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Abstract—A family of C1 rational cubic/linear trigonometric
interpolation splines are utilized to generate blending interpo-
lation surfaces. The data-based sufficient conditions concerning
the local control factors are deduced to discuss the region
control. These conditions guarantee that the surfaces strictly lie
within two specified piecewise quadratic trigonometric blending
interpolation surfaces. Additionally, some numerical experi-
ments are conducted to demonstrate the region control of the
surface under the proposed conditions.

Index Terms—trigonometric splines, interpolation surface,
region control, C1 continuity.

I. INTRODUCTION

FOR the construction of interpolation curves and surfaces
using given data, several key factors should be taken

into account. Computational efficiency is paramount, as it
determines how quickly and effectively we can generate the
desired surfaces. Smoothness is also crucial, as it ensures that
the resulting surfaces are visually appealing and physically
meaningful. Additionally, the capability to preserve the shape
characteristics is essential to maintaining the integrity of
the interpolated surfaces. Given that cubic functions strike
a balance between accuracy and efficiency, and C1 conti-
nuity is sufficient for majority of applications, the primary
objective of this work is to study interpolation splines and
their surfaces, with a particular emphasis on region control.

There exist lots of C1 interpolation curves generated
by rational cubic splines with different denominators. For
example, Hussain and Sarfraz [1] constructed interpolation
curves using rational cubic/quadratic interpolation splines.
They further studied the positivity-preserving property but
the associated constraints are insufficient. Qin et al. [2] later
addressed this limitation by adding a local parameter with
tension property. Additionally, based on Gregory’s rational
cubic splines [3], a region-restricted interpolation method
is proposed [4]. Using linear denominator, the constrained
interpolation are further studied [5]. However, there are
still instances where this interpolation cannot be solved,
indicating the absence of positive parameters that ensure
the region control. To enhance the constraining ability,
Duan et al. [6]–[8] further developed some rational cubic
interpolation splines with linear or quadratic denominators
by incorporating weights. However, the conditions for the
region control are non-explicit, making them impractical for
applications.
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To further expand the range of applications, several C1

rational cubic interpolation splines have been studied on
two-dimensional case. Using a Hermite-like basis, Hussain
and Sarfraz [1] introduced rational bi-cubic functions along
with conditions of the local control parameters. However,
this method required cross-boundary derivatives or twists. In
response to this, by means of the Boolean sum, Hussain et
al. [9] proposed a simple scheme to blend rational cubic
splines that serve as bounds. However, Abbas et al. [10]
pointed out that this method does not guarantee monotonicity
or positivity of the entire surfaces and only preserve the
shape characteristics at the boundary. The question arose
as to whether it is feasible to create interpolation surfaces
that preserve monotonicity or positivity by constraining the
bounds of each local patch. Following this, a type of C1 bi-
cubic blending interpolation splines with linear denominators
was proposed [11]. The new sufficient constraints on the
bounds for the positivity or monotonicity-preservation of
surfaces are given. Chan and Ong [12] proposed a range-
restricted local construction method for C1 interpolating
curved surfaces, using constant to cubic polynomial surfaces
as bounds. Brodlie et al. [13] proposed a modified quadratic
Shepard method that restricts the interpolation values to the
range [0, 1] and can be extended to the case with arbitrary
boundary functions. Qin and Xu [14] proposed a type of
C1 rational cubic trigonometric (RCT) interpolation spline
with linear denominators. Their work has focused primarily
on the positivity-preserving property, an essential aspect that
ensures the non-negativity of the interpolated surfaces. How-
ever, in the realm of scientific and engineering applications,
the precise control of surface geometry extends beyond mere
positivity preservation. Region control plays an important
role in ensuring that the resulting surfaces adhere strictly
to desired geometric constraints. Therefore, our study aims
to delve deeper into the region control property by doing the
following important work:
(1) We deduced the simple and explicit conditions to guaran-
tee that the resulting surface strictly lies within two specific
piecewise quadratic trigonometric blending interpolation sur-
faces.
(2) We used four 3D data sets in the numerical examples,
showing that our method ensures that RCT interpolation sur-
face satisfies specific geometric constraints within designated
regions, which enables practitioners to create surfaces that
meet functional requirements and strictly adhere to geometric
constraints.

