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Abstract—There are some important inequalities regarding
the additive Schwarz preconditioners, which can be used to
estimate stability, convergence, and error estimates in model
problems. In this work, we prove these important inequalities
about the additive Schwarz preconditioners in detail, which is
widely used in domain decomposition method.

Index Terms—Discrete Sobolev inequality, Sobolev space,
Schwarz preconditioners, Domain decomposition method.

I. Introduction

THE additive Schwarz preconditioners are widely used
in the domain decomposition methods. The additive

Schwarz type preconditioners have received more and more
attention recently[1], [2], [6], [11], [13]. For example, the
overlapping additive Schwarz preconditioners are usually
used in the domain decomposition with overlap[8], [9].
Two-level additive Schwarz preconditioners for the systems
of linear equations resulting from conforming and noncon-
forming finite element approximations of elliptic boundary
value problems are developed in[3], [4], [5], [10]. Restricted
additive Schwarz preconditioners with harmonic overlap are
developed for the symmetric positive definite problems and
elliptic equations[7], [10], [12]. Recently, in the field of
numerical solution of elliptic interface problems, research
combining the Nitsche extended finite element method with
a two-level additive Schwarz preconditioner has provided
an effective algorithm to handle complex interface problems
without the need for precisely matched meshes[14]. There
are some important inequalities about the additive Schwarz
preconditioners. Detailed and ingenious proofs of these im-
portant inequalities are given in this paper. The inequalities
are widely used in domain decomposition methods and
additive Schwarz preconditioners.

To facilitate the discussion, let’s begin with some notation-
s. Let Ω be divided into polygonal subdomains Ω1, · · · ,ΩJ
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such that

Ω j ∩Ωl = ∅, if j , l,

Ω =

J∪
j=1

Ω j,

∂Ω j ∩ ∂Ωl = ∅, a vertex or an edge, if j , l,

and Th be a quasi-uniform triangulation of Ω which is
aligned with the boundaries of the subdomains.

Let Γ j = ∂Ω j\∂Ω. The interface (skeleton) of the domain
decomposition Ω1, · · · ,ΩJ is Γ =

∪J
j Γ j. The set of nodes of

Th which belong to Γ j (resp. Γ) is denoted by Γ j,h (resp. Γh).
We assume that the subdomains satisfy the following shape

regularity assumption: there exist a reference polygonal do-
main D1, · · · ,DK of unit diameter and a positive number H
such that for each subdomain Ω j there is a reference polgon
Dk and a C1 diffeomorphism Φ j,k : Dk → Ω j which satisfies
the estimates

|∇Φ j,k(x)| . H ∀x ∈ Dk and |∇(Φ−1) j,k(x)| . H−1 ∀x ∈ Ω j.

The shape regularity condition implies that all the estimates
involving the subdomains follow from corresponding esti-
mates on the reference domains , which also implies

diamΩ j ≈ H.

So, we only need to study the inequalities on the reference
domains D1, · · · ,Dk, and then the corresponding inequali-
ties on the subdomains Ω1, · · · ,ΩJ can be obtained easily
by using scaling arguments. For simplicity, we consider a
reference domain which is an unit square, denoted by D.
The following discussions can be extended to other reference
domains Dk easily. Tĥ is a quasi-uniform triangulation of D
corresponding to Th, and V̂ĥ is the P1 finite element space.

Definition 1.1: The fractional order Sobolev semi-norm | ·
|H1/2(∂D) , which measures the smoothness of functions on the
boundary ∂D , is defined by

|v|2H1/2(∂D) =

∫
∂D

[∫
∂D

|v(x) − v(y)|2
|x − y|2 ds(x)

]
ds(y),

where ds is the differential of the arc-length. The space
H1/2(∂D) consists of functions v ∈ L2(∂D) such that
|v|H1/2(∂D) < ∞, and we define

∥v∥2H1/2(∂D) = ∥v∥
2
L2(∂D) + |v|

2
H1/2(∂D).

Definition 1.2: The finite space on ∂D, denoted by
Lĥ(∂D) is defined by

Lĥ(∂D) = {v ∈ C(∂D) : v is piecewise linear with respect
to the subdivision of ∂D induced by Tĥ},
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P A BX

(a) Point P is on the
line AB.

