑣2 in 𝐻 or 𝑢1 is adjacent to 𝑣1 in 𝐺 and 𝑢2 =
𝑣2. 

The subdivision of an edge 𝑒 =  {𝑢, 𝑣} in the graph 𝐺 is 

nothing but the replacement of the edge 𝑒 with a path of 

length 2. The graph obtained by subdividing all edges of 𝐺 is 

called the subdivision graph of 𝐺. 

The splitting graph 𝑆𝑝(𝐺) of a graph 𝐺 is obtained from 𝐺 

by adding a new vertex 𝑣′ for each vertex v of 𝐺 such that 𝑣′ 
is adjacent to all the vertices in 𝑁(𝑣). 

Let 𝐼𝑛 (𝑛 ≥ 4) denote the irregular most graph on n 

vertices with degree sequence  𝑛 − 1, 𝑛 −

2,… , ⌊
𝑛

2
⌋ , ⌊

𝑛

2
⌋ , … , 2,1. That is, only two vertices have same 

degree in 𝐼𝑛 and all the other vertices have distinct degrees. 

The Kneser graph 𝐾(𝑛, 𝑘) is the graph whose vertices 

correspond to the 𝑘 − element subsets of a set of 𝑛 elements 

whose two vertices are adjacent if and only if the two 

corresponding sets are disjoint. 𝐾(𝑛, 𝑘) is a (
𝑛 − 𝑘
𝑘

) – regular 

graph of order (
𝑛
𝑘
). 

The 𝑛 − hypercube graph 𝑄𝑛 is the cartesian product of 

𝑛 − 𝑝𝑎𝑡ℎ graphs. It is a 𝑛 −regular graph of order 2𝑛. 

Graph partitioning is a process of reducing a graph to 

smaller graphs by partitioning its vertex set/ edge set into 

mutually incompatible groups. There are numerous research 

concepts in the literature that are based on partitioning the 

vertex and edge sets of a graph [2],[3],[4],[5],[7], 

[10],[11],[12],[13]. 

A Barbell partition of a graph G is a partition of 𝑉(𝐺) into 

three disjoint parts {𝑅,𝑊1,𝑊2} such that 

1. 𝑅 is allowed to be an empty set, but 𝑊𝑖 ≠ 𝜙 for 𝑖 =
1,2. 

2. there are no edges between vertices in 𝑊1 and 𝑊2 

3. for each 𝑣 ∈ 𝑅, |𝑁𝐺(𝑣) ∩𝑊𝑖| ≠ 1 for 𝑖 = 1,2. 

For more details on this partitioning, one can refer [1]. 

This paper deals a kind of partitioning in graphs which 

aims at having smaller groups of vertices with almost same 

degree sum. 

Let 𝜋𝑘  (𝑘 ≥ 2) be a partition of the vertex set 𝑉(𝐺) with 

the partition classes 𝑉1, 𝑉2, … , 𝑉𝑘. The degree sum of the 

vertex class 𝑉𝑖 is defined as the sum of the degrees of the 

vertices in the class 𝑉𝑖 which is denoted by 𝐷(𝑉𝑖).  𝜋𝑘 is called 

a similar degree partition if the absolute difference between 
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the degree sum of any two classes is at most 1, that is, if  

|𝐷(𝑉𝑖) − 𝐷(𝑉𝑗)| ≤ 1 for 1 ≤ 𝑖, 𝑗 ≤ 𝑘. 

𝜋𝑘 is called a perfect similar degree partition if the degree 

sum of the vertex classes are the same. 𝜋𝑘 is said to be a 

maximum similar degree partition if we cannot find a similar 

degree partition 𝜋𝑙 such that 𝑙 > 𝑘 and such 𝑘 is defined to 

be the degree partition number of the graph G which is 

denoted by 𝜓𝐷(𝐺). 
Here, we denote the 𝑛 disjoint copies of a graph 𝐺 by 𝑛𝐺. 

For interesting results on this parameter, one can refer 

[8],[9]. In this paper, we establish degree partition number of 

some subdivision graphs, spanning subgraphs and some 

family of derived graphs. Also, we present a family of graphs 

for which the maximum similar degree partition as well as the 

barbell partition are one and the same. 

 

II. MAIN RESULTS 

In this section, we present some interesting facts and 

theorems on the degree partition number. We first recall the 

following results proved in [9] which are useful in 

determining the degree partition number of various graph 

families. 

Theorem 1 [9] 𝜓𝐷(𝐺) = |𝑉(𝐺)| if and only if G is either a 

regular graph or a (𝑟, 𝑟 + 1) – biregular graph.     □ 

Theorem 2 [9] 1 ≤ 𝜓𝐷(𝐺) ≤ ⌊
∑ 𝑑𝑒𝑔 𝑣𝑣∈𝑉(𝐺) −1

∆−1
⌋           

Proof Let G be a graph with n vertices. Let 𝜋𝑘 =
{𝑉1, 𝑉2, … , 𝑉𝑘} be a maximal similar degree partition of G. 

Then 𝜓𝐷(𝐺) = 𝑘. 

Clearly, there exists at least one partition say 𝑉1 such that 

∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1
≥ ∆. 

Also, ∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉𝑗
≥ ∆ − 1 for 𝑗 = 2,3, … , 𝑘. 

Adding the above k inequalities, we get 

∑ 𝑑𝑒𝑔 𝑣𝑖
𝑣𝑖∈𝑉(𝐺)

≥ ∆ + (𝑘 − 1)(∆ − 1). 

∴ 𝑘 − 1 ≤
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

− ∆

∆ − 1
⟹ 𝑘 ≤

∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1
− ∆

∆ − 1
+ 1 

                                                       ⇒ 𝑘 ≤
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

− 1

∆ − 1
  

  Hence, 𝑘 ≤ ⌊
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

−1

∆−1
⌋ since k is an integer.  

Always 𝑘 ≥ 1.  

Thus 1 ≤ 𝜓𝐷(𝐺) ≤ ⌊
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

−1

∆−1
⌋         □ 

Theorem 3 [9] If 𝐺 has the vertices even degree only, then 

1 ≤ 𝜓𝐷(𝐺) ≤ ⌊
∑ 𝑑𝑒𝑔 𝑣𝑣∈𝑉(𝐺)

∆
⌋                    

Proof Let G be a graph with n vertices and degree of each 

vertex be even.  

Let 𝜋𝑘 = {𝑉1, 𝑉2, … , 𝑉𝑘} be a maximal similar degree 

partition of G. Then 𝜓𝐷(𝐺) = 𝑘. 

Since degree of each vertex be even, 𝜋𝑘 should be a perfect 

similar degree partition of G. 

Then, ∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉𝑗
≥ ∆ for all 𝑗 = 1,2,3, … , 𝑘. 

Adding the above k inequalities, we get 

∑ 𝑑𝑒𝑔 𝑣𝑖
𝑣𝑖∈𝑉(𝐺)

≥ 𝑘∆. 

∴ 𝑘 ≤
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

∆
. Hence, 𝑘 ≤ ⌊

∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

∆
⌋ since k is an  

integer. 

Always 𝑘 ≥ 1. Thus 1 ≤ 𝜓𝐷(𝐺) ≤ ⌊
∑ 𝑑𝑒𝑔 𝑣𝑖𝑣𝑖∈𝑉1

∆
⌋ .    □ 

 

 

We also note the following facts which are vacuously true. 

Fact 4 There does not exist a graph of order 𝑛, 2 ≤ 𝑛 ≤ 4 

such that 𝜓𝐷(𝐺) = 1.                     □ 

Fact 5 There does not exist a graph of order 3 such that 

𝜓𝐷(𝐺) = 2.                                    □ 

Fact 6 For 𝑛 ≥ 3, 𝜓𝐷(𝐾1˅𝐾𝑛,𝑛) = 1.  