II. C1 RCT INTERPOLATION SPLINES AND BLENDING
SURFACES

A. C1 RCT interpolation splines
Given monotonically increasing knots {ui}ni=1 ⊂ R with

the corresponding data set {pi}ni=1 ⊂ R. For u ∈ [ui, ui+1],
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the piecewise RCT interpolation spline constructed by Qin
and Xu [14] is

R(u) = B0(x;αi)pi +B1(x;αi)

[
pi +

2hi

π(1 + αi)
di

]
+B2(x;βi)

[
pi+1 −

2hi

π(1 + βi)
di+1

]
+B3(x;βi)pi+1,

(1)
where x = π(u− ui)/(2hi), hi = ui+1 − ui > 0, αi and βi

are non-negative local factors, and di ∈ R serves as the first
derivative at ui. The RCT basis functions are defined as



B0(x;αi) =
1− sinx

1 + αi sinx
,

B1(x;αi) =
sinx(1− sinx)(1 + αi + αi sinx)

1 + αi sinx
,

B2(x;βi) =
cosx(1− cosx)(1 + βi + βi cosx)

1 + βi cosx
,

B3(x;βi) =
1− cosx

1 + βi cosx
.

(2)

For practical applications, the first derivative di is often
unknown and need to be predetermined. We determine them
by the arithmetic mean method as

d1 = ∆1 −
h1

h1 + h2
(∆2 −∆1) ,

dk =
∆k−1 +∆k

2
, k = 2, 3, ..., n− 1,

dn = ∆n−1 +
hn−1

hn−2 + hn−1
(∆n−1 −∆n−2) ,

where ∆k = (pk+1− pk)/hk. This arithmetic mean method,
using three-point difference approximation grounded in arith-
metic calculation, is computationally efficient and suitable
for visualization of shaped data. And it has been used in
many works [15], [16].

To clarify the relationship between the piecewise spline
R(u) on [ui, ui+1] and the associated factors, we also adopt
the notation R(u; pi, pi+1; di, di+1;αi, βi) for further discus-
sions.

B. C1 blending RCT interpolation surfaces

Given a domain Ω = [a, b] × [c, d] with two associated
partition a = u1 < u2 < ... < un = b, c = v1 < v2 <
. . . < vm = d, and corresponding data (ui, vj , Pij). Based
on the RCT interpolation splines stated in (1), four boundary
functions for patch πi,j := [ui, ui+1] × [vj,vj+1] can be
constructed. These bounds are then blended by the Boolean
sum of quadratic trigonometric interpolation operators [14],
resulting in a blending RCT interpolation surface as

S(u, v) := ((Q1 ⊕Q2)P ) (u, v)

= (Q1P ) (u, v) + (Q2P ) (u, v)− (Q1Q2P ) (u, v) ,
(3)

where



(Q1P ) (u, v) :=
[
P (ui, v) P (ui+1, v)

][ b0(x)

b1(x)

]
,

(Q2P ) (u, v) :=
[
P (u, vj) P (u, vj+1)

][ b0(y)

b1(y)

]
,

(Q1Q2P ) (u, v)

:=
[
b0(x) b1(x)

][ Pi,j Pi,j+1

Pi+1,j Pi+1,j+1

][
b0(y)

b1(y)

]
,

(4)

with x = π(u − ui)/(2h
u
i ), y = π(v − vj)/(2h

v
j ), h

u
i =

ui+1 − ui, hv
j = vj+1 − vj , and

b0(x) := cos2x, b1(x) := sin2x,

b0(y) := cos2y, b1(y) := sin2y,

P (u, vj) := R(x;Pi,j , Pi+1,j ;D
u
i,j , D

u
i+1,j ;α

u
i,j , β

u
i,j),

P (ui, v) := R(y;Pi,j , Pi,j+1;D
v
i,j , D

v
i,j+1;α

v
i,j , β

v
i,j).

(5)
αu
i,j , βu

i,j , αv
i,j , βv

i,j serve as local factors and Du
i,j , Dv

i,j

serve as the first partial derivatives at (ui, vi) . According
to the formula of S(u, v) stated in (4), the modification of
any one local factor αu

i,j , αv
i,j , βu

i,j or βv
i,j will only affect

the shape on the corresponding patch πi,j . From the C1

continuity of the bounds and blending functions given in (5),
it is obvious that the blending RCT surface S(u, v) is global
C1 continuous.