(b) Point P is out-
side the line AB.

Fig. 1: Position relation between point P and line AB.

which is the restriction of V̂ĥ to ∂D.
Now, we give the inequalities below firstly, and then try

to prove in the next section.
Theorem 1.1: (Discrete Sobolev Inequality)

||v||L∞ ≤ C(1 + | ln h|) 1
2 ||v||H1(Ω), ∀v ∈ Vh

where the positive constant C is independent of h, Vh ⊂
H1(Ω).

Theorem 1.2: Let v ∈ Lĥ(∂D), E be an open edge of ∂D,
and vE ∈ Lĥ(∂D) be defined by

vE(p) =
{

v(p) if the node p ∈ E,
0 if the node p ∈ ∂D\E.

Then the following estimate holds:

|vE |2H1/2(∂D) . |v|
2
H1/2(∂D) + (1 + | ln ĥ|)∥v∥2L∞(∂D).

Theorem 1.3: Let p be a node on ∂D, and define vp ∈
Lĥ(∂D) such that it vanishes at all the nodes except p and
vp(p) = 1. Then we have |vp|H1/2(∂D) ≈ 1.

II. Preliminaries

Lemma 2.1: Suppose A and B are two points on line AB.
(1) If P is on the line AB , A and B are on one side of P
(cf. Figure 1(a)), then∫ B

A

1
|PX|2 dX =

1
|PA| −

1
|PB| .

(2) If P is outside of the line AB (cf. Figure 1(b)), then∫ B

A

1
|PX|2 dX =

θ

d
,

where d is the distance between point P and line AB, and θ
is the arc of ∠APB.
Proof : (1) We establish the coordinate system so that the
coordinates of P, A, X, B is (xP, 0), (xA, 0), (x, 0), (xB, 0),
and xB ≥ x ≥ xA ≥ xP ≥ 0.
Then ∫ B

A

1
|PX|2 dX =

∫ xB

xA

1
(x − xP)2 dx

=
−1

x − xP

∣∣∣∣∣xB

xA

=
1
|PA| −

1
|PB| .

(2) We also establish the coordinate system so that the
coordinates of P, A, B is (xP, yP), (xA, 0), (x, 0) (xB, 0), and

xB ≥ x ≥ xA ≥ xp.
Then ∫ B

A

1
|PX|2 dX =

∫ xB

xA

1
d2 + (x − xP)2 dx

=
1
d

∫ xB

xA

1
1 + ( x−xP

d )2
d(

x − xp

d
)

=
1
d

arctan(t)
∣∣∣∣∣(xB−xP)/d

(xA−xP)/d

=
θ

d
.

Lemma 2.2: Let 0 = a0 < a1 < · · · < an = 1 be a quasi-
uniform partition of the unit interval I so that a j − ai ≈
ρ = 1/n for 1 ≤ j ≤ n, and Lρ be the space of continuous
functions on [0, 1] which are piecewise linear with respect
to this partition. Given any v ∈ Lρ, we define v∗ ∈ Lρ by

v∗(a j) =
{

v(a j) 1 ≤ j ≤ n − 1,
0 j = 0, n.

then we have

|v∗|H1/2(I) ≤ C
(
|v|H1/2(I) + ∥v∥L∞(I)

)
for all v ∈ Lρ, where C is a positive constant independent of
ρ.
Proof : We define v∗ = v − v∗ , which is in Lρ, equals v at
a0, an and vanishes at all the other a j.

|v∗|2H1/2(I) =

∫ an

a0

[∫ an

a0

|v∗(x) − v∗(y)|2
|x − y|2 dx

]
dy

=

{∫ a1

a0

∫ a1

a0

+

∫ an

an−1

∫ an

an−1

}
|v∗(x) − v∗(y)|2
|x − y|2 dxdy

+ 2
∫ a1

a0

[
(v∗(y))2

∫ an−1

a1

1
|x − y|2 dx

]
dy

+ 2
∫ an

an−1

[
(v∗(y))2

∫ an−1

a1

1
|x − y|2 dx

]
dy

+ 2
∫ a1

a0

∫ an

an−1

|v∗(x) − v∗(y)|2
|x − y|2 dxdy

, Π1 + Π2 + Π3 + Π4.

