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Abstract— Locally D-optimal design for a sigmoid model with 

four parameters is investigated. D-optimal criterion refers to the 

Generalized Equivalence Theorem of Kiefer Wolfowitz. 

Determining whether the design is minimally supported design 

based on the number of roots of the Tchebycheff system. This is 

done by checking the pattern of the standardized variance 

function curve whether the maximum value is equal to the 

number of parameters and occurring at the design 

points.Tchebycheff system and its properties are the main tools 

to create D-optimal design. The result in this paper for design 

region [a, b], the design is minimally supported and the design 

points are a , b, and two others are interior points of [a, b]. 
 
Index Terms— D-optimal design, equivalence theorem, 

minimally supported design, standardized variance function, 

Tcebychev system.  

I. INTRODUCTION 

ONLINEAR  models were originally used to determine  the 

growth function. These models includ exponential, 

sigmoidal or S curve. The most frequently used for 

modelling are the sigmoidal model or S curve including 

Logistics, Gompertz, Richards, Brody, Weibull, and Morgan 

Mercer Flodin (MMF) models.  

Originally the sigmoid models can be applied in many 

areas such as biology and animal husbandry sciencie, 

pharmacodynamics and pharmacokinetics, chemistry, 

agriculture and finance. Some researchers used this model in  

animal husbandry and agricultural science  such as [1] used 

Logistic, Richards, Gompertz and Ontogenetic models for 

modeling the growth function of animals and plants.  Fang et 

al [2] used Gompertz and Logistic models to study an 

empirical growth for predicting the growth of tomato in 

greenhouse. Ulkalska and Jastrzebowski [3] applied 

Richards, Logistic and Gompertz models to studi the 

dynamics of epicotyl emergence of pedunculate oak. 

Fernandes et al [4] utilized fruit height and diameter data over 

time through diphashic sigmoidal models including Brody, 

Gompertz and Logistic. Therefore [5] applied the Morgan 

Mercer Flodin model for two parameters specific model 

which is Michaelis Menten for modelling the effect of 

concentration of substrate on the velocity of reaction. Besides 

that [6]  applied the Morgan Mercer Flodin model with three 

parameters which is EMAX for modelling the effect  of  this 
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concentration on the drug. Furthermore, [7] investigated the 

Morgan Mercer Flodin model  with three parameters. Al-

Rahman et al [8] applied Brody, Logistic, Gompertz and 

Weibull models to describe the confirmed cases of COVID-

19 in Egypt. Rochyani et al [9] utilized double sigmoidal 

model to investigate the growth of bacteria. 

Optimal design is a design that contains design points and 

its proportions (replications) so that it meet the predetermined 

optimallity criteria. D-optimality criteria is the most 

important. The purpose of this criteria is minimizing the 

variance of the parameter estimates. Determining the D-

optimal design by maximizing the generalized variance of the 

parameter estimates.  This also means it can be done by 

minimizing  the logarithm of the generalized variance of the 

parameter estimates ( − log |M(ξ, θ)|). The main problem of 

this paper is  determining the formula that used to create the 

D-optimal design criterion, including the number of design 

points and its proportions. 

 Minimizing − log |M(ξ, θ)| is equivalent to maximizing 

|M(ξ, θ)|. The main problem in determining the D-optimal 

design is to maximize the determinant of the information 

matrix. There are several methods for maximizing the 

function. The methods that are often used are the Newto 

method [10], Secant method [11], modified regularized 

newton raphson to overcome the singular hesian matrix [12 ]. 

Modified Newton could be used to find the maximum of  

|M(ξ, θ)| if impossible to maximize |M(ξ, θ)| analytically [13].  

Maximizing |M(ξ, θ)| in this paper, we use modified Newton  

method because we impossible to maximize |M(ξ, θ)| 

analytically and this method is generally straightforward and 

strong [14]. The algotithm of modified Newton’s method is 

presented in appendix 1.  

Determination of D-optimal designs for the sigmoid  model 

with four parameters is very difficult, because the Fisher 

information matrix M(ξ, θ) contains the unknown parameters. 

Methods that can be used to solve this problem by the local 

optimality approach. Evaluation of optimality criterion 

function by assuming the values of parameters. Chernoff [15] 

investigated the initial value θ = θ0 as the unknown parameter 

vector than maximizing |M(ξ, θ)|, evaluated it in initial value.   

The results obtained is locally optimal design.  

Some researchers applied D-optimal designs for growth 

curve in different models such as [16] who used polynomials 

models, [17] also used sigmoidal growth models especially 

model Weibull and Richards. Li and Majummdar [18] 

constructed D-optimal design for Logistic models for three 

and four parameters, [19] investigated D-optimal design for 

Gompertz model, [20] applied regrowth model by  double 

exponential and LINEX models. Hooghangifar et al [21] 

investigated D-optimal design for logistic model based on 

more precise approximation. Clarke and Haines [22] studied 

the optimal design for Richards model. Zhai et al [23] 

investigated the D-optimal design for two variables Logistic 

model. Widiharih et al [24] used generalized and weighted 

exponential models with two parameters. Furthermore [25] 
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used modified exponential model with three parameters. D-

optimal designs for Morgan Mercer Flodin models without 

intercept have been done [26], and D-optimal designs for 

Morgan Mercer Flodin models with three parameters have 

been studied  [27]. 

In this paper, we create a formula to construst locally D-

optimal designs for sigmoid  function with four parameters as  

follows: 

𝑦 =
𝜃1+𝜃3𝑥

𝜃4

𝜃2+𝑥
𝜃4
+ 𝜀, 𝜃1, 𝜃2, 𝜃3, 𝜃4 > 0, 𝑥𝜖[𝑎, 𝑏]                  (1) 

This model has an inflextion point at 𝑥 =

(
𝜃2(𝜃4−1)

𝜃4+1
)
1/𝜃4

and  𝜃3  is asymptotic or maximum response. 