Next, we determine the first partial derivatives by the
arithmetic mean method again,

Du
1,l = ∆u

1,l + (∆u
1,l −∆u

2,l)
hu
1

hu
1 + hu

2

,

Du
k,l =

∆u
k−1,l +∆u

k,l

2
, k = 2, 3, ..., n− 1,

l = 1, 2, ...,m,

Du
n,l = ∆u

n−1,l + (∆u
n−1,l −∆u

n−2,l)
hu
n−1

hu
n−2 + hu

n−1

,

Dv
k,1 = ∆v

k,1 + (∆v
k,1 −∆v

k,2)
hv
1

hv
1 + hv

2

,

Dv
k,l =

∆v
k,l−1 +∆v

k,l

2
, k = 1, 2, ..., n,

l = 2, 3, ...,m− 1,

Dv
k,m = ∆v

k,m−1 + (∆v
k,m−1 −∆v

k,m−2)
hv
m−1

hv
m−2 + hv

m−1

,

(6)
where ∆u

k,l = (Pk+1,l − Pk,l)/h
u
k and ∆v

k,l = (Pk,l+1 −
Pk,l)/h

v
l .

III. THE RCT INTERPOLATION SURFACES WITH REGION
CONTROL

The aim of this section is to establish an explicit scheme
that ensures the blending RCT interpolation surface S(u, v)
mentioned in (3) strictly lies within two specific quadratic
trigonometric blending interpolation surfaces.

Given data sets {(ui, vj , Hi,j)},
{
(ui, vj , H

∗
i,j)

}
and

{(ui, vj , Pi,j)} defined on the domain Ω and satisfying
Hi,j ≤ Pi,j ≤ H∗

i,j . For simplicity, we use the notation
Ti,j := Pi,j − Hi,j , T ∗

i,j := Pi,j − H∗
i,j for further

discussion. S(u, v) denotes the blending RCT interpolation
surface generated by {(ui, vj , Pi,j)}, H(u, v) and H∗(u, v)
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denote the quadratic trigonometric blending interpolation
surfaces generated by {(ui, vj , Hi,j)} and

{
(ui, vj , H

∗
i,j)

}
,

respectively, as

H(u, v) := ((Q1⊕Q2)H) (u, v)

= (Q1H) (u, v) + (Q2H) (u, v)− (Q1Q2H) (u, v) ,

H∗(u, v) := ((Q1⊕Q2)H
∗) (u, v)

= (Q1H
∗) (u, v) + (Q2H

∗) (u, v)− (Q1Q2H
∗) (u, v) ,

(7)
where

(Q1H) (u, v) :=
[
H(ui, v) H (ui+1, v)

][ b0(x)

b1(x)

]
,

(Q2H) (u, v) :=
[
H(u, vj) H(u, vj+1)

][ b0(y)

b1(y)

]
,

(Q1Q2H)(u, v)

:=
[
b0(x) b1(x)

][ Hi,j Hi,j+1

Hi+1,j Hi+1,j+1

][
b0(y)

b1(y)

]
,

(Q1H
∗) (u, v) :=

[
H∗(ui, v) H∗(ui+1, v)

][ b0(x)

b1(x)

]
,

(Q2H
∗) (u, v) :=

[
H∗(u, vj) H∗(u, vj+1)

][ b0(y)

b1(y)

]
,

(Q1Q2H
∗)(u,v)

:=
[
b0(x) b1(x)

][ H∗
i,j H∗

i,j+1

H∗
i+1,j H∗

i+1,j+1

][
b0(y)

b1(y)

]
,

with x = π(u − ui)/(2h
u
i ), y = π(v − vj)/(2h

v
j ), h

u
i =

ui+1 − ui, hv
j = vj+1 − vj , and

H(u, vj) := cos2(x)Hi,j + sin2(x)Hi+1,j ,

H(u, vj+1) := cos2(x)Hi,j+1 + sin2(x)Hi+1,j+1,

H(ui, v) := cos2(y)Hi,j + sin2(y)Hi,j+1,

H(ui+1, v) := cos2(y)Hi+1,j + sin2(y)Hi+1,j+1,

H∗(u, vj) := cos2(x)H∗
i,j + sin2(x)H∗

i+1,j ,

H∗(u, vj+1) := cos2(x)H∗
i,j+1 + sin2(x)H∗

i+1,j+1,

H∗(ui, v) := cos2(y)H∗
i,j + sin2(y)H∗

i,j+1,

H∗(ui+1, v) := cos2(y)H∗
i+1,j + sin2(y)H∗

i+1,j+1.

