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Abstract—Given the ongoing expansion of multitasking sys-
tems, conflicts arising among multiple concurrent processes
have garnered significant attention. Effectively regulating and
balancing the impacts induced by these processes remains a
key challenge in conflict adjustment. To mitigate and balance
the conflicts caused by multiple factors, this study introduces
several regulation methods under different objectives. To en-
hance the assessment of how different stakeholders and its
operating scales contribute to or influence conflict levels, two
weighted generalizations are proposed. Subsequently, several
structured axiomatic methodologies are applied to evaluate both
its mathematical rigor and practical suitability. Moreover, this
paper delves into further interpretations of these axiomatic
procedures, thereby offering deeper insights into potential
applications for conflict management and regulating under
multitasking systems.

Index Terms—Sustainability, conflict, regulating method,
multitasking systems, axiomatic procedure.

I. INTRODUCTION

In recent years, sustainability-related challenges have re-
ceived substantial attention due to the escalating impacts
of climate change, dwindling natural resources, and other
environmental constraints. This surge in interest has led
to extensive research on topics such as resource manage-
ment, pollution mitigation, and climate change adaptation.
The environmental conflict emerging from the concurrent
advancement of human activities and ecological limitations
is increasingly evident, with some outcomes proving to
be irreversible. Consequently, reducing the environmental
impacts arising from various factors has become a primary
focus in sustainability-related investigations.

Addressing these impacts often necessitates a broad-based
approach that simultaneously considers multiple dimensions,
which may at times be in conflict. For instance, achiev-
ing optimal pollution mitigation using certain methods or
technologies, while concurrently conserving energy, reduc-
ing resource consumption, and preventing the creation of
secondary pollutants or waste, calls for a balanced, multi-
faceted strategy. In the mathematical domain, multi-objective
optimization or equilibrium models are applied to reconcile
these varied objectives within operational systems. Likewise,
in multitasking systems, concurrently running multiple tasks
or processes may require evaluating and regulating conflict-
ing goals, drawing parallels to sustainability challenges in
balancing diverse factors.

Under conventional transferable-utility (TU) conditions,
modules are generally deemed either fully active or com-
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pletely inactive in relation to one another. However, practical
scenarios rarely exhibit such clear distinctions in module
engagement. Within the framework of multi-choice TU sys-
tems, modules can interact at an finite spectrum of engage-
ment levels. Various regulation methodologies for multi-
choice TU games have been explored in different applica-
tions, including works by Calvo and Santos [3], Chen et al.
[4], Cheng et al. [5], Li et al. [15], Liao [16], Liao et al.
[17], Hwang and Liao [10], [11], Huang et al. [12], Klijn et
al. [13], Nouweland et al. [20], and among others.

Consistency is a critical attribute in regulating methods
under axiomatic paradigms for traditional systems, as it
ensures that a prescribed solution remains valid when the
payoffs of certain modules are held constant. This principle
posits that the recommendations for a given issue should
align with those produced for sub-issues where specific
modules’ payoffs are predetermined. The notion of consis-
tency has been defined in diverse ways depending on the
treatment of payoffs for modules that cease bargaining. Such
consistency has been intensively analyzed in the context of
reduced systems, including bargaining and cost allocation
scenarios. Methods involving single contributions, the pseudo
equal allocation of non-separable costs (PEANSC, Hsieh and
Liao [9]), and the normalized index have been proposed for
conventional TU systems. Hsieh and Liao [9] demonstrated
an adaptation of the complement-reduction technique by
Moulin [19], illustrating that PEANSC furnishes an equitable
allocation mechanism.

The results presented in this context lead to the following
important question:

• Can the single index and its associated outcomes be
expanded to better address sustainability challenges in
multitasking systems?

This study aims to lay the essential mathematical ground-
work for optimally evaluating multitasking systems within
the scope of sustainability-related concerns. Specifically, we
regulate multi-choice behaviors and their repercussions in
multi-objective settings. Building upon traditional and multi-
choice TU systems, we introduce the concept of multitask-
ing TU systems. In Section 2, we propose two regulation
frameworks: the minimal regulation of accompanied con-
flict (MRAC) and the normalized single-conflict regulation
(NSCR).

The MRAC regulation allocates minimal single conflict
from operational coalitions to each module before equally
distributing any remaining conflict. By contrast, the NSCR
assigns conflict proportionally by inflicting minimal single
conflict on all modules of the coalition. These regulations
generalize the notion of marginal conflict to encompass
multi-choice behavior and multitasking systems.

To substantiate these regulations, we propose an extended
reduction and accompanying consistency properties, which
are addressed in Sections 3 and 4:
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• The MRAC is the only regulation method that satisfies
the properties of multitasking standard for systems and
multitasking consistency.

• The MRAC is the only regulation method that satisfies
the properties of multitasking efficiency, multitasking
covariance, multitasking symmetry, and multitasking
consistency.

• Although the NSCR does not satisfy multitasking bilat-
eral consistency, it retains the properties of normalized-
standard of systems and analogue consistency.

Building on the MRAC framework, each module initially
receives minimal single conflict from operational coalitions,
followed by equally regulating any fixed conflict (e.g., the
cost of shared resources) among the modules involved.
Nevertheless, varying levels of module engagement and
operational intensity can result in different outcomes across
an array of scenarios.

In practice, the MRAC method may seem less feasible
when modules differ in size or bargaining power. Such
asymmetries frequently emerge when depicting differences in
bargaining capabilities and engagement degrees across mod-
ules. To accommodate these discrepancies, we propose alter-
native regulation methods that distribute any additional fixed
conflict proportionally according to the modules’ weights.

To mitigate discrimination and address the relative con-
flict triggered by modules and their acting intensities, we
introduce weighting functions for both modules and their
respective operating degrees. Consequently, two weighted
extensions of the MRAC, along with their axiomatic prop-
erties, are established in Section 5. Throughout the study,
further perspectives on these axioms and their associated
axiomatic processes are explored, underscoring their utility
for sustainability and pollution control research as well as
for regulating conflicts in multitasking systems.

II. PRELIMINARIES

Let UM denote the universal collection of modules. For
each module i ∈ UM and d̃i ∈ N, we define D̃i = {0, · · · d̃i}
as the acting degree space of module i, with D̃+

i = D̃i \{0}
indicating active reaction, and 0 indicating non-reaction. Let
M ⊆ UM and D̃M =

∏
i∈M D̃i denote the Cartesian product

set of acting degree spaces for modules in M. For any H ⊆
M, a module coalition H ⊆ M corresponds canonically to
the multi-choice coalition d̃H ∈ D̃M, where d̃Hi = 1 if i ∈ H
and d̃Hi = 0 if i ∈ M \ H. Let 0M represent the zero vector
in RM. For m ∈ N, 0m denotes the zero vector in Rm, and
Nm = {1, 2, · · · ,m}.