The curve of the model (1) for  𝜃1 = 3727.0890, 𝜃2 = 

590.4906, 𝜃4 = 3.4571, 𝜃3 = 128 , 135 , 140 , 150 , 145  is 

presented in figure (1) and the curve of the model (1) for  𝜃1 

= 3727.0890, 𝜃2 = 590.4906, 𝜃3 = 128.2863, 𝜃4 =2.50 , 2.75 

, 3.30 , 3.25, 3.45 is presented in figure (2).  

 

 

Fig. 1.  Curve of Model (1) for 𝜃1 = 3727.0890, 𝜃2 = 590.4906, 𝜃4 = 3.4571, 

at Several Value of 𝜃3 = 128 , 135 , 140 , 150 , 145   

Based on Figure (1) it can be see that for several curve the 

inflextion points at x= 5.3448 but asymptotic or maximum are 

different. 

 

Fig. 2.  Curve of Model (1) for 𝜃1 = 3727.0890, 𝜃2 = 590.4906, 𝜃4 = 

128.2863, at Several Value of 𝜃4 =2.50 , 2.75 , 3.30 , 3.25, 3.45  

Based on Figure (2) it can be seen that for several curves 

the inflextion points are different but the asymptotic or 

maximum at y=128.2863. 

We organize the paper as follows. Section 2, contains the 

basic theory of D-optimal designs for nonlinear model, 

Generalized Equivalence Theorem, definition and properties 

of Tchebycheff System. Section 3, the mains result is the 

formula to construct D-optimal design of sigmoid model as 

in equation (1). The D-optimal design has four design points 

with the same proportion, the lower bound and the upper 

bound of the design region are design points and two others 

are interior points of the design region. Section 4, conclusion 

of research. 

II. D-OPTIMAL DESIGN FOR NONLINEAR MODEL 

In general, nonlinear models can be written as : 

𝐸(𝑌|𝑥) = 𝜂(𝑥, 𝜃)                                           (2)                                                                                 

Design of p points is denoted by:  

𝜉 = (
𝑥1  𝑥2… 𝑥𝑝
𝑤1 𝑤2… 𝑤𝑝

)                                     (3) 

where: 𝑤𝑖 =
𝑟𝑝𝑖

𝑁
  as weight (proportion) of design point 𝑥𝑖,  

𝑟𝑝𝑖 : number of replication or observation of the design point 

𝑥𝑖, N : number of all observation,  𝑁 = ∑ 𝑟𝑝𝑖
𝑝
𝑖=1  and total of 

weight 𝑖𝑠 1. The information matrix for design ξ in equation 

(3) is: 

𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖ℎ(𝑥𝑖, 𝜃)
𝑝
𝑖=1 ℎ𝑇(𝑥𝑖, 𝜃)                  (4) 

where : ℎ(𝑥, 𝜃) =
𝜕𝜂(𝑥,𝜃)

𝜕𝜃
= (

𝜕𝜂(𝑥,𝜃)

𝜕𝜃1
,
𝜕𝜂(𝑥,𝜃)

𝜕𝜃2
, … ,

𝜕𝜂(𝑥,𝜃)

𝜕𝜃𝑘
)
𝑇

 is 

the vector that are partial derivatives of the model in equation 

(2) with respect to parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘). A D-

optimal design is obtained by maximizing: |𝑀(𝜉, 𝜃)| that is 

the determinant of the information matrix. The function of  

standardized variance 𝑑(𝜉, 𝑥) is defined by : 

𝑑(𝜉, 𝑥) = ℎ𝑇(𝑥, 𝜃)𝑀−1(𝜉, 𝜃)ℎ(𝑥, 𝜃)                       (5)  

The Generalized Equivalence Theorem is the basic theory 

of optimum designs. At first this theory was used for linear 

models by [28] , after that [29] extended it  for nonlinear.  

Principlely of the Generalized Equivalence Theorem, 

evaluates whether the value of 𝑑(𝜉, 𝑥) is less than or equal k. 

The Generalized Equivalence Theorem used to prove that 

the design is D-optimal design. There are three condition. 

Any design  𝜍∗ meets one of the conditions then it meets all 

three conditions: 

 (1) 𝜍∗ maximizes |𝑀(𝜉, 𝜃)| 
 (2) 𝜍∗ minimizes 𝑚𝑎𝑥𝑥∈𝜒𝑑(𝜉, 𝑥)  

(3) 𝑚𝑎𝑥𝑥∈𝜒𝑑(𝜉, 𝑥) = 𝑘, where k is number of parameters  

The Generalized Equivalence Theorem can be simply 

written as:   

𝜍∗  D-optimal design ↔ 𝑑(𝜍∗, 𝑥) ≤ 𝑘                       (6) 

The design is minimally supported if the number of 

parameters is same as the number of design points. This 

design points have the same  weight, i.e. 𝑤𝑖 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
  . In these conditions, maximizing 

|𝑀(𝜉, 𝜃)|  more simply, this function have k variables which 

are the design points 𝑥1, 𝑥2, … . 𝑥𝑘 . Theorem 1 part 3 of [18] 

investigated in a sufficient condition to ensure that the D-

optimal design is minimally supported. Here, we will adopt 

this approach.  
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Theorem 2.1 (Li and Majumdar, [18]).  

For 𝜒 = [𝑎, 𝑏], if ∀𝜉𝜖𝐻, ∃𝜀 > 0 such that every function in 

𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜀 has at most 2k-1 roots in 𝜒, then 

there exist a unique D-optimal design that minimally 

supported and at least one of the lower bound or upper bound  

as a design point. If 𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜀 has at most 

2k-2 roots in 𝜒 then both lower bound and upper bound are 

design points of the D-optimal design. 