Now, we proceed to deduce sufficient conditions for the re-
gion control. To this end, we analyze the case where S(u, v)
strictly lies above H(u, v). Without loss of generality, we
confine our discussion to a local patch πi,j , and obtain

S (u, v)−H (u, v)

=b0(x) [P (ui, v)−H(ui, v)] + b1(x) [P (ui+1, v)

− H(ui+1, v)] + b0(y) [P (u, vj)−H(u, vj)]

+ b1(y) [P (u, vj+1)−H(u, vj+1)]− b0(x)b0(y)Ti,j

− b0(x)b1(y)Ti,j+1 − b1(x)b0(y)Ti+1,j

− b1(x)b1(y)Ti+1,j+1

=b0(x)

[
P (u, vj)−H(u, vj)−

1

2
b0(x)Ti,j

−1

2
b1(y)Ti+1,j

]
+ b1(x) [P (u, vj+1)−H(u, vj+1)

−1

2
b0(x)Ti,j+1 −

1

2
b1(y)Ti+1,j+1

]
+ b0(y) [P (ui, v)

−H(ui, v)−
1

2
b0(x)Ti,j −

1

2
b1(y)Ti,j+1

]
+ b1(y)

[
P (ui+1, v)−H(ui+1, v)−

1

2
b0(x)Ti+1,j

−1

2
b1(y)Ti+1,j+1

]
.

From the positivity of b0(ζ) and b1(ζ) for any ζ ∈ (0, 1),
we can infer that S(u, v) > H(u, v) for (u, v) ∈ πi,j , if

P (u, vj)−H(u, vj)−
1

2
b0(x)Ti,j −

1

2
b1(y)Ti+1,j > 0,

P (u, vj+1)−H(u, vj+1)−
1

2
b0(x)Ti,j+1

−1

2
b1(y)Ti+1,j+1 > 0,

P (ui, v)−H(ui, v)−
1

2
b0(x)Ti,j −

1

2
b1(y)Ti,j+1 > 0,

P (ui+1, v)−H(ui+1, v)−
1

2
b0(x)Ti+1,j

−1

2
b1(y)Ti+1,j+1 > 0.

(8)
By simple computations, we have

P (u, vj)−H(u, vj)−
1

2
b0(x)Ti,j −

1

2
b1(x)Ti+1,j

=
1

2
B0(x;α

u
i,j)Ti,j +B1(x;α

u
i,j)

[
Ti,j

2
+

2hiD
u
i,j

π(1 + αu
i,j)

]

+B2(x;β
u
i,j)

[
Ti+1,j

2
−

2hiD
u
i+1,j

π(1 + βu
i,j)

]
+

1

2
B3(x;β

u
i,j)Ti+1,j .

(9)
It is clear that (9) will be positive if the four coefficients
are non-negative, from which we get the following sufficient
conditions,

αu
i,j ≥ max

{
0,−1−

4hiD
u
i,j

πTi,j

}
,

βu
i,j ≥ max

{
0,−1 +

4hiD
u
i+1,j

πTi+1,j

}
.

The sufficient conditions for the remaining three inequalities
in (8) can be obtained in a similar way, which subsequently
lead to the sufficient conditions for S(u, v) > H(u, v) when
(u, v) ∈ Ω, as outlined below,

αu
i,j ≥ max

{
0,−1−

4hiD
u
i,j

πTi,j

}
,

βu
i,j ≥ max

{
0,−1 +

4hiD
u
i+1,j

πTi+1,j

}
,

αv
i,j ≥ max

{
0,−1−

4hiD
v
i,j

πTi,j

}
,

βv
i,j ≥ max

{
0,−1 +

4hiD
v
i,j+1

πTi,j+1

}
.