Proof The degree sequence of the graph 𝐾1˅𝐾𝑛,𝑛 is given by 

( (𝑛 + 1)2𝑛, 2𝑛). 
We cannot find any similar degree partition for 𝐾1˅𝐾𝑛,𝑛. 

Hence  𝜓𝐷(𝐾1˅𝐾𝑛,𝑛) = 1 for 𝑛 ≥ 3.                 □ 

Fact 7 𝜓𝐷(𝑊𝑛) = 𝑛 for 𝑛 = 4,5. 

Proof As 𝑊4 is 3 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and  𝑊5 is (3,4)– 𝑏𝑖𝑟𝑒𝑔𝑢𝑙𝑎𝑟, 

𝜓𝐷(𝑊𝑛) = 𝑛 for 𝑛 = 4,5.                    □ 

Theorem 8 For any wheel graph 𝑊𝑛 ≅ 𝐾1˅𝐶𝑛−1, 

𝜓𝐷(𝑊𝑛) = {

4            𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)       

3           𝑖𝑓 𝑛 ≡ 3,8(𝑚𝑜𝑑 9)    

1         𝑖𝑓 𝑛 ≡ 0,2,5,6(𝑚𝑜𝑑 9)

} for 𝑛 ≥ 6   

Proof Let 𝑉(𝑊𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} with deg 𝑣1 = 𝑛 − 1 and 

deg 𝑣𝑖 = 3 for 𝑖 = 2,3, … , 𝑛. 

It can be seen that ⌊
∑ deg 𝑣𝑖
𝑛
𝑖=1 −1

∆−1
⌋ = 4. 

∴ 𝜓𝐷(𝑊𝑛) ≤ 4 for 𝑛 ≥ 6. 

Case i Let 𝜓𝐷(𝑊𝑛) = 4 

In this case {𝑣1} should be a partition class in our degree 

partition whose degree sum is 𝑛 − 1. 

Since the degree of remaining vertices are the same, the 

degree sum of the other classes should be the same. 

This is possible only when 𝑛 − 1 is a multiple of 3. That is 

𝑛 − 1 ≡ 0(𝑚𝑜𝑑 3) or 𝑛 ≡ 1(𝑚𝑜𝑑 3). 
Case ii Let 𝜓𝐷(𝑊𝑛) = 3 

Let 𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑘} be a partition class in our maximum 

similar degree partition.  

We may see that 𝐷(𝑉1) = (𝑛 − 1) + 3(𝑘 − 1) = 𝑛 + 3𝑘 −
4. 

As we have seen above, the degree sum of the remaining two 

partition classes should be the same and that may be 𝑛 +
3𝑘 − 3 or 𝑛 + 3𝑘 − 4 or 𝑛 + 3𝑘 − 5. 

Since the sum of all the degree of vertices of 𝑊𝑛 is 4(𝑛 − 1), 
the degree of the other two partition classes should be 
4(𝑛−1)−(𝑛+3𝑘−4)

2
= 
3𝑛−3𝑘

2
. 

If 
3𝑛−3𝑘

2
= 𝑛 + 3𝑘 − 3, then 3𝑛 − 3𝑘 = 2𝑛 + 6𝑘 − 6 ⇒

𝑛 − 9𝑘 + 6 = 0 

⇒ 𝑛 ≡ −6(𝑚𝑜𝑑 9) or 𝑛 ≡ 3(𝑚𝑜𝑑 9) 

Suppose that 
3𝑛−3𝑘

2
= 𝑛 + 3𝑘 − 4, then 3𝑛 − 3𝑘 = 2𝑛 +

6𝑘 − 8 ⇒ 𝑛 − 9𝑘 + 8 = 0 

⇒ 𝑛 ≡ −8(𝑚𝑜𝑑 9) or 𝑛 ≡ 1(𝑚𝑜𝑑 9), which leads to Case i. 

Next if  
3𝑛−3𝑘

2
= 𝑛 + 3𝑘 − 5, then 3𝑛 − 3𝑘 = 2𝑛 + 6𝑘 −

10 ⇒ 𝑛 − 9𝑘 + 10 = 0 

⇒ 𝑛 ≡ −1(𝑚𝑜𝑑 9) or 𝑛 ≡ 8(𝑚𝑜𝑑 9) 
Hence 𝜓𝐷(𝑊𝑛) = 3 only when 𝑛 ≡ 3,8(𝑚𝑜𝑑 9). 
Case iii Let 𝜓𝐷(𝑊𝑛) = 2 

Let 𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑘} be a partition class in our maximum 

similar degree partition with  

𝐷(𝑉1) = 𝑛 + 3𝑘 − 4. 

Again, the degree sum of the other partition class may be 𝑛 +
3𝑘 − 3 or 𝑛 + 3𝑘 − 4 or 𝑛 + 3𝑘 − 5 and the degree sum of 

the partition classes should be 3𝑛 − 3𝑘. 

If 3𝑛 − 3𝑘 = 𝑛 + 3𝑘 − 3, then 2𝑛 = 6𝑘 − 3, a 

contradiction. 

Therefore, 3𝑛 − 3𝑘 ≠ 𝑛 + 3𝑘 − 3. Similarly, 3𝑛 − 3𝑘 ≠
𝑛 + 3𝑘 − 5. 
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Thus 3𝑛 − 3𝑘 = 𝑛 + 3𝑘 − 4. This forces that 𝑛 ≡
1(𝑚𝑜𝑑 3) which leads to Case i. 

Hence 𝜓𝐷(𝑊𝑛) ≠ 2. 
For all the remaining 𝑛  𝑖. 𝑒. , 𝑛 ≡ 0,2,5,6(𝑚𝑜𝑑 9),  
𝜓𝐷(𝑊𝑛) = 1.                                              □ 

 

Proposition 9 Consider the family of graphs 𝐹𝑛 defined as  

𝐹𝑛 = {
𝐾1˅ (𝐾1 ∪ (

𝑛 − 2

2
)𝐾2) 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐾1˅ (
𝑛 − 1

2
)𝐾2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

}  

Then 𝜓𝐷(𝐹𝑛) = 3 when 𝑛 ≥ 4. 

Proof For 𝑛 = 4, a maximum similar degree partition is 

shown in the Fig 1. 

 
Fig 1. The graph 𝐹4 

For 𝑛 ≥ 5, 𝜓𝐷(𝐹𝑛) ≤ 3 +
2

𝑛−2
≤ 3 by Theorem 2. 

Let 𝑉(𝐹𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛} with  

deg 𝑣𝑛 = 𝑛 − 1, deg 𝑣𝑖 = 2 for 𝑖 = 1,2, … , 𝑛 − 2 and 

deg 𝑣𝑛−1 = 2 𝑜𝑟 1 according as n is odd or even.  

When n is odd,  

𝜋3 = {{𝑣𝑛}, {𝑣1, 𝑣2, … , 𝑣𝑛−1
2

} , {𝑣𝑛−1
2
+1
, 𝑣𝑛−1

2
+2
, … , 𝑣𝑛−1} } 

forms a perfect similar degree partition with the degree sum 

𝑛 − 1 and hence 𝜓𝐷(𝐹𝑛) = 3. 

When n is even, 

𝜋3 = {{𝑣𝑛}, {𝑣1, 𝑣2, … , 𝑣𝑛−2
2

} , {𝑣𝑛+1
2

, 𝑣𝑛+3
2

, … , 𝑣𝑛−2, 𝑣𝑛−1} } 

forms a maximum similar degree partition with degree sum 

as 𝑛 − 1, 𝑛 − 2, 𝑛 − 1 respectively implying 𝜓𝐷(𝐹𝑛) = 3.   □ 

Theorem 10 For any given positive integer 𝑛 ≥ 5, there 

exists a graph of order 𝑛 whose barbell partition and the 

similar degree partition are the same. 