 

Tchebycheff system used to determine the number of roots 

d(x,ξ).  Tchebycheff system was introduced by several 

authors including ( [30], [31], [32]),  they investigated the 

properties and definition of  Tchebycheff system. 

 

Definition 2.2. ( Shadrin [31]).  

A set of continuous independent functions 𝛩 = 𝜈0, … , 𝜈𝑛 in 

K is a Tchebycheff system, if it fulfil the Haar condition: 

which any polynomial 𝑓 =  𝑎0𝜈0  +  … + 𝑎𝑛𝜈𝑛 with 

𝑎0, … , 𝑎𝑛  not zero, and have  at most n roots. Tchebycheff 

space is the (n+1) dimension that 𝑈𝑛 spanned by such a Θ. 

 

Lemma 2.3. (Shadrin [31])   

The following three conditions are equivalent: 

1. (𝜈𝑖)0
𝑛  is a Tchebycheff system. 

2. For every n+1 different points (𝑥𝑖)0
𝑛𝜖𝐾, the determinant 

which is appropriate the points exist that mean not zero 

 

      𝐷(𝑥0, … . , 𝑥𝑛) = |
𝜈0(𝑥0) … 𝜈𝑛(𝑥0)
… … …

𝜈0(𝑥𝑛) … 𝜈𝑛(𝑥𝑛)
|  

 

3. If (𝑥𝑖)0
𝑛 are different points in 𝐾 and (𝑦𝑖)0

𝑛 are any 

numbers, then the interpolation problem: 𝑎0𝜈0(𝑥𝑖) +
⋯+ 𝑎𝑛𝜈𝑛(𝑥𝑖) = 𝑦𝑖   , 𝑖 = 1,2,… , 𝑛  has a single solution 

for the unknown (𝑎𝑗) 

 

Lemma 2.4. (Shadrin [31])   

Let {𝑓0, 𝑓1, … , 𝑓𝑛−1, 𝑣𝑖}(𝑖 = 1,2, … , 𝑘) be k sequences of 

Tchebycheff system, 𝑣𝑖 are continous independen function, 

then {𝑓0, 𝑓1, … , 𝑓𝑛−1, ∑ 𝑣𝑖
𝑘
𝑖=1 } is also a Tchebycheff system.  

      

III    MAIN RESUTS 

Consider sigmoid model with four parameters as in 

equation (1): 

𝑦 =
𝜃1+𝜃3𝑥

𝜃4

𝜃2+𝑥
𝜃4
+  𝜀  

with homoscedastic error. Here 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) is the 

parameter of interest. 

 𝜂(𝑥, 𝜃)= 
𝜃1+𝜃3𝑥

𝜃4

𝜃2+𝑥
𝜃4

   

Partial derivative of η(x,θ) with respect to their parameters 

is : 

ℎ(𝑥) =
𝜕𝜂(𝑥, 𝜃)

𝜕𝜃
=

(

 
 
 
 
 
 
 

1

(𝜃2 + 𝑥𝜃4)

− 
𝜃1 + 𝜃3𝑥

𝜃4

(𝜃2 + 𝑥𝜃4)2

𝑥𝜃4

𝜃2 + 𝑥𝜃4

𝑥𝜃4l n(𝑥) (𝜃2𝜃3 − 𝜃1)

(𝜃2 + 𝑥𝜃4)2 )

 
 
 
 
 
 
 

 

With our result we establish the basic properties of locally 

D-optimal design of model (1) in Theorem (3.1). 

Theorem 3.1.   

D-optimal design of model (1) with design region [a,b] have 

four design points denote by  𝑥1  =  𝑎, 𝑥2, 𝑥3 and 𝑥 4 =

 𝑏  with same weight  for all design points i.e 
1

4
.  𝑥2, 𝑥3 are 

points that maximize : 

|𝑀(𝜉, 𝜃)| ∝
𝐴

(𝜃2+𝑎
𝜃4)

3
(𝜃2+𝑥2

𝜃4)
3
(𝜃2+𝑥3

𝜃4)
3
(𝜃2+𝑏

𝜃4)
3
+ 𝐵 + 𝐶  (7) 

where:  

𝐴 = 2[𝐴1. 𝐴2 + 𝐴3. 𝐴4 + 𝐴5. 𝐴6]  

𝐴𝐼 = 2𝑥3
𝜃4𝑏𝜃4 + 2𝑥1

𝜃4  − (𝑥3
𝜃4 + 𝑏𝜃4)(𝑥1

𝜃4 + 𝑥2
𝜃4)   

𝐴2 = (𝜃1 + 𝜃3𝑥3
𝜃4)(𝜃1 + 𝜃3𝑏

𝜃4)𝑥1
𝜃4 ln(𝑥1) 𝑥2

𝜃4𝑙𝑛(𝑥2)  

          +(𝜃1 + 𝜃3𝑥1
𝜃4) (𝜃1 + 𝜃3𝑥2

𝜃4)𝑥3
𝜃4 ln(𝑥3)𝑏

𝜃4 𝑙𝑛(𝑏)  

𝐴3 = 2𝑥1
𝜃4𝑥3

𝜃4 + 2𝑥2
𝜃4𝑥4

𝜃4 − (𝑥1
𝜃4 + 𝑥3

𝜃4)(𝑥2
𝜃4 + 𝑥4

𝜃4)  

𝐴4 = (𝜃1 + 𝜃3𝑥1
𝜃4)(𝜃1 + 𝜃3𝑥3

𝜃4)𝑥2
𝜃4𝑙𝑛(𝑥2)𝑥4

𝜃4𝑙𝑛(𝑥4)  

           +(𝜃1 + 𝜃3𝑥2
𝜃4) (𝜃1 + 𝜃3𝑥4

𝜃4) 𝑥1
𝜃4𝑙𝑛(𝑥1)𝑥3

𝜃4𝑙𝑛(𝑥3)    