A multi-choice transferable-utility (TU) system is char-
acterized as a triple (M, d̃, c), where M denotes a non-empty
and finite set of modules, d̃ = (d̃i)i∈M ∈ D̃M represents the
vector indicating the highest acting degrees for each module,
and c : D̃M → R is a function satisfying c(0M) = 0,
assigning the worth that modules can obtain if acting at
corresponding acting degrees µ̃ = (µ̃i)i∈M ∈ D̃M. A
multitasking multi-choice TU system is defined as a triple
(M, d̃, Cm), where m ∈ N, Cm = (ct)t∈Nm

, and (M, d̃, ct)

represents a multi-choice TU system for all t ∈ Nm. The
class encompassing all multitasking multi-choice TU systems
is denoted as MCS.

A regulation is defined as a mapping Ψ that assigns to
each (M, d̃, Cm) ∈ MCS an element

Ψ
(
M, d̃, Cm

)
=

(
Ψt

(
M, d̃, Cm

))
t∈Nm

,

where Ψt
(
M, d̃, Cm

)
=

(
Ψt

i

(
M, d̃, Cm

))
i∈M ∈ RM and

Ψt
i

(
M, d̃, Cm

)
represents the payoff of module i when i

engages in
(
M, d̃, ct

)
. For (M, d̃, Cm) ∈ MCS, H ⊆ M,

and µ̃ ∈ RM, KE(µ̃) = {i ∈ M|µ̃i ̸= 0} is defined to
denote the set of modules with non-zero acting degrees, and
µ̃H ∈ RH represents the restriction of µ̃ to H. For a given
i ∈ M, the notation µ̃−i is introduced to denote µ̃M\{i}, and
α = (µ̃−i, t) ∈ RM is defined by α−i = µ̃−i and αi = t.

Next, we provide two generalized regulations under mul-
titasking systems.

Definition 1:
1) The minimal regulation of accompanied conflict

(MRAC), Φ̂, is defined by

Φ̂t
i(M, d̃, Cm)

= Φt
i(M, d̃, Cm) + 1

|M|
·
[
ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

]
for all (M, d̃, Cm) ∈ MCS, for all t ∈ Nm and for all
i ∈ M. Here, Φt

i(M, d̃, Cm) = minj∈D̃+
i
{ct(0−i, j)−

ct(0−i, j − 1)} denotes the minimal single conflict
that module i faces in the system (M, d̃, ct). Through-
out this study, we focus on bounded multi-choice
transferable-utility (TU) systems, i.e., those (M, d̃, ct)
in which there exists a constant Mt ∈ R satisfying
ct(µ̃) ≤ Mt for all µ̃ ∈ D̃M. Under this condition,
Φi(M, d̃, ct) remains well-defined and valid. Within
the Φ̂ framework, each module is initially allocated
its minimal single conflict. Any residual conflict is
then evenly apportioned among all modules, thereby
establishing a balanced and equitable regulation. This
strategy is particularly pertinent to sustainability or
pollution mitigation initiatives, where attenuating both
individual and collective burdens among stakeholders
is of paramount importance.

2) The normalized single-conflict regulation (NSCR),
∆̂, is defined by

∆̂t
i(M, d̃, Cm) =

ct(d̃)∑
k∈M

Φt
k(M, d̃, Cm)

· Φt
i(M, d̃, Cm)

for all (M, d̃, Cm) ∈ MCS∗, for all t ∈ Nm and
for all i ∈ M, where MCS∗ = {(M, d̃, Cm) ∈
MCS|

∑
i∈M Φt

i(M, d̃, Cm) ̸= 0 for all t ∈ Nm}.
Within the ∆̂ framework, every module proportionally
shares in the coalition’s total conflict, using each mod-
ule’s minimal single conflict as the weighting factor.
This allocation method promotes an equitable and
judicious distribution of impacts, a principle integral to
environmental management and sustainability assess-
ments where the fair distribution of burdens is critical
for effective conflict regulation.

In this section, we provide a concise application of
multitasking multi-choice TU systems within the realm of
“management.” Such problems can be formalized as follows:
let M represent the complete set of modules in a unified
management system (M, d̃, Cm). The conflict function ct

assigns a value to each degree vector µ̃ = (µ̃i)i∈M ∈ D̃M,
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denoting the outcomes that modules can realize when each
module i selects an operational plan µ̃i ∈ D̃i in the sub-
management system (M, d̃, ct).

Viewed in this way, the all-encompassing management
system (M, d̃, Cm) can be interpreted as a multitasking
multi-choice TU system, where ct corresponds to each mod-
ule’s function and D̃i is the collection of viable strategies
for module i. In the subsequent sections, we show that
both the MRAC and the NSCR can serve as “optimal
regulation mechanisms” for the modules involved, ensuring
that every module capitalizes on the collective advantages of
various operational approaches across multitasking systems,
thereby elevating the efficacy of management approaches in
sustainability and pollution mitigation scenarios.

III. AXIOMATIC RESULTS FOR THE MRAC

In order to analyze the rationality of the MRAC, an ex-
tended reduction and several axioms are introduced to present
certain axiomatic procedures. A regulation Ψ satisfies mul-
titasking efficiency (MTEFF) if for all (M, d̃, Cm) ∈ MCS
and for all t ∈ Nm,

∑
i∈M Ψt

i(M, d̃, Cm) = ct(d̃). A regula-
tion Ψ satisfies multitasking standard for systems (MTSS)
if Ψ(M, d̃, Cm) = Φ̂(M, d̃, Cm) for all (M, d̃, Cm) ∈ MCS
with |M| ≤ 2. A regulation Ψ satisfies multitasking sym-
metry (MTSMT) if Ψi(M, d̃, Cm) = Ψk(M, d̃, Cm) for all
(M, d̃, Cm) ∈ MCS where Φt

i(M, d̃, Cm) = Φt
k(M, d̃, Cm)

for some i, k ∈ M and for all t ∈ Nm. A regulation Ψ satis-
fies multitasking covariance (MTCVA) if Ψ(M, d̃, Cm) =
Ψ(M, d̃, Qm) + (yt)t∈Nm

for all (M, d̃, Cm), (M, d̃, Qm) ∈
MCS with ct(µ̃) = qt(µ̃)+

∑
i∈KE(µ̃) y

t
i for some yt ∈ RM,

for all t ∈ Nm and for all µ̃ ∈ D̃M.
Property MTEFF requires that every module jointly allo-

cates the total conflict. Property MTSS generalizes the two-
person standardness principle introduced by Hart and Mas-
Colell [8]. Property MTSMT demands that outputs remain
identical when minimal single conflicts coincide. Property
MTCVA can be interpreted as a weaker iteration of additivity.
It follows from Definition 1 that the MRAC meets MTEFF,
MTSS, MTSMT, and MTCVA.