Proof Consider the family of graphs 𝐻𝑛 defined as 𝐻𝑛 =

{
  
 

  
 𝐾1˅ (2𝑃3 ∪ 𝐾1 ∪ (

𝑛−8

2
)𝐾2) 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 4)

𝐾1˅ (
𝑛−1

2
)𝐾2 𝑖𝑓 𝑛 ≡ 1 (𝑚𝑜𝑑 4)

𝐾1˅ (𝐾1 ∪ (
𝑛−2

2
)𝐾2)         𝑖𝑓 𝑛 ≡ 2 (𝑚𝑜𝑑 4)

𝐾1˅ (2𝑃3 ∪ (
𝑛−7

2
)𝐾2)        𝑖𝑓 𝑛 ≡ 3 (𝑚𝑜𝑑 4) }

  
 

  
 

 

By Theorem 2, we can easily verify that 𝜓𝐷(𝐻𝑛) ≤ 3 for 𝑛 ≥
5. 

Let 𝑉(𝐻𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}. 
Case i Let 𝑛 ≡ 0 (𝑚𝑜𝑑 4) 
In this case, 𝐻𝑛 has one vertex of degree 𝑛 − 1, one vertex of 

degree 1, two vertices of degree 3 and 𝑛 − 4 vertices of 

degree 2. 

Let deg 𝑣𝑖 = 2 for 𝑖 = 1,2, … , 𝑛 − 4,  

deg 𝑣𝑗 = 3 for 𝑗 = 𝑛 − 3, 𝑛 − 2, deg 𝑣𝑛−1 = 1 and deg 𝑣𝑛 =

𝑛 − 1. 

Now, 𝜋3 = {𝑉1, 𝑉2, 𝑉3} where 𝑉1 = {𝑣𝑛},  

𝑉2 = {𝑣1, 𝑣2, … , 𝑣𝑛−4
2

, 𝑣𝑛−3} and  

𝑉3 = {𝑣𝑛−4
2
+1
, 𝑣𝑛−4

2
+2
, … , 𝑣𝑛−4, 𝑣𝑛−2, 𝑣𝑛−1} forms a 

maximum similar degree partition for 𝐻𝑛 with the degree sum 

as 𝑛 − 1, 𝑛 − 1, 𝑛 respectively. 

 

 

Case ii Let 𝑛 ≡ 1 (𝑚𝑜𝑑 4) 
Here, 𝐻𝑛 consists of one vertex of degree 𝑛 − 1 and 𝑛 − 1 

vertices of degree 2. 

Let deg 𝑣𝑖 = 2 for 𝑖 = 1,2, … , 𝑛 − 1 and  

deg 𝑣𝑛 = 𝑛 − 1. 

Consider  𝜋3 = {𝑉1, 𝑉2, 𝑉3} where 𝑉1 = {𝑣𝑛},  

𝑉2 = {𝑣1, 𝑣2, … , 𝑣𝑛−1
2

} and  

𝑉3 = {𝑣𝑛−1
2
+1
, 𝑣𝑛−1

2
+2
, … , 𝑣𝑛−1} which forms a maximum 

perfect similar degree partition for 𝐻𝑛 with the degree sum as 

𝑛 − 1. 

Case iii Let 𝑛 ≡ 2 (𝑚𝑜𝑑 4) 
It is clear that 𝐻𝑛 has one vertex of degree 𝑛 − 1, one vertex 

of degree 1, and 𝑛 − 2 vertices of degree 2. 

Let deg 𝑣𝑖 = 2 for 𝑖 = 1,2, … , 𝑛 − 2, deg 𝑣𝑛−1 = 1 and 

deg 𝑣𝑛 = 𝑛 − 1. 

Then, 𝜋3 = {𝑉1, 𝑉2, 𝑉3} where 𝑉1 = {𝑣𝑛},  

𝑉2 = {𝑣1, 𝑣2, … , 𝑣𝑛−2
2

} and  

𝑉3 = {𝑣𝑛−2
2
+1
, 𝑣𝑛−2

2
+2
, … , 𝑣𝑛−2, 𝑣𝑛−1} is one of the required  

maximum similar degree partitions for 𝐻𝑛 with the degree 

sum as 𝑛 − 1, 𝑛 − 2, 𝑛 − 1 respectively. 

Case iv Let 𝑛 ≡ 3 (𝑚𝑜𝑑 4) 
Note that 𝐻𝑛 has one vertex of degree 𝑛 − 1, two vertices of 

degree 3 and 𝑛 − 3 vertices of degree 2. 

Let deg 𝑣𝑖 = 2 for 𝑖 = 1,2, … , 𝑛 − 3, deg 𝑣𝑗 = 3 for 𝑗 = 𝑛 −

2, 𝑛 − 1 and deg 𝑣𝑛 = 𝑛 − 1. 

The partition 𝜋3 = {𝑉1, 𝑉2, 𝑉3} with 𝑉1 = {𝑣𝑛},  

𝑉2 = {𝑣1, 𝑣2, … , 𝑣𝑛−3
2

, 𝑣𝑛−2} and  

𝑉3 = {𝑣𝑛−3
2
+1
, 𝑣𝑛−3

2
+2
, … , 𝑣𝑛−3, 𝑣𝑛−1} serves as a maximum 

similar degree partition for 𝐻𝑛 with the degree sum as 𝑛 −
1, 𝑛, 𝑛 respectively. 

Hence 𝜓𝐷(𝐻𝑛) = 3 for 𝑛 ≥ 5. 

If we take 𝑊 = 𝑉1, 𝑅1 = 𝑉2 and 𝑅2 = 𝑉3, then in each case, 

the partition 𝜋3 constitutes a barbell partition for 𝐻𝑛.   □ 

As an illustration, the maximum similar degree partitions as 

well as the barbell partitions of 𝐻5, 𝐻6 and 𝐻7 are given in Fig 

2. 

 
 

 

Fig 2. Family of Graphs having the maximum similar 

degree partition as same as the barbell partition 

 

Fact 11 The degree partition number of the subdivision graph 

of 𝐾1,1 is 3 and that of 𝐾1,𝑛 is 5 for 𝑛 = 2,3,4.              □ 

 

 

 

(a) The graph 𝐻5 (b) The graph 𝐻6 

(c) The graph 𝐻7 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1865-1872

 
______________________________________________________________________________________ 



 

Notation If there are three conditions say 𝐴1, 𝐴2, 𝐴3 such that  

𝑓(𝑥) = {

𝑎1          𝑖𝑓 𝐴1                                              
𝑎2         𝑖𝑓 𝐴2 𝑏𝑢𝑡 𝑛𝑜𝑡 𝐴1                         

𝑎3        𝑖𝑓 𝐴3 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑜𝑡ℎ 𝐴1 𝑎𝑛𝑑 𝐴2

} , 

we use to denote   

𝑓(𝑥) = {

𝑎1         𝑖𝑓 𝐴1          
𝑎2        𝑒𝑙𝑠𝑒 𝑖𝑓 𝐴2 

𝑎3        𝑒𝑙𝑠𝑒 𝑖𝑓 𝐴3 
}                   □ 

Theorem 12 Let 𝐺∗ be the graph obtained from 𝐾1,𝑛, 𝑛 ≥ 5, 

by subdividing k edges. Then  

𝜓𝐷(𝐺
∗) = {

2 𝑖𝑓 1 ≤  𝑘 < ⌈
𝑛 − 1

2
⌉

3 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≤ 𝑛 − 2   
4 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≤ 𝑛           

} 

 

Proof Let 𝑉′ = {𝑣} and 𝑉′′ = {𝑣1, 𝑣2, … , 𝑣𝑛} be the 

bipartition of 𝐾1,𝑛 and 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑘} be the vertices 

obtained by subdividing 𝑘 edges of 𝐾1,𝑛. 