From the definition of v∗(x) , we observe that

v∗(x) =


v(a0)
a0−a1

(x − a1) if x ∈ [a0, a1],
0 if x ∈ (a1, an−1),

v(an)
an−an−1

(x − an−1) if x ∈ [an−1, an],
(1)

so

Π1 =

∫ a1

a0

∫ a1

a0

∣∣∣∣∣ v(a0)
a1 − a0

∣∣∣∣∣2 dxdy +
∫ an

an−1

∫ an

an−1

∣∣∣∣∣ v(an)
an − an−1

∣∣∣∣∣2 dxdy

= (v(a0))2 + (v(an))2

≤ C∥v∥2L∞(I),

from lemma 2.1(1), we have

Π2 = 2
∫ a1

a0

[∣∣∣∣∣ v(a0)
a0 − a1

(y − a1)
∣∣∣∣∣2 (

1
|y − a1|

− 1
|y − an−1|

)]
dy

= 2
∫ a1

a0

∣∣∣∣∣ v(a0)
a0 − a1

∣∣∣∣∣2 [
|y − a1| −

(y − a1)2

|y − an−1|

]
dy

≤ 2
∣∣∣∣∣ v(a0)
a0 − a1

∣∣∣∣∣2  (− (a1 − y)2

2
)

∣∣∣∣∣∣a1

a0

− 1
3

1
an−1 − a0

(y − a1)3
∣∣∣∣∣a1

a0


≤ C∥v∥2L∞(I),
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similarly, we have

Π3 = 2
∫ an

an−1

[∣∣∣∣∣ v(an)
an − an−1

(y − an−1)
∣∣∣∣∣2 (

1
|y − a1|

− 1
|y − an−1|

)]
dy

= 2
∫ an

an−1

∣∣∣∣∣ v(an)
an − an−1

∣∣∣∣∣2 [
−|y − an−1| +

(y − an−1)2

|y − a1|

]
dy

≤ 2
∣∣∣∣∣ v(an)
an − an−1

∣∣∣∣∣2
(− (y − an−1)2

2

) ∣∣∣∣∣∣an

an−1

+(
1
3

1
an − an−1

(y − an−1)3
) ∣∣∣∣∣∣an

an−1

≤ C∥v∥2L∞(I),

and

Π4 ≤ C∥v∥2L∞(I)

∫ a1

a0

∫ an

an−1

1
|x − y|2 dxdy

≤ C∥v∥2L∞(I)
|a1 − a0||an − an−1|
|an−1 − a1|2

≤ C∥v∥2L∞(I)
ρ2

(n − 1)ρ2

≤ C∥v∥2L∞(I).

Then

|v∗|H1/2(I) ≤ |v|H1/2(I) + |v∗|H1/2(I)

≤ C(|v|H1/2(I) + ∥v∥L∞(I)).

Lemma 2.3: Following the notation in lemma2.2, we have∫ 1

0
v2
∗(x)

(
1
x
+

1
1 − x

)
dx ≤ C(1 + | ln ρ|)∥v∥2L∞(I),

where C is a positive constant independent of ρ.
Proof : Firstly, by using the expression of v∗(x) (cf. 1), we
have ∫ 1

0

v2
∗(x)
x

dx =
∫ a1

a0

v2(a1)
(a1)2 xdx +

∫ an

a1

v2
∗(x)
x

dx

≤ v2(a1)
2
+ ∥v∥2L∞(I)

∫ an

a1

1
x

dx

≤ C(1 + | ln ρ|)∥v∥2L∞(I),

similarly, ∫ 1

0

v2
∗(x)

1 − x
dx ≤ C(1 + | ln ρ|)∥v∥2L∞(I).