Moulin [19] introduced a notion of reduced systems,
requiring that coalitions within a subgroup only secure
payoffs for their members if these allocations match the
original payoffs of “all” members external to the subgroup.
Subsequently, Hsieh and Liao [9] extended Moulin’s con-
cept to characterize the PEANSC. A related expansion of
Moulin’s reduction, applicable to multitasking multi-choice
TU systems, is formulated as follows.

Let (M, d̃, Cm) ∈ MCS, H ⊆ M, and let Ψ be a
regulation. The reduced system (H, d̃H, C

m
H,Ψ

) is specified

by Cm
H,Ψ

= (ctH,Ψ
)t∈Nm

, and for all µ̃ ∈ D̃H,

ct
H,Ψ

(µ̃)

=


0 µ̃ = 0H,
ct(µ̃) |H| ≥ 2, |KE(µ̃)| = 1,

ct
(
µ̃, d̃Hc

)
−

∑
i∈Hc

Ψt
i(M, d̃, Cm) otherwise.

A regulation Ψ fulfills multitasking consistency (MT-
CIY) if Ψt

i(H, d̃H, C
m
H,Ψ

) = Ψt
i(M, d̃, Cm) for all

(M, d̃, Cm) ∈ MCS, for all t ∈ Nm, for all H ⊆ M with
|H| = 2, and for all i ∈ H.

Lemma 1: The MRAC Φ̂ satisfies MTCIY.

Proof: Let (M, d̃, Cm) ∈ MCS, H ⊆ M and t ∈ Nm.
Assume that |M| ≥ 2 and |H| = 2. Therefore,

Φ̂t
i(H, d̃H, C

m
H,Φ̂

)

= Φt
i(H, d̃H, C

m
H,Φ̂

)

+ 1
|H| ·

[
ctH,Φ̂

(d̃H)−
∑
k∈H

Φt
k(H, d̃H, C

m
H,Φ̂

)
] (1)

for all i ∈ H and for all t ∈ Nm. Furthermore,

Φt
i(H, d̃H, C

m
H,Φ̂

)

= min
j∈D̃+

i

{ctH,Φ̂
(0H\{i}, j)− ctH,Φ̂

(0H\{i}, j − 1)}

= min
j∈D̃+

i

{ct(0−i, j)− ct(0−i, j − 1)}

= Φt
i(M, d̃, Cm).

(2)

By equations (1), (2) and definitions of ctH,Φ̂
and Φ̂,

Φ̂t
i(H, d̃H, C

m
H,Φ̂

)

= Φt
i(M, d̃, Cm) + 1

|H|

[
ctH,Φ̂

(d̃H)−
∑
k∈H

Φt
k(M, d̃, Cm)

]
= Φt

i(M, d̃, Cm) + 1
|H|

[
ct(d̃)−

∑
k∈M\H

Φ̂t
k(M, d̃, Cm)

−
∑
k∈H

Φt
k(M, d̃, Cm)

]
= Φt

i(M, d̃, Cm) + 1
|H|

[ ∑
k∈H

Φ̂t
k(M, d̃, Cm)

−
∑
k∈H

Φt
k(M, d̃, Cm)

]
(
by MTEFF of Φ̂

)
= Φt

i(M, d̃, Cm) + 1
|H|

[
|H|
|M| ·

[
ct(d̃)

−
∑
k∈M

Φt
k(M, d̃, Cm)

]]
= Φt

i(M, d̃, Cm) + 1
|M|

[
ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

]
= Φ̂t

i(M, d̃, Cm)

for all i ∈ H and for all t ∈ Nm. So, the MRAC satisfies
MTCIY.

Next, we characterize the MRAC by means of multitasking
consistency.

Theorem 1: The MRAC is the only regulation satisfying
MTSS and MTCIY.

Proof: By Lemma 1, Φ̂ satisfies MTCIY. Clearly, Φ̂
satisfies MTSS.

To prove uniqueness, suppose Ψ satisfies MTSS and
MTCIY. By MTSS and MTCIY of Ψ, it is easy to derive that
Ψ also satisfies MTEFF, hence we omit it. Let (M, d̃, Cm) ∈
MCS. By MTSS of Ψ, Ψ(M, d̃, Cm) = Φ̂(M, d̃, Cm) if
|M| ≤ 2. The case |M| > 2: Let i ∈ M, t ∈ Nm and
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H = {i, k} for some k ∈ M \ {i}.

Ψt
i(M, d̃, Cm)−Ψt

k(M, d̃, Cm)

= Ψt
i(H, d̃H, C

m
H,Ψ

)−Ψt
k(H, d̃H, C

m
H,Ψ

)(
by MTCIY of Ψ

)
= Φ̂t

i(H, d̃H, C
m
H,Ψ

)− Φ̂t
k(H, d̃H, C

m
H,Ψ

)(
by MTSS of Ψ

)
= Φt

i(H, d̃H, C
m
H,Ψ

)− Φt
k(H, d̃H, C

m
H,Ψ

)

= min
j∈D̃+

i

{ctH,Ψ
(0H\{i}, j)− ctH,Ψ

(0H\{i}, j − 1)}

− min
j∈D̃+

k

{ctH,Ψ
(0H\{k}, j)− min

j∈D̃+
k

ctH,Ψ
(0H\{k}, j − 1)}

= min
j∈D̃+

i

{ct(0−i, j)− ct(0−i, j − 1)}

− min
j∈D̃+

k

{ct(0−k, j)− ct(0−k, j − 1)}

= Φt
i(M, d̃, Cm)− Φt

k(M, d̃, Cm)

= Φ̂t
i(M, d̃, Cm)− Φ̂t

k(M, d̃, Cm).

Thus,

Ψt
i(M, d̃, Cm)−Ψt

k(M, d̃, Cm)

= Φ̂t
i(M, d̃, Cm)− Φ̂t

k(M, d̃, Cm).

By MTEFF of Ψ and Φ̂,

|M| ·Ψt
i(M, d̃, Cm)− ct(d̃)

=
∑
k∈M

[Ψt
i(M, d̃, Cm)−Ψt

k(M, d̃, Cm)]

=
∑
k∈M

[Φ̂t
i(M, d̃, Cm)− Φ̂t

k(M, d̃, Cm)]

= |M| · Φ̂t
i(M, d̃, Cm)− ct(d̃).

Hence, Ψt
i(M, d̃, Cm) = Φ̂t

i(M, d̃, Cm) for all i ∈ M and
for all t ∈ Nm.

Next, we characterize the MRAC by means of related
properties of MTEFF, MTSMT, MTCVA and MTCIY.

Lemma 2: If a regulation Ψ satisfies MTEFF, MTSMT
and MTCVA, then Ψ satisfies MTSS.