We may notice that degG∗  𝑣 = 𝑛, degG∗  𝑣𝑖 = 1 and 

degG∗  𝑢𝑗 = 2 for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑘.  

Now, 
∑ deg 𝑣𝑣∈𝑉(𝐺∗) −1

∆−1
=

𝑛+2𝑘+𝑛(1)−1

𝑛−1
=

2𝑛+2𝑘−1

𝑛−1
=

2(𝑛−1)+2(𝑘−1)+3

𝑛−1
≤ 2 + 2 +

3

𝑛−1
 as 𝑘 − 1 ≤ 𝑛 − 1 

So, 
∑ deg 𝑣𝑣∈𝑉(𝐺∗) −1

∆−1
≤ 4 +

4

𝑛−1
 and hence 𝜓𝐷(𝐺

∗) ≤ 4 for 𝑛 ≥

5. 
To find the maximum similar degree partition of 𝐺∗, we 

initiate by considering a single vertex partition class {𝑣} as a 

class in our similar degree partition. 

Then 𝑉" may form another partition class in the above 

considered similar degree partition. 

Now, the possibility of getting 4 partitions will be achieved 

when 𝑈 can be partitioned into two classes of degree sum 

either 𝑛 or 𝑛 − 1. (𝑛 + 1 is not possible as 𝑘 ≤ 𝑛. 

So, for 𝑘 = 𝑛 − 1 or 𝑛, we consider two cases. 

Whenever 𝑘  is even 

𝜋4 = {𝑉′, 𝑉", {𝑢1, 𝑢2, … , 𝑢𝑘
2

} , {𝑢𝑘
2
+1
, 𝑢𝑘

2
+2
, … , 𝑢𝑘}} forms our 

required maximum similar degree partition of degree sum 

𝑛, 𝑛, 𝑘, 𝑘 respectively.  

And whenever 𝑘  is odd,  

𝜋4 = {𝑉′, 𝑉" − {𝑣1, 𝑣2} ∪ {𝑢𝑘},

{𝑢1, 𝑢2, … , 𝑢𝑘−1
2

, 𝑣1} , {𝑢𝑘−1
2
+1
, 𝑢𝑘−1

2
+2
, … , 𝑢𝑘−1, 𝑣2}}forms 

our required maximum similar degree partition of degree sum 

𝑛, 𝑛, 𝑘, 𝑘 respectively. 

Hence, 𝜓𝐷(𝐺
∗) = 4 if 𝑛 − 1 ≤ 𝑘 ≤ 𝑛. 

For 𝑘 < 𝑛 − 1, we can have the maximum of 3 partition 

classes in any similar degree partition. 

Now, 𝜋3 = {𝑉′, 𝑉", 𝑈} will form a maximum similar degree 

partition if 𝐷(𝑈) = 𝑛 or 𝑛 − 1 (𝑛 + 1 is not possible). 

𝑖. 𝑒. , 2𝑘 = 𝑛 or 𝑛 − 1 ⇒ 𝑘 =
𝑛

2
 or 

𝑛−1

2
 provided 𝑘 is an 

integer. 

Next, we consider the similar degree partition with more than 

one vertex in all the partition classes. 

In this case, first we observe that 𝐷(𝑉𝑖) > 𝑛 for 𝑖 = 1,2,3. 

As ∑ deg 𝑣𝑣∈𝑉(𝐺∗) = 2𝑛 + 2𝑘, 2𝑘 > 𝑛 ⇒ 𝑘 > ⌈
𝑛

2
⌉ as 𝑘 is an 

integer. 

Let 𝑊1 = {𝑢1, 𝑢2, … , 𝑢⌊𝑛
2
⌋
 } and 𝑊2 = {𝑢⌊𝑛

2
⌋+1
, 𝑢
⌊
𝑛

2
⌋+2
, … , 𝑢𝑘}. 

It is evident that the sum of the degrees of the vertices in 𝑊1 

is 𝑛 or 𝑛 − 1 according as n is even or odd. 

Now, if |𝑊2| = 3𝑡 where 𝑡 = 𝑘 − ⌊
𝑛

2
⌋, then 𝑊2 can be divided 

into 3 partitions say 𝑋1, 𝑋2, 𝑋3 of same cardinality 𝑡. 
Then 𝜋3 = {𝑉

′ ∪ 𝑋1, 𝑉" ∪ 𝑋2,𝑊1 ∪ 𝑋3} will be a maximum 

similar degree partition with the degree sum as 𝑛 + 2𝑡 each 

when 𝑛 is even and the degree sum as 𝑛 + 2𝑡, 𝑛 + 2𝑡, 𝑛 +
2𝑡 − 1 respectively when n is odd. 

Next, if |𝑊2| = 3𝑡 + 1 where 𝑡 = 𝑘 − ⌊
𝑛

2
⌋, then 𝑊2 can be 

divided into 3 partitions say 𝑋1, 𝑋2, 𝑋3 such that |𝑋1| =
𝑡, |𝑋2| = 𝑡 + 1 and |𝑋3| = 𝑡. 
Then 𝜋3 = {𝑉

′ ∪ 𝑋1, 𝑉" − {𝑣1} ∪ 𝑋2,𝑊1 ∪ {𝑣1} ∪ 𝑋3} is a 

maximum similar degree partition with the degree sum as 𝑛 +
2𝑡, 𝑛 + 2𝑡 + 1, 𝑛 + 2𝑡 + 1 respectively when 𝑛 is even and 

the degree sum as 𝑛 + 2𝑡, 𝑛 + 2𝑡 + 1, 𝑛 + 2𝑡 respectively 

when n is odd. 

Suppose |𝑊2| = 3𝑡 + 2 where 𝑡 = 𝑘 − ⌊
𝑛

2
⌋, then 𝑊2 can be 

divided into 3 partitions say 𝑋1, 𝑋2, 𝑋3 such that |𝑋1| =
𝑡, |𝑋2| = 𝑡 + 1 and |𝑋3| = 𝑡 + 1. 

In this case,𝜋3 = {𝑉′ ∪ {𝑣1} ∪ 𝑋1, 𝑉" − {𝑣1} ∪ 𝑋2,𝑊1 ∪ 𝑋3} 
is a maximum similar degree partition with the degree sum as 

𝑛 + 2𝑡 + 1, 𝑛 + 2𝑡 + 1, 𝑛 + 2𝑡 + 2 respectively when 𝑛 is 

even and the degree sum as 𝑛 + 2𝑡 + 1 each when n is odd. 

Hence, 𝜓𝐷(𝐺
∗) = 3 if ⌈

𝑛−1

2
⌉ ≤ 𝑘 ≤ 𝑛 − 2. 

In the remaining cases, 𝑖. 𝑒., for 𝑘 < ⌈
𝑛−1

2
⌉,  

let 𝑊1 = {𝑢1, 𝑢2, … , 𝑢⌊𝑘
2
⌋
 } and 𝑊2 = {𝑢

⌊
𝑘

2
⌋+1
, 𝑢
⌊
𝑘

2
⌋+2
, … , 𝑢𝑘}. 

If 𝑘 is even, 𝜋2 = {𝑉
′ ∪𝑊1, 𝑉" ∪ 𝑊2} forms a perfect 

maximum similar degree partition for 𝐺∗ with the degree sum 

𝑛 + 𝑘. 