𝐴5 = 2𝑥1
𝜃4𝑥4

𝜃4 + 2𝑥2
𝜃4𝑥3

𝜃4 − (𝑥1
𝜃4 + 𝑥4

𝜃4)(𝑥2
𝜃4 + 𝑥3

𝜃4)    

𝐴6 = (𝜃1 + 𝜃3𝑥1
𝜃4)(𝜃1 + 𝜃3𝑥4

𝜃4)𝑥2
𝜃4𝑙𝑛(𝑥2)𝑥3

𝜃4𝑙𝑛(𝑥3)    

          +(𝜃1 + 𝜃3𝑥2
𝜃4) (𝜃1 + 𝜃3𝑥3

𝜃4) 𝑥1
𝜃4𝑙𝑛(𝑥1)𝑥4

𝜃4𝑙𝑛(𝑥4)    

B is sum of 6 part with denominator has a form: 

(𝜃2 + 𝑥𝑖
𝜃4)

2
(𝜃2 + 𝑥𝑗

𝜃4)
2
(𝜃2 + 𝑥𝑘

𝜃4)
4
(𝜃2 + 𝑥𝑙

𝜃4)
4
,  

 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3,4  

and numerator: (𝑥𝑖
𝜃4 − 𝑥𝑗

𝜃4)
2
. 𝑁 

𝑁 = [(𝜃1 + 𝜃3𝑥𝑙
𝜃4) 𝑥𝑘

𝜃4𝑙𝑛(𝑥4) − (𝜃1 + 𝜃3 𝑥𝑘
𝜃4) 𝑥𝑙

𝜃4𝑙𝑛(𝑥𝑙)]
2
    

C is sum of 12 part with denominator has a form: 

(𝜃2 + 𝑥𝑖
𝜃4)

2
(𝜃2 + 𝑥𝑗

𝜃4)
4
(𝜃2 + 𝑥𝑘

𝜃4)
3
(𝜃2 + 𝑥𝑙

𝜃4)
3
, 

           𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3,4  

and numerator:  

2[𝑥𝑖
𝜃4 − 𝑥𝑘

𝜃4][𝑥𝑙
𝜃4 − 𝑥𝑖

𝜃4][𝐷 + 𝐸 + 𝐹]     

where:  

𝐷 = 𝑥𝑗
2𝜃4𝑙𝑛2(𝑥𝑗)(𝜃1 + 𝜃3𝑥𝑘

𝜃4)(𝜃1 + 𝜃3𝑥𝑙
𝜃4)  

𝐸 = (𝜃1 + 𝜃3𝑥𝑗
𝜃4)

2
𝑥𝑘
𝜃4𝑙𝑛(𝑥𝑘)𝑥𝑙

𝜃4𝑙𝑛(𝑥𝑙)  

𝐹 = (𝜃1 + 𝜃3𝑥𝑗
𝜃4)𝑥𝑗

𝜃4𝑙𝑛(𝑥𝑗)[(𝜃1 + 𝜃3𝑥𝑘
𝜃4)𝑥𝑙

𝜃4𝑙𝑛(𝑥𝑙) +

             (𝜃1 + 𝜃3𝑥𝑙
𝜃4)𝑥𝑘

𝜃4𝑙𝑛(𝑥𝑘)]  

𝑥1 = 𝑎, 𝑥4 = 𝑏  

Proof. 

Let 𝑚𝑖𝑗 denote (𝑖, 𝑗)𝑡ℎ elemen of  𝑀−1(𝜉, 𝜃), then:  

𝑑(𝑥, 𝜉) = ℎ𝑇(𝑥)𝑀−1(𝜉, 𝜃)ℎ(𝑥)   

              =
1

(𝜃2+𝑥
𝜃4)

4 [𝐺1 + 𝐺2 + 𝐺3 + 𝐺4 + 𝐺5 + 𝐺6   

                  +𝐺7 + 𝐺8 + 𝐺9 + 𝐺10]   
where:  

𝐺1 = 𝑚
11(𝜃2 + 𝑥

𝜃4)2   
𝐺2 = 𝑚

22(𝜃1 + 𝜃3𝑥
𝜃4)2    

𝐺3 = 𝑚
33𝑥2𝜃4(𝜃2 + 𝑥

𝜃4)2  
𝐺4 = 𝑚

44𝑥2𝜃4𝑙𝑛2(𝑥)(𝜃2𝜃3 − 𝜃1)
2  

𝐺5 = 2𝑚
12(𝜃2 + 𝑥

𝜃4)(𝜃2𝜃3 − 𝜃1)  
𝐺6 = 2𝑚

13𝑥𝜃4(𝜃2 + 𝑥
𝜃4)2     
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𝐺7 = 2𝑚
14(𝜃2 + 𝑥

𝜃4)𝑥𝜃4𝑙𝑛(𝑥)(𝜃2𝜃3 − 𝜃1)    
𝐺8 =  2𝑚

23𝑥𝜃4(𝜃2 + 𝑥
𝜃4)(𝜃1 + 𝜃3𝑥

𝜃4)  
𝐺9 = 2𝑚

24(𝜃2 + 𝑥
𝜃4)(𝜃1 + 𝜃3𝑥

𝜃4)𝑥𝜃4𝑙𝑛(𝑥)(𝜃2𝜃3 − 𝜃1)   
𝐺10 = 2𝑚

34(𝜃2 + 𝑥
𝜃4)𝑥2𝜃4𝑙𝑛(𝑥)(𝜃2𝜃3 − 𝜃1)     

We have some Tchebycheff systems: 

1. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), (𝜃2 + 𝑥

𝜃4)
2
} 

2. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4)
2
}  

3. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), 𝑥2𝜃4(𝜃2 + 𝑥

𝜃4)
2
} 

4. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), 𝑥2𝜃4𝑙𝑛2(𝑥)} 

5. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), 𝑥2𝜃4(𝜃2 + 𝑥

𝜃4)
2
} 

6. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), 𝑥𝜃4(𝜃2 + 𝑥

𝜃4)
2
ln (𝑥)} 

7. {1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4), 𝑥𝜃4(𝜃2 + 𝑥
𝜃4), 𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4), (𝜃2 + 𝑥