Substituting them into the earlier expression completes the
proof of the lemma.

Lemma 2.4: [6] Jensen’s inequality, let r ≤ q < ∞, we
have

(
∑

i

|ai|q)
1
q ≤ (

∑
i

|ai|r)
1
r . (2)

Lemma 2.5: Let ρ ≤ diamK ≤ h, where 0 < h ≤ 1, and P
be a finite dimensional subspace of W l

p(K) ∩Wm
q (K), where

1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and 0 ≤ m ≤ l. Then there exists C
such that for all v ∈ P, we have

||v||W l
p(K) ≤ Chm−l+ n

p−
n
q ||v||Wm

q (K). (3)

Proof : Here, we only provide a general outline of the proof,
and for the detailed proof, please refer to reference [6].
Considering the relationship between p, q, and ∞, there are
two cases as follows: the first case is p = ∞, by scaling,

one can directly prove the result. The second case is p < ∞
which includes q ≤ p < ∞ , p < q < ∞ and p < q = ∞, by
applying Jensen’s inequality, Hölder’s inequality, and scaling,
the lemma can be proven.

III. Proofs of the main inequalities
Let’s prove Theorem 1.1 firstly. We observe that Ω has

the cone property, i.e., each point x ∈ Ω is the vertex of a
cone Kx congruent to the cone (or sector) K defined in polar
coordinates by

K = {(r, θ) : 0 < r < d < ∞, 0 < θ < ω < 2π}.

Without loss of generality we may assume that h < d
2 (In

fact, the Discrete Sobolev inequality is trivial with applying
the inverse estimate in lemma 2.5 when h ≥ d

2 .
Let T be a triangle of Th and c be the centroid of T . For

simplicity we may take c to be the origin and Kc to be K. The
quasi-uniformity of Th implies that there exists a number η
which is independent of T and h such that 0 < η < 1 and
the cone

Kη = {(r, θ) : 0 < r < ηh, 0 < θ < ω}

is a subset of T .
Let v ∈ Vh be arbitrary and α = v(c). It follows from the

fundamental theorem of calculus that

α = v(r, θ) −
∫ r

0

∂v
∂r

(ρ, θ)dρ f or
d
2
< r < d, (4)

and hence

α2 ≤ 2v2(r, θ) + 2(
∫ r

0

∂v
∂r

(ρ, θ)dρ)2 f or
d
2
< r < d. (5)

To bound the integral on the right-hand side of (5) , we
proceed as follows∫ r

0

∂v
∂r

(ρ, θ)dρ =
∫ ηh

0

∂v
∂r

(ρ, θ)dρ +
∫ r

ηh

∂v
∂r

(ρ, θ)dρ

≤ ηh|v|W1
∞

(T ) + [
∫ r

ηh
(
∂v
∂r

(ρ, θ))2ρdρ]
1
2 ln(

d
ηh

)
1
2 . (6)

By substituting the estimate from (6) into (5) , we obtain
the following inequality

α2
∫ ω

0

∫ d

d
2

rdrdθ ≤ 2
∫ ω

0

∫ d

d
2

v2(r, θ)rdrdθ (7)

+ 4(ηh)2|v|2W1
∞(T )

∫ ω

0

∫ d

d
2

rdrdθ

+ 4 ln(d/ηh)

∗
∫ ω

0

∫ d

d
2

[
∫ r

ηh
(
∂v
∂r

(ρ, θ))2ρdρdθ]rdr

≤ 2
∫ ω

0

∫ d

d
2

v2(r, θ)rdrdθ

+ 4(ηh)2|v|2W1
∞(T )

3
8
ωd2

+ 4 ln(d/ηh)|v|2W1
∞(T )