If 𝑘 is odd, 𝜋2 = {𝑉′ ∪ {𝑣1} ∪ 𝑊1, 𝑉" − {𝑣1} ∪ 𝑊2} forms a 

perfect maximum similar degree partition for 𝐺∗ with the 

degree sum 𝑛 + 𝑘. 

Hence, 𝜓𝐷(𝐺
∗) = 2 if 1 ≤ 𝑘 < ⌈

𝑛−1

2
⌉.               □ 

Theorem 13 Let G be a regular graph of odd degree 𝑟 > 4 

and order n. Let 𝐺∗ be a graph obtained by subdividing k 

edges of 𝐺, then 

𝜓𝐷  (𝐺
∗)

=

{
 
 
 
 
 
 

 
 
 
 
 
 𝑛 +

2𝑘

𝑟 − 1
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 − 1))

𝑛 +
2𝑘

𝑟 + 1
         𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 + 1))

max {𝑛,
𝑛

2
+
2𝑘

𝑟
}      𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)           

                            𝑎𝑛𝑑 𝑘 ≡ 0(𝑚𝑜𝑑 𝑟)
 

𝑛                  𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)  
𝑛

2
+
2𝑘

𝑟
            𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 𝑟)      

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

Proof Observe that n is even as r is odd.  

𝜓𝐷(𝐺
∗) is the maximized partition number with the 

difference in their degree sums never exceeding 1. 

𝐺∗ is a graph with degree sequence (𝑟𝑛 , 2𝑘) where 1 ≤ 𝑘 ≤
𝑛𝑟

2
. 

Let 𝑉(𝐺∗) = {𝑣𝑖 , 𝑢𝑗  /1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘} such that 

deg 𝑣𝑖 = 𝑟 and deg 𝑢𝑗 = 2.  
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To achieve the optimality in partition number, we start of 

considering the possibilities of having a partition class as 

{𝑣𝑖}, for any 1 ≤ 𝑖 ≤ 𝑛. 

As 𝑟 is mentioned to be odd, there is no possibility of perfect 

similar degree partition with vertices 𝑢𝑗’s.  

Therefore, they must be classified into partition classes with 

degree sum to be either 𝑟 − 1 or 𝑟 + 1 but not both. 

In this case, we have 

𝜓𝐷(𝐺
∗) =

{
 
 

 
 𝑛 +

2𝑘

𝑟 − 1
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 − 1))

𝑛 +
2𝑘

𝑟 + 1
𝑖𝑓 2𝑘 ≢ 0 (𝑚𝑜𝑑 (𝑟 − 1))

                 𝑎𝑛𝑑 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 + 1))}
 
 

 
 

 

Next, we think of the possibility of having a partition class 

with both 𝑣𝑖
′𝑠 𝑎𝑛𝑑 𝑢𝑗

′𝑠. 

At this time, we may get a chance of having both 𝑘 ≡
0(𝑚𝑜𝑑 𝑟) 𝑎𝑛𝑑 𝑘 ≡ 0(𝑚𝑜𝑑 𝑛), the degree sum may be 𝑟 +
2𝑘

𝑛
 or 2𝑟. 

Hence, 𝜓𝐷(𝐺
∗) = max {𝑛,

𝑛

2
+

2𝑘

𝑟
} if 𝑘 ≡

0(𝑚𝑜𝑑 𝑟) 𝑎𝑛𝑑 𝑘 ≡ 0(𝑚𝑜𝑑 𝑛). 
But when 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛) but 𝑘 ≢ 0(𝑚𝑜𝑑 𝑟), considering 

optimality, the degree sum of the partition class must be 𝑟 +
2𝑘

𝑛
 . 

Hence, 𝜓𝐷(𝐺
∗) = 𝑛 if 2𝑘 ≢ 0 (𝑚𝑜𝑑 (𝑟 ± 1)) and if 𝑘 ≡

0 (𝑚𝑜𝑑 𝑛) provided 𝑘 ≢ 0(𝑚𝑜𝑑 𝑟)  
Finally, we discuss on the probability of having partition class 

with at least two 𝑣𝑖 ′𝑠. 
It must be noted that the partition, if possible, with 

𝑣𝑖
′𝑠 𝑎𝑛𝑑 𝑢𝑗

′𝑠 is maximum only when there are at most two 

𝑣𝑗′𝑠 in a partition class. 

Hence, the partition class degree sum is optimum when it is 

2𝑟.  

This gives us that, 𝜓𝐷  (𝐺
∗) =

𝑛

2
+

2𝑘

𝑟
 if  

𝑘 ≡ 0(𝑚𝑜𝑑 𝑟) 𝑏𝑢𝑡 𝑘 ≢ 0(𝑚𝑜𝑑 𝑛) and 2𝑘 ≢ 0 (𝑚𝑜𝑑 (𝑟 ±

1)). 

All the other possible partitions will not be maximum as they 

are covered by any one of the above said cases. Hence, we 

conclude that 

𝜓𝐷 (𝐺
∗)

=

{
 
 
 
 
 
 

 
 
 
 
 
 𝑛 +

2𝑘

𝑟 − 1
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 − 1))

𝑛 +
2𝑘

𝑟 + 1
        𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑟 + 1)) 

max {𝑛,
𝑛

2
+
2𝑘

𝑟
}       𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)    

                            𝑎𝑛𝑑 𝑘 ≡ 0(𝑚𝑜𝑑 𝑟)
 

𝑛                  𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)  
𝑛

2
+
2𝑘

𝑟
            𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 𝑟)      

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 
 
 
 
 

 
 
 
 
 
 

 

                             □ 

 

Theorem 14 Let G be regular graph of even degree 𝑟 ≥ 4 and 

order n. Let 𝐺∗ be a graph obtained by subdividing k edges of 

G, then 

𝜓𝐷(𝐺
∗) = {

𝑛 +
2𝑘

𝑟
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 𝑟)

𝑛 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Proof Since all vertices are of even degree, only perfect 

similar degree partition exists if any. 

We know 𝜓𝐷(𝐺
∗) ≤ ⌊

∑ deg 𝑣𝑣∈𝑉(𝐺∗)

𝑟
⌋ (Theorem 3) 

⇒ 𝜓𝐷(𝐺
∗) ≤ 𝑛 +

2𝑘

𝑟
. 

Also, no two vertices of 𝐺 can be in a same partition class of 

any maximum similar degree partition (if such partition 

exists), otherwise the maximum cannot be achieved.  

Hence the degree sum of every partition class in a similar 

degree partition must be either 𝑟 𝑜𝑟 𝑟 + 2𝑙 if such partition 

exists. 

Case i Let the degree sum of the partition class be 𝑟. 
In this case, every single vertex of 𝐺 should form a partition 

class and the newly added vertices should form 2𝑘 partition 

classes. 

This is possible only when 2𝑘 ≡ 0(𝑚𝑜𝑑 𝑟). 

So, 𝜓𝐷(𝐺
∗) = 𝑛 +

2𝑘

𝑟
 if 2𝑘 ≡ 0(𝑚𝑜𝑑 𝑟). 

Case ii Let the degree sum of the partition class be 𝑟 + 2𝑙. 
As discussed in the above theorem, this is possible only when 

𝑙 =
𝑘

𝑛
. 𝑖. 𝑒. , 𝑘 ≡ 0(𝑚𝑜𝑑 𝑛). 