(10)

Then, we consider S(u, v) strictly lies below H∗(u, v).
Similarly, we have

H∗ (u, v)− S (u, v)

=b0(x) [H
∗(ui, v)− P (ui, v)] + b1(x) [H

∗(ui+1, v)

−P (ui+1, v)] + b0(y) [H
∗(u, vj)− P (u, vj)]
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+ b1(y) [H
∗(u, vj+1)− P (u, vj+1)] + b0(x)b0(y)T

∗
i,j+

b0(x)b1(y)T
∗
i,j+1 + b1(x)b0(y)T

∗
i+1,j

+ b1(x)b1(y)T
∗
i+1,j+1

=b0(y)

[
H∗(u, vj)− P (u, vj) +

1

2
b0(x)T

∗
i,j

+
1

2
b1(x)T

∗
i+1,j

]
+ b1(y) [H

∗(u, vj+1)− P (u, vj+1)

+
1

2
b0(x)T

∗
i,j+1 +

1

2
b1(x)T

∗
i+1,j+1

]
+ b0(x)

[
H∗(ui, v)− P (ui, v) +

1

2
b0(y)T

∗
i,j

+
1

2
b1(y)T

∗
i,j+1

]
+ b1(x) [H

∗(ui+1, v)

−P (ui+1, v) +
1

2
b0(y)T

∗
i+1,j +

1

2
b1(y)T

∗
i+1,j+1

]
.

From these, we can infer that H∗(u, v) > S(u, v) in the
patch πi,j , if



H∗(u, vj)− P (u, vj) +
1

2
b0(x)T

∗
i,j +

1

2
b1(x)T

∗
i+1,j > 0,

H∗(u, vj+1)− P (u, vj+1) +
1

2
b0(x)T

∗
i,j+1

+
1

2
b1(x)T

∗
i+1,j+1 > 0,

H∗(ui, v)− P (ui, v) +
1

2
b0(y)T

∗
i,j +

1

2
b1(y)T

∗
i,j+1 > 0,

H∗(ui+1, v)− P (ui+1, v) +
1

2
b0(y)T

∗
i+1,j

+
1

2
b1(y)T

∗
i+1,j+1 > 0.

(11)
By simple computations, we have

G∗(u, vj)−H(u, vj)−
1

2
b0(t)

(
H∗

i,j − Pi,j

)
−1

2
b1(t)

(
H∗

i+1,j − Pi+1,j

)
= −1

2
B0(x;α

u
i,j)T

∗
i,j −B1(x;α

u
i,j)

[
T ∗
i,j

2
+

2hiD
u
i,j

π(1 + αu
i,j)

]

−B2(x;β
u
i,j)

[
T ∗
i+1,j

2
−

2hiD
u
i+1,j

π(1 + βu
i,j)

]
−1

2
B3(x;β

u
i,j)T

∗
i+1,j+1.

(12)
It is easy to check that (12) will be positive if


αu
i,j ≥ max

{
0,−1−

4hiD
u
i,j

πT ∗
i,j

}
,

βu
i,j ≥ max

{
0,−1 +

4hiD
u
i+1,j

πT ∗
i+1,j

}
.

Then we derive the sufficient conditions for the remaining
three inequalities in (11), which subsequently lead to the
sufficient conditions for H∗(u, v) > S(u, v) when (u, v) ∈

Ω, as outlined below,

αu
i,j ≥ max

{
0,−1−

4hiD
u
i,j

πT ∗
i,j

}
,

βu
i,j ≥ max

{
0,−1 +

4hiD
u
i+1,j

πT ∗
i+1,j

}
,

αv
i,j ≥ max

{
0,−1−

4hiD
v
i,j

πT ∗
i,j

}
,

βv
i,j ≥ max

{
0,−1 +

4hiD
v
i,j+1

πT ∗
i,j+1

}
.

(13)

Now, combining (10) with (13), sufficient conditions for the
region control on the entire domain Ω can be summarized as
the following theorem,

Theorem III.1. Given data sets {(ui, vj , Hi,j)},{
(ui, vj , H

∗
i,j)

}
and {(ui, vj , Pi,j)} defined on the domain

Ω and satisfying Hi,j ≤ Pi,j ≤ H∗
i,j . S(u, v) is the resulting

RCT surface given in (3), H(u, v) and H∗(u, v) are the
resulting quadratic trigonometric blending surfaces given in
(7). If all the local control factors in the RCT surface satisfy