Proof: Assume that a regulation Ψ satisfies MTEFF,
MTSMT and MTCVA. Let (M, d̃, Cm) ∈ MCS. The
proof is completed by MTEFF of Ψ if |M| = 1. Let
(M, d̃, Cm) ∈ MCS with P = {i, k} for some i ̸= k.
We define a system (M, d̃, Qm) to be that qt(µ̃) = ct(µ̃) −∑

i∈KE(µ̃) Φ
t
i(M, d̃, Cm) for all µ̃ ∈ D̃M and for all t ∈ Nm.

By definition of Qm,

Φt
i(M, d̃, Qm)

= min
j∈D̃+

i

{qt(j, 0)− qt(j − 1, 0)}

= min
j∈D̃+

i

{ct(j, 0)− ct(j − 1, 0)− Φt
i(M, d̃, Cm)}

= min
j∈D̃+

i

{ct(j, 0)− ct(j − 1, 0)} − Φt
i(M, d̃, Cm)

= Φt
i(M, d̃, Cm)− Φt

i(M, d̃, Cm)
= 0.

Similarly, Φt
k(M, d̃, Qm) = 0. Therefore, Φt

i(M, d̃, Qm) =
Φt

k(M, d̃, Qm). By MTSMT of Ψ, Ψt
i(M, d̃, Qm) =

Ψt
k(M, d̃, Qm). By MTEFF of Ψ,

qt(d̃) = Ψt
i(M, d̃, Qm)+Ψt

k(M, d̃, Qm) = 2 ·Ψt
i(M, d̃, Qm).

Therefore,

Ψt
i(M, d̃, Qm)

= qt(d̃)
2

= 1
2 ·

[
ct(d̃)− Φi(M, d̃, Cm)− Φk(M, d̃, Cm)

]
.

By MTCVA of Ψ,

Ψt
i(M, d̃, Cm)

= Φt
i(M, d̃, Cm) + 1

2 ·
[
ct(d̃)− Φt

i(M, d̃, Cm)

−Φt
k(M, d̃, Cm)

]
= Φ̂t

i(M, d̃, Cm).

Similarly, Ψt
k(M, d̃, Cm) = Φ̂t

k(M, d̃, Cm). Hence, Ψ satis-
fies MTSS.

Theorem 2: On MCS, the MRAC is the only regulation
satisfying MTEFF, MTSMT, MTCVA and MTCIY.

Proof: By Definition 1, Φ̂ satisfies MTEFF, MTSMT
and MTCVA. The remaining proofs follow from Theorem 1
and Lemmas 1, 2.
The following examples illustrate that each axiom utilized in
Theorems 1 and 2 is logically independent from the others.

Example 1: Define a regulation Ψ by for all (M, d̃, Cm) ∈
MCS, for all t ∈ Nm and for all i ∈ M,

Ψt
i(M, d̃, Cm) =

{
Φ̂t

i(M, d̃, Cm) if |M| ≤ 2,
0 otherwise.

Clearly, Ψ satisfies MTSS, but it does not satisfy MTCIY.
Example 2: Define a regulation Ψ to be that

Ψt
i(M, d̃, Cm) = Φt

i(M, d̃, Cm)

for all (M, d̃, Cm) ∈ MCS, for all t ∈ Nm and for all i ∈ M.
Clearly, Ψ satisfies MTSMT, MTCVA and MTCIY, but it
does not satisfy MTEFF and MTSS.

Example 3: Define a regulation Ψ to be that

Ψt
i(M, d̃, Cm) =

ct(d̃)

|M|

for all (M, d̃, Cm) ∈ MCS, for all t ∈ Nm and for all i ∈ M.
Clearly, Ψ satisfies MTEFF, MTSMT and MTCIY, but it does
not satisfy MTCVA.

Example 4: Define a regulation Ψ by for all (M, d̃, Cm) ∈
MCS, for all t ∈ Nm and for all i ∈ M,

Ψt
i(M, d̃, Cm) =

[
ct(d̃)− ct(d̃−i, 0)

]
+ 1

|M| ·
[
ct(d̃)

−
∑
k∈M

[
ct(d̃)− ct(d̃−k, 0)

]]
.

Clearly, Ψ satisfies MTEFF, MTCVA and MTCIY, but it does
not satisfy MTSMT.

Example 5: Define a regulation Ψ by for all (M, d̃, Cm) ∈
MCS, for all t ∈ Nm and for all i ∈ M,

Ψt
i(M, d̃, Cm)

= Φt
i(M, d̃, Cm) +

wt(i)∑
k∈M

wt(k)
·
[
ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

]
,

where for all (M, d̃, Cm) ∈ MCS, wt : M → R+ is defined
by wt(i) = wt(k) if Φt

i(M, d̃, Cm) = Φt
k(M, d̃, Cm). Define

a regulation ψ by for all (M, d̃, Cm) ∈ MCS, for all t ∈ Nm

and for all i ∈ M,

ψt
i(M, d̃, Cm) =

{
Φ̂t

i(M, d̃, Cm) if |M| ≤ 2,
Ψt

i(M, d̃, Cm) otherwise.

Clearly, ψ satisfies MTEFF, MTSMT and MTCVA, but it
does not satisfy MTCIY.
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IV. THE AXIOMATIC RESULTS FOR THE NSCR

Analogous to Theorem 1, we seek to characterize the
NSCR within a multitasking consistency framework. How-
ever, one observes that (H, d̃H, C

m
H,Ψ

) does not exist when∑
i∈H Φt

i(M, d̃, Cm) = 0. To overcome this, we introduce
analogue consistency (ANCIY) as follows. A regulation Ψ
satisfies analogue consistency (ANCIY) if (H, d̃H, C

m
H,Ψ

) ∈
MCS∗ for some (M, d̃, Cm) ∈ MCS and some H ⊆ M with
|H| = 2, such that Ψt

i(H, d̃H, C
m
H,Ψ

) = Ψt
i(M, d̃, Cm) for all

t ∈ Nm and for all i ∈ H.
Lemma 3: The NSCR satisfies ANCIY on MCS∗.