In all the remaining cases 𝜓𝐷(𝐺
∗) = 1.               □ 

 

Corollary 15 Let 𝐺 be a graph obtained from 𝐾𝑛 by 

subdividing 𝑘 edges. Then 

𝜓𝐷(𝐺) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑛 +

2𝑘

𝑛 − 2
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑛 − 2))

     𝑛 +
2𝑘

𝑛 − 1
𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑛 − 1))

           𝑛 +
2𝑘

𝑛
          𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛) 

max {𝑛,
𝑛

2
+

2𝑘

𝑛 − 1
} 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛),

                                   𝑛 ≡ 0(𝑚𝑜𝑑 2)𝑎𝑛𝑑
                                       𝑘 ≡ 0(𝑚𝑜𝑑 (𝑛 − 1))

        𝑛                       𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛)  
𝑛

2
+

2𝑘

𝑛 − 1
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 (𝑛 − 1)) 

        𝑎𝑛𝑑 𝑛 ≡ 0 (𝑚𝑜𝑑 2)
1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

              □ 

 

Corollary 16 Let 𝐺 be a graph obtained from Kneser graph 

𝐾(𝑛, 𝑘) by subdividing 𝑡 edges. Then for 𝑘 ≤
𝑝

2
, whenever 

(
𝑛 − 𝑘
𝑘

) is odd,  

𝜓𝐷 (𝐺)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
             (

𝑛
𝑘
) +

2𝑡

𝑘
𝑖𝑓 2𝑡 ≡ 0 (𝑚𝑜𝑑 𝑘)

           (
𝑛
𝑘
) +

2𝑡

𝑘 + 2
 𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑡 ≡ 0 (𝑚𝑜𝑑 (𝑘 + 2)) 

max {(
𝑛
𝑘
) ,
(
𝑛
𝑘
)

2
+

2𝑡

𝑘 + 1
} 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛
𝑘
))

                                                𝑎𝑛𝑑 𝑡 ≡ 0(𝑚𝑜𝑑 (𝑘 + 1))

        (
𝑛
𝑘
)                       𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛
𝑘
))

(
𝑛
𝑘
)

2
+

2𝑡

𝑘 + 1
               𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0(𝑚𝑜𝑑 (𝑘 + 1))

1                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

And whenever (
𝑛 − 𝑘
𝑘

) is even, 
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𝜓𝐷  (𝐺) =

{
 
 

 
 (
𝑛
𝑘
) +

2𝑡

(
𝑛 − 𝑘
𝑘

)
𝑖𝑓 2𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛 − 𝑘
𝑘

))

(
𝑛
𝑘
) 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛
𝑘
))

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

 

Proof It may be noted that 𝐾(𝑛, 𝑘) is a null graph whenever 

𝑘 >
𝑛

2
. 

Let (
𝑛 − 𝑘
𝑘

) be odd. 

We know that (
𝑛
𝑟
) is odd iff 𝑟 = 𝑛 − 1 and 𝑛 is odd. 

(
𝑛 − 𝑘
𝑘

) is odd iff (𝑛 − 𝑘) − 𝑘 = 1 ⇒ 𝑛 = 2𝑘 + 1 and 𝑛 −

𝑘 is odd. So, 𝑛 − 𝑘 = 𝑘 + 1 and (
𝑛 − 𝑘
𝑘

) = (
𝑘 + 1
𝑘

) = 𝑘 +

1.  
∴ 𝜓𝐷 (𝐺)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
             (

𝑛
𝑘
) +

2𝑡

𝑘
𝑖𝑓 2𝑡 ≡ 0 (𝑚𝑜𝑑 𝑘)

           (
𝑛
𝑘
) +

2𝑡

𝑘 + 2
 𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑡 ≡ 0 (𝑚𝑜𝑑 (𝑘 + 2)) 

max {(
𝑛
𝑘
) ,
(
𝑛
𝑘
)

2
+

2𝑡

𝑘 + 1
} 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛
𝑘
))

                                                𝑎𝑛𝑑 𝑡 ≡ 0(𝑚𝑜𝑑 (𝑘 + 1))

        (
𝑛
𝑘
)                       𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0 (𝑚𝑜𝑑 (

𝑛
𝑘
))

(
𝑛
𝑘
)

2
+

2𝑡

𝑘 + 1
               𝑒𝑙𝑠𝑒 𝑖𝑓 𝑡 ≡ 0(𝑚𝑜𝑑 (𝑘 + 1))

1                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

The result is obvious when (
𝑛 − 𝑘
𝑘

) is even.            □ 

 

Corollary 17 Let 𝐺 be a graph obtained from 𝑄𝑛 by 

subdividing 𝑘 edges. Then 

 

𝜓𝐷 (𝐺)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 2𝑛 +

2𝑘

𝑛 − 1
𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑛 − 1))

2𝑛 +
2𝑘

𝑛
         𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 𝑛) 

2𝑛 +
2𝑘

𝑛 + 1
𝑒𝑙𝑠𝑒 𝑖𝑓 2𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑛 + 1))  

max {2𝑛, 2𝑛−1 +
2𝑘

𝑛
} 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 𝑛),

𝑘 ≡ 0 (𝑚𝑜𝑑 2𝑛)

                                      𝑎𝑛𝑑 𝑛 ≡ 0 (𝑚𝑜𝑑 2)

2𝑛                  𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 2𝑛)

2𝑛−1 +
2𝑘

𝑛
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘 ≡ 0(𝑚𝑜𝑑 𝑛)         

       𝑎𝑛𝑑 𝑛 ≡ 0 (𝑚𝑜𝑑 2)
1                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

                             □ 

 

Theorem 18 Let 𝐺 be a regular graph of degree 𝑟 ≥ 2 and 

order n. If 𝐺∗ is a graph obtained from 𝐺 by removing 2 edges 

incident with the same vertex, then  

𝜓𝐷(𝐺
∗) =

{
 
 

 
 
𝑛 − 1                  𝑖𝑓 𝑟 = 2,3               
𝑛 − 1

2
𝑖𝑓 𝑛 ≡ 1 (𝑚𝑜𝑑 2) 𝑎𝑛𝑑 𝑟 = 4

3 𝑖𝑓 𝑛 = 6
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }

 
 

 
 

 

 

Proof The degree sequence of 𝐺∗ is (𝑟 − 2, (𝑟 − 1)2, 𝑟𝑛−3). 
Let 𝑉(𝐺∗) = {𝑣1, 𝑣2, … , 𝑣𝑛} with degG∗  𝑣1 = 𝑟 − 2, 

degG∗  𝑣2 = deg𝐺
∗ 𝑣3 = 𝑟 − 1 and degG∗  𝑣𝑖 = 𝑟 for  4 ≤ 𝑖 ≤

𝑛. Also, ∑ deg 𝑣𝑣∈𝑉(𝐺∗) = 𝑛𝑟 − 4. 

To have a maximum similar degree partition, we start with 

the possibility of having a partition class to be a singleton set 
{𝑣𝑖} for any 𝑖, 4, ≤ 𝑖 ≤ 𝑛. 

The only possibility of partitioning vertices {𝑣1, 𝑣2} occurs 

when 2𝑟 − 3 = 𝑟 − 1 ⇒ 𝑟 = 2 or 2𝑟 − 3 = 𝑟 ⇒ 𝑟 = 3. 𝑖. 𝑒., 
G is cycle or 3 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 
Hence, when 𝑟 = 2 or 3,  

𝜋3(𝐺
∗) = {{𝑣1, 𝑣2}, {𝑣3}, {𝑣𝑖} / 4 ≤ 𝑖 ≤ 𝑛} is s maximum 

similar degree partition for 𝐺∗ implying that 𝜓𝐷(𝐺
∗) = 𝑛 −

1. 