𝜃4)(𝜃1 + 𝜃3𝑥
𝜃4)𝑥𝜃4l n(𝑥)} 

Let:  

𝑣(𝑥) = 𝑚11(𝜃2 + 𝑥
𝜃4)

2
+𝑚22(𝜃1 + 𝜃3𝑥

𝜃4)
2
   

           +𝑚33𝑥2𝜃4(𝜃2 + 𝑥
𝜃4)

2
+ 2𝑚13𝑥𝜃4(𝜃2 + 𝑥

𝜃4)
2
 

           +𝑚44(𝜃2𝜃3 − 𝜃1)
2𝑥2𝜃4𝑙𝑛2(𝑥)  

           +2𝑚14(𝜃2𝜃3 − 𝜃1)𝑥
2𝜃4(𝜃2 + 𝑥

𝜃4) ln(𝑥) 

           +2𝑚24(𝜃2𝜃3 − 𝜃1)(𝜃2 + 𝑥
𝜃4)𝑥𝜃4𝑙𝑛(𝑥) 

𝑢0 = 1, 𝑢1 = (𝜃2 + 𝑥
𝜃4), 𝑢2 = (𝜃1 + 𝜃3𝑥

𝜃4), 

 𝑢3 = 𝑥
𝜃4(𝜃2 + 𝑥

𝜃4),   𝑢4 = 𝑥
𝜃4𝑙𝑛(𝑥), 

 𝑢5 = (𝜃2 + 𝑥
𝜃4)(𝜃1 + 𝜃3𝑥

𝜃4). 
 

Based on Lemma (2.4) then: 
{1, (𝜃2 + 𝑥

𝜃4), (𝜃1 + 𝜃3𝑥
𝜃4),  𝑥𝜃4  (𝜃2 + 𝑥

𝜃4),  𝑥𝜃4(𝜃2 + 𝑥
𝜃4),  

𝑥𝜃4𝑙𝑛(𝑥), (𝜃2 + 𝑥
𝜃4)(𝜃1 + 𝜃3 𝑥

𝜃4), 𝑣(𝑥)}  is an Tchebycheff 

system. So {𝑑(𝑥, 𝜉)  −  4 + 𝑐} is a linear combination of: 

{1, (𝜃2 + 𝑥
𝜃4), (𝜃1 + 𝜃3𝑥

𝜃4),  𝑥𝜃4(𝜃2 + 𝑥
𝜃4),  𝑥𝜃4  𝑙𝑛(𝑥), (𝜃2 +

𝑥𝜃4)(𝜃1 + 𝜃3 𝑥
𝜃4), 𝑣(𝑥)}. Based on Definition (2.2): 

{𝑑(𝑥, 𝜉)  −  4 +  𝑐} have 6 =  2𝑘 −  2 roots,  so we 

conclude by Theorem (2.1) that this design is D-optimal and 

minimally supported,  𝑥1 = 𝑎, 𝑥4  =  𝑏 are design points. We 

have 

𝜉 = (
𝑎  𝑥2   𝑥3 𝑏
1

4
  

1

4

1

4
   

1

4

)                                     (8) 

Element of the information matrix are:  

𝑚11 = ∑
1

4

4
𝑖=1

1

(𝜃2+𝑥𝑖
𝜃4)

2  

𝑚22 = ∑
1

4

4
𝑖=1

(𝜃1+𝜃3 𝑥𝑖
𝜃4)

2

(𝜃2+𝑥𝑖
𝜃4)

4   

𝑚33 = ∑
1

4

4
𝑖=1

𝑥𝑖
2𝜃4

(𝜃2+𝑥𝑖
𝜃4)

2  

𝑚44 = ∑
1

4

4
𝑖=1

𝑥𝑖
2𝜃4𝑙𝑛2(𝑥𝑖)(𝜃2𝜃3−𝜃1)

2

(𝜃2+𝑥𝑖
𝜃4)

4   

𝑚12 = ∑  [−
1

4

𝜃1+𝜃3 𝑥𝑖
𝜃4

(𝜃2+𝑥𝑖
𝜃4)

3] 
4
𝑖=1   

𝑚13 = ∑
1

4

4
𝑖=1

𝑥𝑖
𝜃4

(𝜃2+𝑥𝑖
𝜃4)

2  

𝑚14 = ∑
1

4

4
𝑖=1

𝑥𝑖
𝜃4𝑙𝑛(𝑥𝑖)(𝜃2𝜃3−𝜃1)

(𝜃2+𝑥𝑖
𝜃4)

3   

𝑚23 = ∑  [−
1

4

𝑥𝑖
𝜃4(𝜃1+𝜃3 𝑥𝑖

𝜃4)

(𝜃2+𝑥𝑖
𝜃4)

3 ] 4
𝑖=1   

𝑚24 = ∑  [−
1

4

(𝜃2𝜃3−𝜃1)(𝜃1+𝜃3 𝑥𝑖
𝜃4)𝑥𝑖

𝜃4𝑙𝑛(𝑥𝑖)

(𝜃2+𝑥𝑖
𝜃4)

4 ] 4
𝑖=1   

𝑚34 = ∑
1

4

4
𝑖=1

𝑥𝑖
2𝜃4𝑙𝑛(𝑥𝑖)(𝜃2𝜃3−𝜃1)

(𝜃2+𝑥𝑖
𝜃4)

3   

Where 𝑥1 = 𝑎  , 𝑥2 = 𝑏 

The determinant of information matrix is: 

|𝑀(𝜉, 𝜃)| =
1

256

𝐴

(𝜃2+𝑎
𝜃4)