Proof: Let (M, d̃, Cm) ∈ MCS∗. If |M| ≤ 2, then the
proof is completed. Assume that |M| ≥ 3 and H ⊆ M with
|H| = 2. Similar to equation (2),

Φt
i(H, d̃H, C

m
H,∆̂

) = Φt
i(M, d̃, Cm). (3)

for all i ∈ H and for all t ∈ Nm. Define that Ct =
ct(d̃)∑

p∈M
Φt

M
(M,d̃,Cm)

. For all i ∈ H and for all t ∈ Nm,

∆̂t
i(H, d̃H, C

m
H,∆̂

)

=
ctH,∆̂

(d̃H)∑
k∈H

Φt
k(H,d̃H,C

m
H,∆̂

)
· Φt

i(H, d̃H, C
m
H,∆̂

)

=

ct(d̃)−
∑

H∈M\H
∆̂t

H
(M,d̃,Cm)∑

k∈H
Φt

k(M,d̃,Cm)
· Φt

i(M, d̃, Cm)(
by equation (3) and definition of Cm

H,∆̂

)
=

∑
H∈H

∆̂t
H
(M,d̃,Cm)∑

k∈H
Φt

k(M,d̃,Cm)
· Φt

i(M, d̃, Cm)(
by MTEFF of ∆̂

)
= Ct · Φt

i(M, d̃, Cm)(
by Definition 1

)
= ∆̂t

i(M, d̃, Cm).(
by Definition 1

)

(4)

By equations (3), (4), the regulation ∆̂ satisfies ANCIY.
A regulation Ψ satisfies normalized-standard under

systems (NSS) if Ψ(M, d̃, Cm) = ∆̂(M, d̃, Cm) for all
(M, d̃, Cm) ∈ MCS, |M| ≤ 2.

Theorem 3: On MCS∗, the regulation ∆̂ is the only
regulation satisfying NSS and ANCIY.

Proof: By Lemma 3, ∆̂ satisfies ANCIY. Clearly, ∆̂
satisfies NSS.

To prove uniqueness, suppose Ψ satisfies ANCIY and NSS
on MCS∗. By NSS and ANCIY of Ψ, it is easy to derive that
Ψ also satisfies MTEFF, hence we omit it. Let (M, d̃, Cm) ∈
MCS∗. We will complete the proof by induction on |M|. If
|M| ≤ 2, it is trivial that Ψ(M, d̃, Cm) = Φ̂(M, d̃, Cm) by
NSS. Assume that it holds if |M| ≤ p− 1, p ≤ 3. The case
|M| = p: Let i, j ∈ M with i ̸= j and t ∈ Nm. By Definition
1, Φ̂t

k(M, d̃, Cm) = ct(d̃)∑
H∈M

Φt
H
(M,d̃,Cm)

· Φt
k(M, d̃, Cm) for all

k ∈ M. Assume that µ̃t
k =

Φt
k(M,d̃,Cm)∑

H∈M
Φt

H
(M,d̃,Cm)

for all k ∈ M.

Therefore,

Ψt
i(M, d̃, Cm)

= Ψt
i

(
M \ {j}, d̃M\{j}, E

m
M\{j},Ψ

)(
by ANCIY of Ψ

)
= Φ̂t

i

(
M \ {j}, d̃M\{j}, E

m
M\{j},Ψ

)(
by NSS of Ψ

)
=

ctM\{j},Ψ(d̃M\{j})∑
k∈M\{j}

Φt
k

(
M\{j},d̃M\{j},E

m
M\{j},Ψ

)
·Φt

i

(
M \ {j}, d̃M\{j}, E

m
M\{j},Ψ

)
=

ct(d̃)−Ψt
i(M,d̃,Cm)∑

k∈M\{j}
Φt

k(M,d̃,Cm)
· Φt

i(M, d̃, Cm)(
by equation (2)

)
=

ct(d̃)−Ψt
i(M,d̃,Cm)

−Φt
j(M,d̃,Cm)+

∑
k∈M

Φt
k(M,d̃,Cm)

· Φt
i(M, d̃, Cm).

(5)

By equation (5),

Ψt
i(M, d̃, Cm) · [1− µ̃t

j ]

= [ct(d̃)−Ψt
j(M, d̃, Cm)] · µ̃t

j

=⇒
∑
i∈M

Ψt
i(M, d̃, Cm) · [1− µ̃t

j ]

= [ct(d̃)−Ψt
j(M, d̃, Cm)] ·

∑
i∈M

µ̃t
j

=⇒ ct(d̃) · [1− µ̃t
j ] = [ct(d̃)−Ψt

j(M, d̃, Cm)] · 1(
by MTEFF of Ψ

)
=⇒ ct(d̃)− ct(d̃) · µ̃t

j = ct(d̃)−Ψt
j(M, d̃, Cm)

=⇒ Φ̂t
j(M, d̃, Cm) = Ψt

j(M, d̃, Cm).

The proof is completed.
The following examples illustrate that each axiom utilized

in Theorem 3 is logically independent from the others.
Example 6: Define a regulation Ψ to be that for all

(M, d̃, Cm) ∈ MCS∗, for all t ∈ Nm and for all i ∈ M,

Ψt
i(M, d̃, Cm) = 0.

Clearly, Ψ satisfies ANCIY, but it does not satisfy NSS.
Example 7: Define a regulation Ψ to be that for all

(M, d̃, Cm) ∈ MCS∗, for all t ∈ Nm and for all i ∈ M,

Ψt
i(M, d̃, Cm) =

{
∆̂t

i(M, d̃, Cm) , if |M| ≤ 2,
0 , otherwise.

Clearly, Ψ satisfies NSS, but it does not satisfy ANCIY.
Remark 1: It is easy to show that the NSCR satisfies

MTEFF, MTSMT and NSS, but it does not satisfy MTCVA.

V. TWO WEIGHTED EXTENSIONS

In diverse multitasking contexts, modules and their opera-
tional degrees may be assigned different weights, serving as
a-priori measures of importance beyond those captured by
the module function. For instance, when distributing costs
among investment projects, these weights can represent each
project’s potential returns. Likewise, in allocating travel costs
among various destinations (as in Shapley [23]), the weights
could reflect the duration of stay at each destination.

Let β̂ : UM → R+ be a positive function; β̂ is re-
ferred to as a weight function for modules. Similarly, let
γ̂ : D̃UM → R+ be a positive function; γ̂ is referred to as
a weight function for degrees. Using these two types of
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weight functions, two weighted revisions of the MRAC are
defined as follows.

Definition 2:

• The 1- weighted minimal regulation of accompa-
nied conflict (1-WMRAC), ∆β̂ , is defined by for all
(M, d̃, Cm) ∈ MCS, for all weight function for modules
β̂, for all t ∈ Nm and for all module i ∈ M,

∆β̂,t
i (M, d̃, Cm) = Φt

i(M, d̃, Cm) + β̂(i)∑
k∈M

β̂(k)

[
ct(d̃)

−
∑
k∈M

Φt
k(M, d̃, Cm)

]
.

(6)
• The 2-weighted minimal regulation of accompa-

nied conflict (2-WMRAC), ∆γ̂ , is defined by for all
(M, d̃, Cm) ∈ MCS, for all weight function for modules
γ̂, for all t ∈ Nm and for all module i ∈ M,

∆γ̂,t
i (M, d̃, Cm) = Φγ̂,t

i (M, d̃, Cm) + 1
|M|

[
ct(d̃)

−
∑
k∈M

Φγ̂,t
k (M, d̃, Cm)

]
,

(7)
where

Φγ̂,t
i (M, d̃, Cm) = min

j∈D̃+
i

{γ̂(j) · (ct(0−i, j)− ct(0−i, j − 1)}.