∗
∫ ω

0

∫ d

d
2

1
2

[r2 − (ηh)2]drdθ,

which implies, by the inverse estimate in lemma 2.5,

|v(c)| ≤ C1(1 + | ln h|) 1
2 ||v||H1(Ω). (8)
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Let x be an arbitrary point in T . The inverse estimate in
lemma 2.5 implies that

|v(x) − v(c)| ≤ h|v|W1
∞(T ) ≤ C2|v|H1(T ), (9)

where the positive constant C2 is independent of h and x.
The Discrete Sobolev Inequality follows from (8), (9) and

the arbitrariness of T and x.
Having established Theorem 1.1 , we now turn to the proof

of Theorem 1.2 , which addresses the behavior of functions
on the boundary ∂D.

Proof : Let a and b be the two endpoints of E, Ea and
Eb be the two edges of ∂D neighboring E, and F =

∂D\E ∪ Ea ∪ Eb (cf. Figure 2(a)).
Then we have

|vE |2H1/2(∂D) =

∫
∂D

[∫
∂D

|vE(x) − vE(y)|2
|x − y|2 ds(x)

]
ds(y)

=

∫
E∪Ea∪Eb∪F

∫
E∪Ea∪Eb∪F

· · · ds(x)ds(y)

=

(∫
E

∫
E
+

∫
E

∫
Ea∪Eb∪F

+

∫
Ea∪Eb∪F

∫
E

+

∫
Ea∪Eb∪F

∫
Ea∪Eb∪F

)
· · · ds(x)ds(y)

=

∫
E

[∫
E

|vE(x) − vE(y)|2
|x − y|2 ds(x)

]
ds(y)

+ 2
∫

E
|vE(y)|2

[∫
Ea∪Eb∪F

1
|x − y|2 ds(x)

]
ds(y),

(10)

because of vE(x) = 0 on Ea ∪ Eb ∪ F.
From figure 2(a) and lemma 2.1(2), we can find that∫

Ea∪Eb∪F

1
|x − y|2 ds(x) =

θ1
|a − y| +

θ2
|b − y| +

θ3
1

≈ 1
|a − y| +

1
|b − y| + 1, (11)

because of π4 ≤ θ1, θ2, θ3 ≤
π
2 .

Substituting 11 into 10 and applying lemma 2.2 and lemma
2.3, we have

|vE |2H1/2(∂D) ≈
∫

E

[∫
E

|vE(x) − vE(y)|2
|x − y|2 ds(x)

]
ds(y)

+

∫
E

v2
E(y)(

1
|a − y| +

1
|b − y| )ds(y) + ∥vE∥2L2(E)

. |v|2H1/2(∂D) + (1 + | ln ĥ|)∥v∥2L∞(∂D).

At last, we prove Theorem 1.3.
Proof : Let a and b be the two nodes next to p, ĥ1 = |a−p|

, ĥ2 = |b − p|, I = [−ĥ2, ĥ1] and ϕ is defined by

ϕ(x) =
{

1 − (x/ĥ1) for 0 ≤ x ≤ ĥ1,

1 + (x/ĥ2) for − ĥ2 ≤ x ≤ 0.

There are two cases (cf. Figure 2 (b) and (c)).
Case 1: the node p is a vertex of the reference domain D ;
Case 2: the node p is not a vertex of the reference domain
D.

|vp|2H1/2(∂D) =

∫
pa∪pb

∫
pa∪pb

|vp(x) − vp(y)|2

|x − y|2 ds(x)ds(y)

+ 2
∫

pa∪pb
|vp(y)|2

[∫
∂D\(pa∪pb)

1
|x − y|2 ds(x)

]
ds(y)

, Φ1 + Φ2.

a bE

Ea Eb

F

y

θ1 θ2

θ3

(a) The positions
of the various
physical
quantities.

(b) Point P is a vertex on
the reference domain D.

(c) Point P is not a vertex
on the reference domain D.

Fig. 2: The positional relationship between point p and the
reference domain D.

Obviously, in both cases, then

Φ1 =

∫
I

[∫
I

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy.