3
(𝜃2+𝑥2

𝜃4)
3
(𝜃2+𝑥3

𝜃4)
3
(𝜃2+𝑏

𝜃4)
3
+𝐵 + 𝐶  

A, B, and C as in equation (7). Design points 𝑥2  and  𝑥3 are 

maximize of:  

|𝑀(𝜉, 𝜃)| ∝  
𝐴

(𝜃2+ 𝑎𝜃4)3(𝜃2 + 𝑥2
𝜃4)

3
(𝜃2+ 𝑥3

𝜃4)
3
(𝜃2+ 𝑏𝜃4)3

+ 𝐵 + 𝐶  

∎ 

Determination of D-optimal design needed the information 

value of the parameters model. Calculation of design points 

for some values of 𝑎, 𝜃1, 𝜃2,  𝜃3, 𝜃4, 𝑏, design region [𝑎, 𝑏], is 
presented in Table (1). The design points are 𝑥1  =  𝑎,  𝑥4  =
 𝑏 and 𝑥2, 𝑥3 are determined by maximizing |𝑀(𝜉, 𝜃)| in 

equation (7).  

Each design points related to the values of  𝜃1, 𝜃2, 𝜃3, 𝜃4  

and design region in Table (1) are satisfy the Equivalence 

Theorem i.e 𝑑(𝜉, 𝑥)  ≤  4. Example of the calculations by 

taking the case, 𝜃1 = 2. 523684, 𝜃2  =  12. 371,  𝜃3  =
 6. 318, and 𝜃4  = 3. 46, the design region is [1, 8]. The 

curva of this model is presented in figure 3. The inflextion 

point in this curva at x=1.4345  and the asymptotic or 

maximum response is 6.318. The  design points are 𝑥1 = 1,
𝑥2 = 1. 7138, 𝑥3 =  2. 9435,   𝑥4  =  8.  

 

 

Fig.3. The Curva of Model (1) with Design Region [1, 8] and 

 𝜃1 = 2. 523684, 𝜃2  =  12. 371,  𝜃3  =  6. 318, 𝜃4  =  3. 46 
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TABLE I 

DESIGN POINTS OF  MODEL (1) FOR SOME VALUES OF  𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝑥 ∈ [𝑎, 𝑏] 
 

𝜃1 𝜃2 𝜃3 𝜃4 [𝑎, 𝑏] 𝑥1 𝑥2 𝑥3 𝑥4 

330.6616 9.441 50.093 1.717 [1, 20] 

[3, 25] 

[2, 30] 

1.0 

3.0 

2.0 

6.5645 

4.5605 

3.5548 

2.4756 

9.7772 

8.6817 

20.0 

25.0 

30.0 

2.5237 12.371 6.318 3.460 [0.5, 10] 

[1, 8] 

[0.8, 9] 

0.5 

1.0 

0.8 

1.5494 

1.7136 

1.6299 

2.7961 

2.9435 

2.8726 

10.0 

8.0 

9.0 

41.06462 0.912 429.618 3.952 [0.3, 8] 

[1.5, 7.5] 

[3, 6] 

0.3 

1.5 

3.0 

0.7667 

1.7168 

3.3205 

1.2892 

2.4515 

4.2621 

8.0 

7.5 

6.0 

82.8856 1.558 293.486 3.060 [0.2, 8] 

[2.5, 7.5] 

[3, 9] 

0.2 

2.5 

3.0 

0.8299 

2.898970 

3.4650 

1.6258 

4.2074 

5.0219 

8.0 

7.5 

9.0 

18383.5449 369.370 25486.460 1.830 [25, 300] 

[50, 250] 

[75, 200] 

25.0 

50.0 

75.0 

36.6816 

64.6909 

90.4125 

79.8188 

116.8278 

135.4200 

300.0 

250.0 

200.0 

22736.6510 484.790 33980.680 1.740 [25, 300] 

[50, 250] 

[75, 200] 

25.0 

50.0 

75.0 

40.0799 

66.8915 

91.5791 

91.9655 

123.4853 

138.2178 

300.0 

250.0 

200.0 

 

The information matrix is: 

𝑀(𝜉, 𝜃) =

(

0.008757 −0.11865
−0.11865 0.02562

0.03876 0.06089
−0.12021 −0.19652

0.03876 −0.12021
0.06089 −0.19652

1.70075 1.26569
1.26569 1.91268

)  

The inverse of information matrix is:  

𝑀−1(𝜉, 𝜃) =

(

1066.96938 1121.95444
1121.95444 1367.87310

−10.88156 88.50372
−13.58559 113.80924

−10.88156 −13.58559
88.50372 113.80924

1.29388 −1.90559
−1.90559 10.65920

)  

The standardized variance at 𝑥1, 𝑥2, 𝑥3, 𝑥3  are 4.0000. The 

graph of the standardized variance function  is presented in 

Figure (4).   

 

 
Fig.4. Standardized Variance Function  Model (1) for  Design Region 

[1, 8] and 𝜃1 = 2. 523684, 𝜃2  =  12. 371,  𝜃3  =  6. 318, 𝜃4  =  3. 46 

 

Based on the Figure (4) we conclude that: 𝑑(𝜉, 𝑥)  ≤  4, 

maximum points at (1, 4.0000), (1.7138, 4.0000), 

(2.9435 , 4.0000) and (8, 4.0000).   It means that the 

maximum value occur on all of design points in this case: 

𝑥1 = 1, 𝑥2 = 1. 7138, 𝑥3 = 2. 9435,𝑥4 =  8 are design 

points of D-optimal design of model (1) for 𝜃1 =

2. 523684, 𝜃2 = 12. 371,𝜃3 =  6. 318,  𝜃4 = 3. 46, 𝑥 ∈

 [1, 8].   