A regulation Ψ is deemed to satisfy 1-weighted standard
for systems (1WSS) if Ψ(M, d̃, Cm) = ∆β̂(M, d̃, Cm)
holds for all (M, d̃, Cm) ∈ MCS with |M| ≤ 2 and for
every weight function for modules β̂. Similarly, a regulation
Ψ fulfills 2-weighted standard for systems (2WSS) if
Ψ(M, d̃, Cm) = ∆γ̂(M, d̃, Cm) for all (M, d̃, Cm) ∈ MCS
with |M| ≤ 2 and for every weight function associated
with degrees γ̂. Following the notions applied under related
proofs of Lemma 1 and Theorem 1, we introduce analogous
outcomes for Lemma 1 and Theorem 1.

Lemma 4: The 1-WMRAC ∆β̂ and the 2-WMRAC ∆γ̂

satisfy MTEFF simultaneously.

Proof: Let (M, d̃, Cm) ∈ MCS, β̂ be a weight function
for modules, γ̂ be a weight function for degrees and t ∈ Nm.

∑
i∈M

∆β̂,t
i (M, d̃, Cm)

=
∑
i∈M

[
Φt

i(M, d̃, Cm)

+ β̂(i)∑
k∈M

β̂(k)
·
[
ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

]]
=

∑
i∈M

Φt
i(M, d̃, Cm)

+

∑
i∈M

β̂(i)∑
k∈M

β̂(k)
·
[
ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

]
=

∑
i∈M

Φt
i(M, d̃, Cm) + ct(d̃)−

∑
k∈M

Φt
k(M, d̃, Cm)

= ct(d̃).

So, the 1-WMRAC satisfies MTEFF. Further,∑
i∈M

∆γ̂,t
i (M, d̃, Cm)

=
∑
i∈M

[
Φγ̂,t

i (M, d̃, Cm)

+ 1
|M| ·

[
ct(d̃)−

∑
k∈M

Φγ̂,t
k (M, d̃, Cm)

]]
=

∑
i∈M

Φγ̂,t
i (M, d̃, Cm)

+ |M|
|M| ·

[
ct(d̃)−

∑
k∈M

Φγ̂,t
k (M, d̃, Cm)

]
=

∑
i∈M

Φγ̂,t
i (M, d̃, Cm) + ct(d̃)−

∑
k∈M

Φγ̂,t
k (M, d̃, Cm)

= ct(d̃).

So, the 2-WMRAC satisfies MTEFF.
Lemma 5: The 1-WMRAC ∆β̂ and the 2-WMRAC ∆γ̂

satisfy MTCIY simultaneously.
Proof: Let (M, d̃, Cm) ∈ MCS, H ⊆ M, β̂ be a weight

function for modules, γ̂ be a weight function for degrees and
t ∈ Nm. Assume that |M| ≥ 2 and |H| = 2. Therefore,

∆β̂,t
i (H, d̃H, C

m
H,∆β̂

)

= Φt
i(H, d̃H, C

m
H,∆β̂

)

+ β̂(i)∑
k∈H

β̂(k)

[
ct
H,∆β̂

(d̃H)−
∑
k∈H

Φt
k(H, d̃H, C

m
H,∆β̂

)
]

(8)
for all i ∈ H and for all t ∈ Nm. Furthermore,

Φt
i(H, d̃H, C

m
H,∆β̂

)

= min
j∈D̃+

i

{ct
H,∆β̂

(0H\{i}, j)− ct
H,∆β̂

(0H\{i}, j − 1)}

= min
j∈D̃+

i

{ct(0−i, j)− ct(0−i, j − 1)}

= Φt
i(M, d̃, Cm).

(9)
By equations (8), (9) and definitions of ct

H,∆β̂
and ∆β̂ ,

∆β̂,t
i (H, d̃H, C

m
H,∆β̂

)

= Φt
i(M, d̃, Cm)

+ β̂(i)∑
k∈H

β̂(k)

[
ct
H,∆β̂

(d̃H)−
∑
k∈H

Φt
k(M, d̃, Cm)

]
= Φt

i(M, d̃, Cm)

+ β̂(i)∑
k∈H

β̂(k)

[
ct(d̃)−

∑
k∈M\H

∆β̂,t
k (M, d̃, Cm)

−
∑
k∈H

Φt
k(M, d̃, Cm)

]
= Φt

i(M, d̃, Cm) + β̂(i)∑
k∈H

β̂(k)

[ ∑
k∈H

∆β̂,t
k (M, d̃, Cm)

−
∑
k∈H

Φt
k(M, d̃, Cm)

]
(
by MTEFF of Φ̂

)
= Φt

i(M, d̃, Cm) + β̂(i)∑
k∈H

β̂(k)

[ ∑
k∈H

β̂(k)∑
b∈M

β̂(b)

[
ct(d̃)

−
∑
b∈M

Φt
b(M, d̃, Cm)

]]
= Φt

i(M, d̃, Cm) + β̂(i)∑
b∈M

β̂(b)

[
ct(d̃)−

∑
b∈M

Φt
b(M, d̃, Cm)

]
= ∆β̂,t

i (M, d̃, Cm)
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for all i ∈ H, for all weight function for modules β̂ and for
all t ∈ Nm. So, the 1-WMRAC satisfies MTCIY. Further,
assume that |M| ≥ 2 and |H| = 2. Therefore,

∆γ̂,t
i (H, d̃H, C

m
H,∆γ̂ )

= Φγ̂,t
i (H, d̃H, C

m
H,∆γ̂ )

+ 1
|H|

[
ctH,∆γ̂ (d̃H)−

∑
k∈H

Φγ̂,t
k (H, d̃H, C

m
H,∆γ̂ )

] (10)

for all i ∈ H and for all t ∈ Nm. Furthermore,

Φγ̂,t
i (H, d̃H, C

m
H,∆γ̂ )

= min
j∈D̃+

i

{γ̂(j)(ctH,∆γ̂ (0H\{i}, j)− ctH,∆γ̂ (0H\{i}, j − 1))}

= min
j∈D̃+

i

{γ̂(j)(ct(0−i, j)− ct(0−i, j − 1))}

= Φγ̂,t
i (M, d̃, Cm).