In case 2, using lemma 2.1

Φ2 = 2
∫

pa∪pb
|vp(y)|2

(
1
|y − b| −

1
|y − A3|

+
1
|y − a|

− 1
|y − A4|

+
θ3

|y − A3|
+ θ2 +

θ1
|y − A4|

)
dy,

= 2
∫

pa∪pb
|vp(y)|2

(
1
|y − b| +

1
|y − a| +

θ3 − 1
|y − A3|

+ θ2

)
+

(
θ1 − 1
|y − A4|

)
dy,

because of

π

4
≤ θ1, θ2, θ3 ≤

π

2
,

|y − b| ≤ |y − A3| ≤ 1, |y − a| ≤ |y − A4| ≤ 1,

then

Φ2 ≈
∫

pa∪pb
|vp(y)|2

(
1
|y − b| +

1
|y − a|

)
dy +

∫
pa∪pb

|vp(y)|2dy

≈ ∥ϕ∥2L2(I) +

∫
I
ϕ2(y)

(
1

y + ĥ2
+

1

ĥ1 − y

)
dy.

In case 1, from figure 2(b), for any y ∈ pb, and using lemma
2.1 we have∫
∂D\(pa∪pb)

1
|x − y|2 ds(x) =

1
|y − b| +

θ3 − 1
|y − A3|

+
θ1
|y − p| + θ2.

We define |p − a| = m, |A1 − a| = n, |y − p| = d for simplicity,
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obviously m + n = |A1 − p| = 1, then we have

θ1
|y − p| =

arctan m+n
d − arctan m

d

d

=
arctan nd

d2+m

d
,

because of

arctan x ≤ x,

then

θ1
|y − p| ≤

n
d2 + m

≤ |A1 − a|
|p − a| ,

then

Φ2 ≤ C
∫

pa∪pb
|vp(y)|2

(
1
|y − b| +

1
|y − a|

)
dy

+

∫
pa∪pb

|vp(y)|2dy,

obviously,

Φ2 ≥ C
∫

pa∪pb
|vp(y)|2

(
1
|y − b| +

1
|y − a|

)
dy

+

∫
pa∪pb

|vp(y)|2dy,

then we have

Φ2 ≈ ∥ϕ∥2L2(I) +

∫
I
ϕ2(y)

(
1

y + ĥ2
+

1

ĥ1 − y

)
dy.

Above all, we have

|vp|2H1/2(∂D) ≈∥ϕ∥
2
L2(I) +

∫
I

[∫
I

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy

+

∫
I
ϕ2(y)

(
1

y + ĥ2
+

1

ĥ1 − y

)
dy,

then a direct calculation then yields the theorem.
The next we calculate the above relation, we denote I1 =

[−ĥ2, 0], I2 = [0, ĥ1], then, we have

|vp|2H1/2(∂D) ≈ ∥ϕ∥
2
L2(I) +

∫
I

[∫
I

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy

+

∫
I
ϕ2(y)

(
1

y + ĥ2
+

1

ĥ1 − y

)
dy

=

∫
I1∪I2

ϕ2(x)dx +
∫

I1

[∫
I1

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy

+

∫
I2

[∫
I2

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy

+ 2
∫

I2

[∫
I1

|ϕ(x) − ϕ(y)|2
|x − y|2 dx

]
dy

+

∫
I1∪I2

ϕ2(y)(
1

y + ĥ2
+

1

ĥ1 − y
)dy

, Ψ1 + Ψ2 + Ψ3 + Ψ4 + Ψ5.

Obviously, Ψ1,Ψ2,Ψ3 are constants, Ψ4 and Ψ5 we can
directly calculate the result through the definite integral of
variable substitution, the results also are constants. Substi-
tuting them into the earlier expression completes the proof
of the theorem.

IV. Conclusion

This paper provides a detailed proof of the important
inequality theorems regarding the additive Schwarz precondi-
tioners, which offer significant theoretical foundations for the
design and analysis of the additive Schwarz preconditioners.
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