IV.  CONCLUSION 

In this paper we have studied D-optimal design for sigmoid 

model with four parameters and homoscedastic error. Our 

tools to create D-optimal design  is  derived from the 

Generalized Equivalence Theorem of Kiefer-Wolowitz, we 

adopt Theorem 1 part 3 of [18], definition and properties of 

the Tchebycheff system in ( [30], [31], [32]). The former, 

Theorem 3.1 is main result to create D-optimal design for 

sigmoid model with four parameters. The D-optimal design 

in this paper is a minimally supported design with the lower 

bound and upper bound of design region are design points and 

two others are interior points of the design region. Therefore, 

determination of design points by  numerical approach , in 

this time we used Modified Newton Methods. Algorithm to 

determine the D-optimal designs for sigmoid model with four 

parameters is used Maple program in three steps, including a 

written formula of  determinant of information matrix, the 

second maximize  this formula to determine the supported 

design, information matrix and inverse of information matrix, 

the third construct the graph of 𝑑(𝑥, 𝜉) and to prove that the 

design 𝜉 satisfy the Generalized Equivalence Theorem. The 

algorithm to determine D-optimal design is presented in the 

appendix 2.  

APPENDIX 

1. Algorithm of modified Newton’s method. 

     Let 𝑔(𝑥) is a function being optimized, ∇𝑔(𝑥) is gradient 

vector of 𝑔(𝑥) and 𝐻𝑔(𝑥) is Hessian matrix of 𝑔(𝑥). 
Algorithm for modified Newton’s Method as follows: 

i. Select 𝑥(0) as the initial value and tolerance 𝜀  for the 

stoppping  iteration and set k=0. 

ii. Determine descent direction 

 𝑑(𝑘) = −𝐻𝑔(𝑥(𝑘))−1𝛻𝑔(𝑥(𝑘)). 

iii. Determine 𝛼𝑘 = 𝑚𝑖𝑛𝛼𝑔(𝑥
(𝑘) + 𝛼𝑑(𝑘)) . 
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iv. Calculate 𝑠(𝑘) = 𝛼(𝑘)𝑑(𝑘)  

v. Calkulate  𝑥(𝑘+1) = 𝑥(𝑘) + 𝑠(𝑘) 

vi. If  |𝛻𝑔(𝑥(𝑘+1))| < 𝜀  then stop iteration, otherwise 

take 𝑘 = 𝑘 + 1 and go to step (ii). 

2. Algorithm to create D-optimal designs for sigmoid   model 

with four parameters.  

a. Define the formula of determinant of information 

matrix in equation (7). 

b. Initialize value of parameters 𝜃1, 𝜃2, 𝜃3 and 𝜃4. 

c. Determine the design region 𝜉 =  [𝑎, 𝑏] wich 

appropriate with step (b) 

d. Maximizing the formula in step (a) to determine the 

design points 𝑥1, 𝑥2, 𝑥3 , and 𝑥4 by modified Newton’s 

method. 

e. Determine the elements of information matrix and 

than the information matrix can be construct. 

f. Determine the inverse of information matrix. 

g. Create 𝑑(𝜉, 𝑥)  =  ℎ𝑇(𝑥, 𝜃)𝑀−1(𝜉, 𝜃)ℎ(𝑥, 𝜃) and 

make this curva 

h. Evaluated the curva of standardize variance function, 

if 𝑑(𝜉, 𝑥) ≤  4, 𝑑(𝜉, 𝑥𝑖)  =  4, 𝑖 =  1, 2, 3, 4 then 

𝑥1, 𝑥2, 𝑥3 , and 𝑥4 in step (d) are supported design of 

D-optimal design. otherwise repeat to step (a).  

REFERENCES 

[1] L. Cao, P.J. Shi, L. Li and G. Chen, “A New Flexible Sigmoidal 

Growth Model,” Symmetry, vol.11, no.204, p.1-16 , 2019. 

[2] S.L. Fang. Y.H. Kuo, L. Kang, C.C. Chen, C.Y. Hsieh, M.H. Yao and 

B.J. Kuo, “Using Sigmoidal Growth Models To Simulated Greenhouse 

Tomato Growth And Development,” Horticulturae, vol.8, no.1021, 

https://doi.org/10.3390/horticulturae8111021, 2022. 

[3] J. Ukalska and S. Jastrzebowski, “Sigmoid Growth Curve, a New 

Approach to Study The Dynamics of  The Epicotyl Emergence of Oak,” 

Folia Forestalia Polonica., vol.61, no.1, pp.30-41, 2019. 

[4] J.G. Fernandes, E.M. da Silva, T.D. Ribeiro, E.M. Silva, T.J. Fernandes 

and J.A. Muniz, “Description of The Peach Fruit Growth Curve by 

Diphasic Sigmoidal Nonlinier Model,” Rev.Bras.Frutic:Jaboticabal, 

vol.3 no. 9,  pp. 1-10, 2022.  

[5] Z. Jericevic, and Z. Kuster, “Nonlinear Optimization of Parameters in 

Michaelis Menten Kinetics,” Croatia Chemica Acta CCACCAA, vo.78, 

no.4, pp.519-523, 2005.  

[6] J. D. Knudsen, “General Concepts of Pharmacodynamics,” 

Department of Clinical Microbiology, Rigshospitalet Copenhagen 

Denmark ,2001. 

[7] C. Marianela, and M. Jose, “A New Approach to Modelling Sigmoidal 

Curve,” Technological Forecasting and Social Change, vol. 69,  

pp.233-241, 2002. 

[8] N.E.A. Al-Rahman, A.E.A. Hussien, E.G. Yehia and S.A. Mousa, 

“Modelling sigmoidal growt curves to study the confirmed cases of 

COVID-19 in Egypt,” An Academic Periodical Referred Journal, 

vol.27, pp. 1-24, 2022. 