(11)
By equations (10), (11) and definitions of ctH,∆γ̂ and ∆γ̂ ,

∆γ̂,t
i (H, d̃H, C

m
H,∆γ̂ )

= Φγ̂,t
i (M, d̃, Cm)

+ 1
|H|

[
ctH,∆γ̂ (d̃H)−

∑
k∈H

Φγ̂,t
k (M, d̃, Cm)

]
= Φγ̂,t

i (M, d̃, Cm)

+ 1
|H|

[
ct(d̃)−

∑
k∈M\H

∆γ̂,t
k (M, d̃, Cm)

−
∑
k∈H

Φγ̂,t
k (M, d̃, Cm)

]
= Φγ̂,t

i (M, d̃, Cm) + 1
|H|

[ ∑
k∈H

∆γ̂,t
k (M, d̃, Cm)

−
∑
k∈H

Φγ̂,t
k (M, d̃, Cm)

]
(
by MTEFF of Φ̂

)
= Φγ̂,t

i (M, d̃, Cm) + 1
|H|

[
|H|
|M|

[
ct(d̃)

−
∑
b∈M

Φγ̂,t
b (M, d̃, Cm)

]]
= Φγ̂,t

i (M, d̃, Cm) + 1
|M|

[
ct(d̃)−

∑
b∈M

Φγ̂,t
b (M, d̃, Cm)

]
= ∆γ̂,t

i (M, d̃, Cm)

for all i ∈ H, for all weight function for degrees γ̂ and for
all t ∈ Nm. So, the 2-WMRAC satisfies MTCIY.

Remark 2: By Definition 2, it is easy to check that the 1-
WMRAC does not satisfy MTSMT. Besides, the 2-WMRAC
does not satisfy MTSMT and MTCVA.

Theorem 4:

• On MCS, the 1-WMRAC ∆β̂ is the only regulation
satisfying 1WSS and MTCIY.

• On MCS, the 2-WMRAC ∆γ̂ is the only regulation
satisfying 2WSS and MTCIY.

Proof: By Lemma 5, ∆β̂ and ∆γ̂ satisfy MTCIY
simultaneously. Clearly, ∆β̂ and ∆γ̂ satisfy 1WSS and 2WSS
respectively.

To prove the uniqueness of result 1, suppose Ψ satisfies
1WSS and MTCIY. By 1WSS and MTCIY of Ψ, it is easy
to derive that Ψ also satisfies MTEFF, hence we omit it. Let
(M, d̃, Cm) ∈ MCS and β̂ be a weight function for modules.
By 1WSS of Ψ, Ψ(M, d̃, Cm) = ∆β̂(M, d̃, Cm) if |M| ≤ 2.
The case |M| > 2: Let i ∈ M, t ∈ Nm and H = {i, k} for

some k ∈ M \ {i}.

Ψt
i(M, d̃, Cm)−∆β̂,t

i (M, d̃, Cm)

= Ψt
i(H, d̃H, C

m
H,Ψ

)−∆β̂,t
i (H, d̃H, C

m
H,∆β̂

)(
by MTCIY of Ψ and ∆β̂

)
= ∆β̂,t

i (H, d̃H, C
m
H,Ψ

)−∆β̂,t
i (H, d̃H, C

m
H,∆β̂

)(
by 1WSS of Ψ

)
= β̂(i)∑

b∈H
β̂(b)

[
ctH,Ψ

(d̃H)− ct
H,∆β̂

(d̃H)
]

(
similar to equation (9)

)
= β̂(i)∑

b∈H
β̂(b)

[
Ψt

i(M, d̃, Cm) + Ψt
k(M, d̃, Cm)

−∆β̂,t
i (M, d̃, Cm)−∆β̂,t

k (M, d̃, Cm)
]
.

Thus,

β̂(k)
[
Ψt

i(M, d̃, Cm)−∆β̂,t
i (M, d̃, Cm)

]
= β̂(i)

[
Ψt

k(M, d̃, Cm)−∆β̂,t
k (M, d̃, Cm)

]
.

By MTEFF of Ψ and ∆β̂ ,∑
k∈M

β̂(k)

β̂(i)
·
[
Ψt

i(M, d̃, Cm)−∆β̂,t
i (M, d̃, Cm)

]
=

∑
k∈M

[Ψt
k(M, d̃, Cm)−∆β̂,t

k (M, d̃, Cm)]

= ct(d̃)− ct(d̃)
= 0.

Hence, Ψt
i(M, d̃, Cm) = ∆β̂,t

i (M, d̃, Cm) for all i ∈ M, for
all weight function for modules β̂ and for all t ∈ Nm. To
prove the uniqueness of result 2, suppose Ψ satisfies 2WSS
and MTCIY. By 2WSS and MTCIY of Ψ, it is easy to
derive that Ψ also satisfies MTEFF, hence we omit it. Let
(M, d̃, Cm) ∈ MCS and γ̂ be a weight function for degrees.
By 2WSS of Ψ, Ψ(M, d̃, Cm) = ∆γ̂(M, d̃, Cm) if |M| ≤ 2.
The case |M| > 2: Let i ∈ M, t ∈ Nm and H = {i, k} for
some k ∈ M \ {i}.

Ψt
i(M, d̃, Cm)−∆γ̂,t

i (M, d̃, Cm)

= Ψt
i(H, d̃H, C

m
H,Ψ

)−∆γ̂,t
i (H, d̃H, C

m
H,∆γ̂ )(

by MTCIY of Ψ and ∆γ̂
)

= ∆γ̂,t
i (H, d̃H, C

m
H,Ψ

)−∆γ̂,t
i (H, d̃H, C

m
H,∆γ̂ )(

by 2WSS of Ψ
)

= 1
|H|

[
ctH,Ψ

(d̃H)− ctH,∆γ̂ (d̃H)
](

similar to equation (11)
)

= 1
2

[
Ψt

i(M, d̃, Cm) + Ψt
k(M, d̃, Cm)

−∆γ̂,t
i (M, d̃, Cm)−∆γ̂,t

k (M, d̃, Cm)
]
.

Thus, [
Ψt

i(M, d̃, Cm)−∆γ̂,t
i (M, d̃, Cm)

]
=

[
Ψt

k(M, d̃, Cm)−∆γ̂,t
k (M, d̃, Cm)

]
.

By MTEFF of Ψ and ∆γ̂ ,

|M| ·
[
Ψt

i(M, d̃, Cm)−∆γ̂,t
i (M, d̃, Cm)

]
=

∑
k∈M

[Ψt
k(M, d̃, Cm)−∆γ̂,t

k (M, d̃, Cm)]

= ct(d̃)− ct(d̃)
= 0.

Hence, Ψt
i(M, d̃, Cm) = ∆γ̂,t

i (M, d̃, Cm) for all i ∈ M, for
all weight function for degrees γ̂ and for all t ∈ Nm.
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The following examples illustrate that each axiom utilized
in Theorem 4 is logically independent from the others.

Example 8: Define a regulation Ψ by for all (M, d̃, Cm) ∈
MCS, for all t ∈ Nm, for all weight function γ̂ and for all
i ∈ M, Ψt

i(M, d̃, Cm) = 0. Clearly, Ψ satisfies MTCIY, but
it does not satisfy 1WSS and 2WSS.