Nest we consider the partition class of the form 𝑉𝑖 =

{𝑣𝑖 , 𝑣𝑗}, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

Case i Let the degree sum of 𝑉1 = 2𝑟 

Then all other partition class must have degree sum 2𝑟 or 

2𝑟 ± 1, which could be possible when there is a partition 

class 𝑉𝑡 = {𝑣1, 𝑣2, 𝑣3} 
i.e., when 3𝑟 − 4 = 2𝑟 − 1 ⇒ 𝑟 = 3, which is a 

contradiction. 

3𝑟 − 4 = 2𝑟 ⇒ 𝑟 = 4 and  

3𝑟 − 4 = 2𝑟 + 1 ⇒ 𝑟 = 5 

Hence, when 𝑟 = 4 or 5 the remaining vertices must form 

partition class among themselves contributing two in each 

class. 

i.e., when 𝑛 − 3 is even or 𝑛 is odd. 

Since n is odd, r cannot be 5. 

∴ we conclude that 𝜓𝐷(𝐺
∗) =

𝑛−3

2
+ 1 =

𝑛−1

2
 if  

𝑛 ≡ 1 (𝑚𝑜𝑑 2) 𝑎𝑛𝑑 𝑟 = 4. 

Case ii Let the degree sum of 𝑉1 = 2𝑟 − 1 

Then all the other partition classes must be of degree sum 

2𝑟 − 2 or 2𝑟 − 1 otherwise 2𝑟 − 1 or 2𝑟. 

The case of having 2𝑟 is discussed in Case i. 

It can be noted that the perfect similar degree sum cannot be 

2𝑟 − 1, as even a partition class 𝑉𝑠 = {𝑣1, 𝑣2, 𝑣𝑗}, 𝑗 ≥ 4 

matches up to 2𝑟 − 1, (3𝑟 − 3 = 2𝑟 − 1 ⇒ 𝑟 = 4), the 

remaining vertices cannot form a partition class of degree 

sum 2𝑟. 
Therefore, we restrict to the possibility of having a partition 

class of degree sum 2𝑟 − 2. 

Hence, there is a partition 𝑉𝑚 = {𝑣1, 𝑣𝑗}, 𝑗 ≥ 4. 

By definition of 𝜓𝐷(𝐺
∗), all other partition classes must of 

degree sum 2𝑟 − 2, which is possible when 𝑛 = 6 

i.e., when 𝑛 = 6, 𝜋3 = {{𝑣1, 𝑣6}, {𝑣2, 𝑣5}, {𝑣3, 𝑣4}} forms a 

partition class in this case. 

Case iii Let the degree sum of 𝑉1 = 2𝑟 − 2 

Then all the partition classes must be of degree sum 2𝑟 − 3 

or 2𝑟 − 2 otherwise 2𝑟 − 2 or 2𝑟 − 1. 

The latter case is discussed in Case ii. 

The former case is possible only when there are two partition 

classes in the similar degree partition say 𝑉1 and 𝑉2 with 

𝐷(𝑉1) = 2𝑟 − 2 and 𝐷(𝑉2) = 2𝑟 − 3. So, 𝑉1 = {𝑣1, 𝑣4} and 

𝑉2 = {𝑣2, 𝑣3}. Hence, the considered graph is a graph of order 

4.  
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That is, 𝑟 < 4, which has been discussed already. 

All the other possible partitions will not be maximum as they 

are covered any one of the above said cases. 

Hence in all the remaining cases, 𝜓𝐷(𝐺
∗) = 1             □ 

 

Proposition 19 Let 𝐺∗ be a graph obtained from a complete 

graph 𝐾𝑛 (𝑛 ≥ 4) by removing 𝑛 − 2 edges incident with a 

vertex. Then 𝜓𝐷(𝐺
∗) = 𝑛 − 1. 

Proof The degree sequence of 𝐺∗ is ((𝑛 − 1), (𝑛 − 2)𝑛−1, 1). 

Let degG∗ 𝑣1 = 𝑛 − 1, degG∗ 𝑣𝑖 = 𝑛 − 2 for 2 ≤ 𝑖 ≤ 𝑛 −
1 and degG∗ 𝑣𝑛 = 1. It is noticeable that 𝜓𝐷(𝐺

∗) < 𝑛.  

So, 𝜋𝑛−1 = {{𝑣𝑖}, {𝑣2, 𝑣𝑛}} forms a maximum similar degree 

partition for 𝐺∗ with degree sum as 𝑛 − 1 and 𝑛 − 2 where 

𝑖 = 1,3,4, … , 𝑛 − 1.                         □ 

 

Theorem 20 Let 𝑉(𝐾𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}. For 𝑘 =

1,2, … , ⌊
𝑛

2
⌋ − 1, define a family 𝐺𝑛

(𝑘)
 of graphs as follows: Set 

𝐺𝑛
(0) = 𝐾𝑛 , 𝑉(𝐺𝑛

(𝑘)
) = 𝑉(𝐾𝑛)  and  E(Gn

(k)) = E(Gn
(k-1)) \

{v2k-1v2i, v2k-1v2k+j /1 ≤ i ≤ k-1, 1 ≤ j ≤ n-2k} 

 {v2k-1v2i, v2k-1v2k+j/1 ≤ i ≤ k-1, 1 ≤ j ≤ n-2k}.  Then 

𝜓𝐷(𝐺𝑛
(𝑘)) = 𝑛 − 𝑘. 

Proof The degree sequence of 𝐺𝑛
(𝑘)

 is ((𝑛 − 𝑘)𝑘, (𝑛 − 𝑘 −
1)𝑛−2𝑘, 1𝑘). 

In 𝐺𝑛
(𝑘), deg

𝐺𝑛
(𝑘) 𝑣2𝑡 = 𝑛 − 𝑘  for 1 ≤ 𝑡 ≤ 𝑘  

deg
𝐺𝑛
(𝑘) 𝑣2𝑡+1 = 1 for 1 ≤ 𝑡 ≤ 𝑘 and  

deg
𝐺𝑛
(𝑘) 𝑣𝑠 = 𝑛 − 𝑘 − 1 for 2𝑘 + 1 ≤ 𝑠 ≤ 𝑛. 

It can be easily verified that 

∑ deg 𝑣
𝑣∈𝑉(𝐺𝑛

(𝑘)
)

−1

∆−1
= (𝑛 − 𝑘) +

2𝑘−1

𝑛−𝑘−1
. 

As 𝑘 ≤ ⌊
𝑛

2
⌋ − 1, 2𝑘 − 1 ≤ {

𝑛 − 3 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑛 − 4 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

}. 

So, 
2𝑘−1

𝑛−𝑘−1
≤

𝑛−3

𝑛−2
< 1 as 𝑛 ≥ 4. ∴ 𝜓𝐷(𝐺

∗) ≤ 𝑛 − 𝑘. 

𝜋𝑛−𝑘 = {{𝑣𝑥}, {𝑣2𝑡−1, 𝑣𝑛−𝑡+1}} where 𝑥 = 2,4, … ,2𝑘, 2𝑘 +

1,… , 𝑛 − 𝑘 and 1 ≤ 𝑡 ≤ 𝑘 forms a maximum similar degree 

partition for 𝐺∗.          

∴ 𝜓𝐷(𝐺𝑛
(𝑘)) ≤ 𝑛 − 𝑘.                        □ 

 

Theorem 21 [8] 𝜓𝐷(𝐼𝑛) = ⌊
𝑛

2
⌋ + 1.                   

Proof Let 𝑉(𝐼𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑑(𝑣𝑖) = 𝑖 for 1 ≤ 𝑖 ≤

𝑛 − 1 and 𝑑(𝑣𝑛) = ⌊
𝑛

2
⌋. 