[9] M.Y. Rochyani, D.G.R. Menufandu and R. Dapa, “Investigating the 

Growth of Bacteria Using Double Sigmoid Model with 

Reparameterization,” International Journal of Global Optimization 

and Its Application, vol. 2, no. 4, pp. 200 - 208, 2023.  

[10] A. Al-Shorman, M.A. Ajeel, K. and Al-Khaled, “Analyzing Newton’s 

Method for Solving Algebraic Equations with Complex Variables: 

Theory and Computational Analysis,”  IAENG International Journal of 

Applied Mathematics, vol. 54, issue 6, pp. 1038-1047, 2014.    

[11] S. Purwani, A.F. Ridwan, R.A. Hidayana and S. Sukono, “Secant 

Method with Aitken Extrapolation Outperform Newton-Raphson 

Method in Estimating Stock Implied Volatility,” IAENG International 

Journal of Computer Science, vol.50, issue 2, pp.368-374, 2023. 

[12] H. Wang and M. Qin, “A Modified Regularized Newton Method for 

Unconstrained Convex Optimization,” IAENG International Journal of 

Applied Mathematics, vol.46, issue 2, pp. 130-134, 2016. 

[13] A.C. Atkinson, A.N. Donev and R.D. Tobias, “Optimum experimental 

designs, with SAS,” OXFORD Universitu Press Inc., New York, 2007, 

pp 129. 

[14] A. Chauhan, “A study of Modified Newton-Raphson methods,” 

Journal of University of Shanghai for Science and Technology, vol. 3, 

issue 8, pp. 129-134, 2021.  

[15] H. Chernoff, “Locally Optimal Designs for Estimating Parameters,” 

The Annals of Statistics, vol.24, pp. 586 - 602,1953. 

[16] F. C. Chang, and C. F. Lay, “Optimal Designs for a Growth Curve 

Models,” Journal of Statistical Planning and Inference, vol.104, pp. 

427-438, 2002.  

[17] H. Dette, and A. Pepelyshev, “Efficient Experimental Designs for 

Sigmoidal Growth Models,” Journal of Statistical Planning and 

Inference, vol.138, pp. 2-17, 2008.  

[18] G. Li, and D. Majumdar, “D-optimal Designs for Logistic Models with 

Three and Four Parameters,”  Journal of Statistical Planning and 

Inference, vol.138, pp.1950-1959, 2008. 

[19] G. Li, “Optimal and Eficient Designs for Gompertz Regression 

Models,” Ann Inst Stat Math, vol. 64, pp. 945-957, 2012. 

[20] G. Li, and N. Balakrishnan, “Optimal Designs for Tumor Regrowth 

Models,” Journal of Statistical Planning and Inference, vol.141, pp. 

644 – 654, 2011. 

[21] M. Hooshangifar, H. Talebi and D. Paursina, “D-optimal Design for 

Logistic Model Based on More Precise Approximation,“ 

Communication in Statistics, vol.5, no. 7, pp 1975-1992, 2022. 

[22] G.P.Y. Clarke and L.M. Haines, “Optimal Design for Models 

Incorporating the Richards Function,” in book Statistical Modelling, pp 

61-66, doi:10.1007/978-1-4612-0789-48, 2011. 

[23] Y. Zhai, C. Wang, H.Y. Lin and Z. Fang, “D-optimal Designs for Two-

Variable Logistic Regression Model with Restricted Design Space,” 

Communication in Statistics-theory and Methods, vol. 53, no.11, pp 

3940-3957,  2024. 

[24] T. Widiharih, S. Haryatmi, and Gunardi, “D-optimal Designs for 

Weighted Exponential and Generalized Exponential Models,” Applied 

Mathematical Sciences, vol.7, no.22, pp. 1067-1079, 2013. 

[25] T. Widiharih, S. Haryatmi, and Gunardi, “D-optmal designs for 

Modified Exponential Models with three parameters,” Journal Model 

Assisted Statistics and Application, vol.11, pp. 153- 169, 2016. 

[26] T. Widiharih, S. Haryatmi, and Gunardi,  “D-optimal Designs for 

Morgan Mercer Flodin (MMF) Models Without Intercept,” 

International Journal of Applied Mathematics and Statistics, vol. 53, 

no. 5, pp. 163-171, 2015. 

[27] T. Widiharih,  S. Haryatmi and Gunardi, “D-optimal Designs for 

Morgan Mercer Flodin (MMF) Models With Three Parameters,” , In: 

Proceeding AIP, 1707, 080015, pp. 080015108001510, 2016. 

[28] J. Kiefer, and J. Wolfowitz, “The equivalence of Two Extremum 

Problems,” Can. Jnl. Math, vol.12, pp.363-366, 1960. 

[29] L. White,” An extension of the General Equivalence Theorem to 

Nonlinear Models,” Biometrika,  vol. 60, pp. 345-348, 1973. 

[30] S. Karlin, and W. J. Studden, Tchebyshev System: with application in 

analysis and statistics, John Willey and Sons. Inc, 1966. 

[31] A. Shadrin, Part III-Lent Term, “Approximation Theory-Lecture 6.” A 

Short Course, Available:  http://www.damtp.cam.uk/user/na/na.html , 

2005 .   

[32] V. K. Dzyadyk, and I. A. Shevchuk, “Theory of Uniform 

Approximation of Functions by Polynomials,” Walter de Gruyter 

GmbH and CO. KG, 10785 Berlin, Germany, 2008. Ch.1 

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1903-1908

 
______________________________________________________________________________________ 

https://doi.org/10.3390/horticulturae8111021
https://doi.org/10.3390/horticulturae8111021
https://doi.org/10.3390/horticulturae8111021
https://doi.org/10.3390/horticulturae8111021
http://www.damtp.cam.uk/user/na/na.html
http://www.damtp.cam.uk/user/na/na.html
http://www.damtp.cam.uk/user/na/na.html