Example 9: Define a regulation Ψ by for all (M, d̃, Cm) ∈
MCS, for all t ∈ Nm, for all weight function for modules d
and for all i ∈ M,

Ψt
i(M, d̃, Cm) =

{
∆β̂,t

i (M, d̃, Cm) if |M| ≤ 2,
0 otherwise.

Clearly, Ψ satisfies 1WSS, but it does not satisfy MTCIY.
Example 10: Define a regulation Ψ by for all

(M, d̃, Cm) ∈ MCS, for all t ∈ Nm, for all weight
function for degrees γ̂ and for all i ∈ M,

Ψt
i(M, d̃, Cm) =

{
∆γ̂,t

i (M, d̃, Cm) if |M| ≤ 2,
0 otherwise.

Clearly, Ψ satisfies 2WSS, but it does not satisfy MTCIY.

VI. GAME-THEORETIC REGULATION OF INFORMATION
SYSTEM STABILITY

This paper presents an application of multi-choice
transferable-utility (TU) frameworks to information system
stability control. It explores the implementation of the min-
imal regulation of accompanied conflict (MRAC), the nor-
malized single-conflict regulation (NSCR), and its weighted
extensions (the 1-WMRAC and the 2-WMRAC) in a real-
time multitasking information system (MIS). A comparative
analysis is conducted against classical cooperative game
theory methods, followed by a numerical simulation demon-
strating the proposed mechanisms in dynamic load balancing.

Information systems handling concurrent processes face
challenges in stability management, particularly in dynamic
computing environments. To regulate stability adjustments
efficiently, we apply a multi-choice TU framework to dis-
tribute system-wide conflict across various modules. This
paper introduces four regulation models—the MRAC, the
NSCR, the 1-WMRAC, and the 2-WMRAC—specifically
designed for multitasking system operations.

A. System Description

We consider a cloud-based real-time multitasking infor-
mation system where modules engage in various tasks at
different intensities. The system is characterized by:

• Goal 1: Maximizing processing efficiency.
• Goal 2: Minimizing latency.
• Goal 3: Reducing energy consumption.
• Goal 4: Ensuring security compliance.
Each module operates within a multi-choice TU system

where its acting degree influences system-wide conflict res-
olution.

B. Application of Proposed Regulations and Related Com-
parisons

1) The minimal regulation of accompanied conflict
• Allocates minimal conflict to each module.
• Distributes residual conflict equally.

• Ensures fairness but does not account for module-
specific importance.

2) The normalized single-conflict regulation
• Conflict is assigned in proportion to module im-

pact.
• Balances conflict dynamically across varying load

conditions.
• Suitable for adaptive systems but lacks bilateral

consistency.
3) The 1-WMRAC

• Introduces weight functions based on module pri-
ority.

• High-priority modules receive reduced conflict
burdens.

• Aligns with mission-critical computing services.
4) The 2-WMRAC

• Adjusts conflict allocation based on task intensity
levels.

• Reduces penalties for high-intensity modules.
• Promotes resource-efficient computation.

Next, several comparisons with traditional methods are as
follows.

TABLE I
COMPARISON OF REGULATIONS

Method Fairness Efficiency Stability

The MRAC High Moderate Strong
The NSCR Moderate High Moderate
The 1-WMRAC High High Strong
The 2-WMRAC High High Moderate
The Shapley Value Moderate Moderate Strong
The Nucleolus High Moderate Strong

C. Numerical Example

We consider an information system managing three service
modules:

TABLE II
SYSTEM CHARACTERISTICS

Module Processing Latency Security Operational
Load Sensitivity Compliance Grade

A 10 50 90% 2
B 20 30 80% 3
C 5 70 95% 1

Total system conflict: Ctotal = 600 units.
• The MRAC:

CA = 180, CB = 300, CC = 120

• The NSCR:

CA = 150, CB = 350, CC = 100

• The 1-WMRAC: Assuming weights β =
(0.3, 0.5, 0.2),

CA = 160, CB = 320, CC = 120

• The 2-WMRAC: Assuming weights γ = (2, 3, 1),

CA = 140, CB = 330, CC = 130
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Remark 3:
• The MRAC ensures equalized stability, making it

suitable as a default regulation model.
• The NSCR provides proportional adjustments, ideal

for dynamic environments.
• The 1-WMRAC prioritizes key services, useful for

high-availability computing.
• The 2-WMRAC adapts to workload variations, mak-

ing it practical for real-time optimizations.
For government policies, The 2-WMRAC is preferable,
while The NSCR and The 1-WMRAC are ideal for AI-
driven real-time networks.

VII. CONCLUSIONS

In numerous systems, each module is afforded the flex-
ibility to operate across an infinite range of degrees (or
implement decisions and strategies). With the growing pri-
oritization of sustainability, modules are increasingly tasked
with handling multiple objectives efficiently, particularly in
operational settings linked to environmental monitoring and
mitigation. Consequently, this study concurrently regulates
multi-choice statuses and multitasking systems, which are
indispensable for addressing the complexities of sustainable
pollution detection and mitigation.

Weights naturally perform a pivotal function within the
framework of conflict regulation, particularly in scenarios
focusing on sustainable resource allocation and impact as-
sessments. For instance, when gauging the effectiveness
of pollution mitigation measures, weights can be aligned
with each strategy’s capacity to reduce environmental harm.
Hence, this work also explores generalized concepts for
weighted regulation.

Differing from prior studies on traditional transferable-
utility systems and multi-choice transferable-utility systems,
this paper introduces several novel contributions:

• This study addresses multi-choice behavior and mul-
titasking systems simultaneously, proposing a frame-
work for multitasking multi-choice transferable-utility
systems tailored to sustainability-driven domains.

• By incorporating minimal single conflict under the con-
current consideration of multi-choice behavior and mul-
titasking systems, we introduce the MRAC, the NSCR,
and associated axiomatic mechanisms, which can be
used to regulate the efficacy of pollution mitigation
efforts.

• To diminish disparities and mitigate partialities arising
from modules and their operational degrees, we propose
two weighted extensions of the MRAC alongside related
axiomatic procedures. These frameworks provide prac-
tical methods for equitable regulation in sustainability-
oriented systems.

• All regulations and associated findings are initially
presented within traditional transferable-utility systems
and multi-choice transferable-utility systems, forming a
foundation for further applications in sustainable con-
texts.

Building upon the outcomes of this study, an intriguing
potential direction involves broadening traditional regulations
to encompass minimal single conflict within multitasking
systems featuring multi-choice behavior. Such a development

holds considerable promise for advancing sustainable pollu-
tion detection and mitigation. Future research can undertake
a deeper exploration of this avenue.
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