αu
i,j = max

{
0,−1−

4hiD
u
i,j

πTi,j
,−1−

4hiD
u
i,j

πT ∗
i,j

}
+ ρui,j ,

βu
i,j = max

{
0, 1 +

4hiD
u
i+1,j

πTi+1,j
,−1 +

4hiD
u
i+1,j

πT ∗
i+1,j

}
+σu

i,j ,

αv
i,j = max

{
0,−1−

4hiD
v
i,j

πTi,j
,−1−

4hiD
v
i,j

πT ∗
i,j

}
+ ρvi,j ,

βv
i,j = max

{
0,−1 +

4hiD
v
i,j+1

πTi,j+1
,−1 +

4hiD
v
i,j+1

πT ∗
i,j+1

}
+σv

i,j ,
(14)

where ρui,j , ρ
v
i,j , σ

u
i,j , σ

v
i,j are non-negative parameters. Then,

we have H(u, v) < S(u, v) < H∗(u, v).

IV. NUMERICAL EXPERIMENTS

In this section, we conduct some numerical experiments to
exam the region control concerning the C1 RCT interpolation
surface under the proposed conditions (14). In Figure 1, the
data {(ui, vj , Pi,j)} are presented in Table I with H∗

i,j =
Pi,j + 0.14, Hi,j = Pi,j − 0.14. Figure 1(a) demonstrates
the interpolation surface S1(u, v) constructed by setting all
parameters ρui,j = ρvi,j = σu

i,j = σv
i,j = 0. Figure 1(d)

demonstrates the interpolation surface S2(u, v) constructed
by setting all parameters ρui,j = ρvi,j = σu

i,j = σv
i,j = 1.2.

In Figure 2, the data {(ui, vj , Pi,j)} are presented in
Table II with H∗

i,j = Pi,j+0.2, Hi,j = Pi,j−0.2. Figure 2(a)
demonstrates the interpolation surface S1(u, v) constructed
by setting all parameters ρui,j = ρvi,j = σu

i,j = σv
i,j = 0.

Figure 2(d) demonstrates the interpolation surface S2(u, v)
constructed by setting all parameters ρui,j = ρvi,j = σu

i,j =
σv
i,j = 1.2.
In Figure 3, the data {(ui, vj , Pi,j)} are presented in

Table III with H∗
i,j = Pi,j+0.8, Hi,j = Pi,j−0.8. Figure 3(a)

demonstrates the interpolation surface S1(u, v) constructed
by setting all parameters ρui,j = ρvi,j = σu

i,j = σv
i,j = 0.
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TABLE I: The 3D data set given by Hussain and Sarfraz [1].

y/x -3 -2 -1 1 2 3

-3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124

-2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238

-1 0.0404 0.1667 1.3333 1.3333 0.1667 0.0404

1 0.0404 0.1667 1.333 1.3333 0.1667 0.0404

2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238

3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124

Fig. 1 The interpolation surface for the data stated in Table I.

TABLE II: The 3D data set given by Abbas et al. [10].

y/x -3 -2 -1 0 1 2 3

-3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401

-2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583

-1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078

0 1.0400 1.0403 1.1753 2.0400 1.1753 1.0403 1.0400

1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078

2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583

3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401

Figure 3(d) demonstrates the interpolation surface S2(u, v)
constructed by setting all parameters ρui,j = ρvi,j = σu

i,j =
σv
i,j = 1.2.
In Figure 4, the data {(ui, vj , Pi,j)} are presented in

Table IV with H∗
i,j = Pi,j+14, Hi,j = Pi,j−14. Figure 4(a)

demonstrates the interpolation surface S1(u, v) constructed
by setting all parameters ρui,j = ρvi,j = σu

i,j = σv
i,j = 0.

Figure 4(d) demonstrates the interpolation surface S2(u, v)
constructed by setting all parameters ρui,j = ρvi,j = σu

i,j =
σv
i,j = 1.2.
We conclude that under the conditions in (14), the gen-

erated surfaces will strictly lie within two specific piece-
wise blending quadratic trigonometric interpolation surfaces.
Additionally, the local free control factors enable the local
modification of surface shapes.

V. CONCLUSIONS

Based on the C1 RCT splines, we have discussed the
region control of the generated surfaces in detail and de-

duced the explicit and sufficient conditions. In scientific and
engineering applications, precise control of surface geometry
is crucial. Our method, as evidenced by numerical findings,
ensures that RCT interpolation surface satisfies specific geo-
metric constraints within designated regions, which provides
practitioners with reliable tools for achieving this control
and enables them to create surfaces that meet functional
requirements and strictly adhere to geometric constraints.
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