In the case when n is even, 𝜋𝑛
2
+1 = {𝑉1, 𝑉2, … , 𝑉𝑛

2
+1} where 

𝑉1 = {𝑣1, 𝑣𝑛−3}, 𝑉2 = {𝑣2, 𝑣𝑛−4}, …  , 𝑉𝑛
2
−2
=

{𝑣𝑛
2
−2, 𝑣𝑛

2
} , 𝑉𝑛

2
−1 = {𝑣𝑛

2
−1, 𝑣𝑛} , 𝑉𝑛

2
= {𝑣𝑛−1} and 𝑉𝑛

2
+1 =

{𝑣𝑛−2} forms a similar degree partition with all classes having 

degree sum 𝑛 − 2 except 𝑉𝑛
2
 and 𝑉𝑛

2
−1

 have degree sum as 𝑛 −

1. 

Hence 𝜓𝐷(𝐼𝑛) =
𝑛

2
+ 1 when n is even. 

As in the above case, when n is odd, 𝜋𝑛+1
2

= {𝑉1, 𝑉2, … , 𝑉𝑛+1
2

} 

where 𝑉1 = {𝑣1, 𝑣𝑛−2}, 

 𝑉2 = {𝑣2, 𝑣𝑛−3}, … , 𝑉𝑛−3
2

= {𝑣𝑛−3
2

, 𝑣𝑛+1
2

} , 𝑉𝑛−1
2

=

{𝑣𝑛−1
2

, 𝑣𝑛}  𝑎𝑛𝑑  𝑉𝑛+1
2

= {𝑣𝑛−1} serves as a perfect similar 

degree partition with degree sum of all classes being n-1 and 

also forcing 𝜓𝐷(𝐼𝑛) =
𝑛+1

2
. 

Therefore, we conclude that 𝜓𝐷(𝐼𝑛) = ⌊
𝑛

2
⌋ + 1.     □ 

 

Theorem 22 𝜓𝐷 (𝑆𝑝(𝑃𝑛)) = 𝑛 + ⌊
𝑛−2

2
⌋ for 𝑛 ≥ 3.  

Proof Assume 𝑛 ≥ 3.  Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and  

𝑉 (𝑆𝑝(𝑃𝑛)) = {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤1, 𝑤2, … , 𝑤𝑛}. 

We know deg 𝑣𝑖 = 4 where 2 ≤ 𝑖 ≤ 𝑛 − 1, deg 𝑣𝑗 =

2 where 𝑗 = 1, 𝑛, deg𝑤𝑖 = 2 where 2 ≤ 𝑖 ≤ 𝑛 − 1 and 

deg𝑤𝑗 = 1 where 𝑗 = 1, 𝑛. 

Now any degree partition of 𝑆𝑝(𝑃𝑛) must have the degree 

sum atleast 3. 

To maximize 𝜓𝐷 (𝑆𝑝(𝑃𝑛)), the degree sum is either 3 or 4. 

Let 𝑉1 = {𝑣1, 𝑤1}, 𝑉𝑖 = {𝑣𝑖} for 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑉𝑛 =

{𝑣𝑛 , 𝑤𝑛} and 𝑉𝑛+𝑗 = {𝑤2𝑗 , 𝑤2𝑗+1} for 1 ≤ 𝑗 ≤
𝑛−2

2
 if n is 

even. 

Then 𝑉𝑗 , 1 ≤ 𝑗 ≤ 𝑛 +
𝑛−2

2
 forms a degree partition of 𝑆𝑝(𝑃𝑛), 

which gives 𝜓𝐷 (𝑆𝑝(𝑃𝑛)) = 𝑛 +
𝑛−2

2
 when n is even. 

If n is odd, let the partition class be 𝑉1 =
{𝑤𝑛−1, 𝑤1, 𝑤𝑛}, 𝑉𝑖 = {𝑣𝑖} for 2 ≤ 𝑖 ≤ 𝑛 − 1,  𝑉𝑛+𝑗−1 =

{𝑤2𝑗 , 𝑤2𝑗+1} for 1 ≤ 𝑗 ≤
𝑛−3

2
 and 𝑉

𝑛+⌊
𝑛−2

2
⌋
= {𝑣1, 𝑣𝑛} which 

gives 𝜓𝐷 (𝑆𝑝(𝑃𝑛)) = 𝑛 + ⌊
𝑛−2

2
⌋ when n is odd.     □ 

 

Theorem 23 Let G be a 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph with 𝑟 ≥ 2. 

Then  

𝜓𝐷 (𝑆𝑝(𝐺)) = {
𝑛 +

𝑛

2
 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 2)

𝑛       𝑖𝑓 𝑛 ≡  1 (𝑚𝑜𝑑 2)
}. 

Proof Let 𝐺 be a regular graph of order 𝑛. 

Let 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑉 (𝑆𝑝(𝐺)) =

{𝑣1, 𝑣2, … , 𝑣𝑛 , 𝑤1, 𝑤2, … , 𝑤𝑛}. 
Then deg 𝑣𝑖 = 2𝑟 and deg𝑤𝑖 = 𝑟 for 1 ≤ 𝑖 ≤ 𝑛. 

If n is even, the partition classes are given as 𝑉𝑖 = {𝑣𝑖} for 

1 ≤ 𝑖 ≤ 𝑛  𝑉𝑛+𝑗 = {𝑤2𝑗 , 𝑤2𝑗−1} for 1 ≤ 𝑗 ≤
𝑛

2
 which gives 

to 𝜓𝐷 (𝑆𝑝(𝐺)) = 𝑛 +
𝑛

2
. 

If n is odd, let 𝑉𝑖 = {𝑣𝑖 , 𝑤𝑖  / 1 ≤ 𝑖 ≤ 𝑛}. Then 𝑉1, 𝑉2, … , 𝑉𝑛 

forms a degree partition of 𝑆𝑝(𝐺). 

Therefore,  𝜓𝐷 (𝑆𝑝(𝐺)) = 𝑛 if n is odd.        □ 

 

Theorem 24 For any 𝑛 ≥ 2, 𝜓𝐷 (𝑆𝑝(𝐾1,𝑛)) = 3. 

Proof Let 𝑉(𝐾1,𝑛) = {𝑣, 𝑣1, 𝑣2, … , 𝑣𝑛} such that deg 𝑣 = 𝑛 

and deg 𝑣𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 in 𝐾1,𝑛. 

Now 𝑉 (𝑆𝑝(𝐾1,𝑛)) = {𝑣, 𝑣1, 𝑣2, … , 𝑣𝑛 , 𝑤, 𝑤1, 𝑤2, …𝑤𝑛} 

where deg 𝑣 = 2𝑛, deg 𝑣𝑖 = 2 for 1 ≤ 𝑖 ≤ 𝑛, deg𝑤 = 𝑛 

and deg𝑤𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 in 𝑆𝑝(𝐾1,𝑛). 

Let the partition classes of 𝑆𝑝(𝐾1,𝑛) be given as 𝑉1 =

{𝑤,𝑤𝑖}, 𝑉2 = {𝑣} and 𝑉3 = {𝑣𝑖} where 1 ≤ 𝑖 ≤ 𝑛 which 

gives 𝜓𝐷 (𝑆𝑝(𝐾1,𝑛)) ≥ 3. 

Also, by theorem 2, 

𝜓𝐷 (𝑆𝑝(𝐾1,𝑛)) ≤ ⌊
6𝑛 − 1

2𝑛 − 1
⌋ = ⌊

6𝑛 − 3

2𝑛 − 1
+

2

2𝑛 − 1
⌋. 

So, for 𝑛 ≥ 2, 𝜓𝐷 (𝑆𝑝(𝐾1,𝑛)) ≤ 3. 

Hence the theorem.                □ 
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