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Abstract—Solving large-scale systems of nonlinear equations
and inequalities poses significant challenges in computational
optimization. This paper proposes a novel smoothing approxi-
mation framework to tackle this issue. Initially, convex inequal-
ities are reformulated as a non-differentiable minimax problem.
Subsequently, we demonstrate that approximate solutions can
be obtained through a smoothing approximation technique.
To solve the resulting approximation problem, a Newton-type
algorithm is employed. Furthermore, we analyze key properties
of the approximate function and establish global convergence
of the proposed algorithm under mild assumptions. Numerical
experiments validate the method’s efficacy and efficiency.

Index Terms—Operational research, Optimization, Smooth
function, Inequality problem, Algorithm.

I. INTRODUCTION

SYSTEMS of nonlinear equalities and inequalities play a
critical role in diverse real-world applications, including

applied mathematics, computer science, data analysis, image
reconstruction, and set separation problems. These systems
are fundamental for modeling, design, and analytical pro-
cesses, particular in numerical solutions of partial differential
equations (PDEs), power systems, nonlinear complementar-
ity problems, and unconstrained optimization [1], [2], [3],
[4]. A prominent example is the Graph Realization Problem
(GRP) [5], which has attracted considerable attention in the-
oretical computer science. Additionally, parameters ensuring
the GUUB property in phase plane control are expressed
via nonlinear inequalities [6]. The simultaneous stabilization
of multiple linear time-invariant (LTI) systems can also be
interpreted as solving specific nonlinear inequalities [7].
Similarly, determining the operational area of robotic ma-
nipulators involves solving specific nonlinear inequalities [8],
[3]. For a comprehensive review of nonlinear inequalities and
their applications, readers are encouraged to consult related
literature, including [5], [9] and the references therein.

As noted in [10], [11], a growing body of research explores
on related areas, including constrained optimization problem-
s, convex variational inequalities, complementary problems,
and equilibrium problems. For detailed insights, readers are
referred to [12], [13], [14]. Convex inequality problems
present significant difficulties due to their non-convex,non-
smoothness, and lack of Lipschitz continuity [15], [16].

Over the past decade, smoothing function methods have
become prominent numerical techniques for solving nonlin-
ear inequalities, attracting significant research attention (see,
e.g., [17], [18], [19], [20], [21], [22]). These approaches
transform the original problem into a nonsmooth function
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F (x), then approximate it through by a smooth function
f(x, ε) with a smoothing parameter ε. The generalized
derivative ∂F (x) is then approximated by f ′(x, ε). No-
table rooted in the least-squares framework, these methods
maintain robust convergence properties while encountered
nonsmoothness challenges. However, the performance and
efficiency are heavily depended on the specific function
developed, and the computational complexity may increase
exponential in the worst case, presenting implementation
barriers. These inherent limitations underscore the critical
need for developing more effective approximation functions
to advance practical applications in nonlinear inequality.

In this paper, we focus on smoothing algorithms and
introduce a novel continuous approach for solving convex
inequalities. The main contributions of this work are twofold:

(I) We present a novel smoothing function and develop
a numerical algorithm for solving nonlinear inequalities.
The algorithm is implemented via the MATLAB function
fmincon, effectively identifies solutions to these inequalities
while maintaining computational efficiency.

(II) The proposed numerical algorithm can be easily em-
ployed to calculate solutions for nonlinear inequalities by
utilizing an optimization search criterion.

The remainder of this paper is structured as follows.
Section 2 introduces a smooth approximation and presents its
properties of. Section 3 analyzes the convergence properties
of the algorithm. Section 4 provides a demonstration of
numerical experiments, and Section 5 concludes the findings
and potential directions for future research.

II. SMOOTHING FUNCTION AND ITS PROPERTIES

Consider the equalities and inequalities{
fI(x) ≤ 0, I = {1, 2, · · · , l},
fE(x) = 0, E = {l + 1, l + 2, · · · ,m}. (1)

where fi : Rn −→ R, i = 1, 2, · · · ,m(m ≥ 2), are
continuously differentiable and convex, and x ∈ Rn. When I
is empty set, the system (1) reduces to a system of equations;
whereas E is empty it is a system of inequalities.

To depict and solve the system (1), we can transform prob-
lem (1) into the following equivalent optimization problems

min
x∈Rn

m∑
i=1

(fi(x))
+, (2)

where fi(x)
+ = max {0, fi(x)}, i = 1, 2, · · · ,m.

The function in (2) presents a non-smooth optimization
problem. This non-smoothness limits the applicability of
differentiable optimization methods. To address this chal-
lenge, various smoothing techniques have been proposed
and widely discussed in related literature to solve problem
(2)(see, for example [20], [21], [22], [23]).
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This paper focus on smoothing algorithms, proposing a
novel continuous approach for solving convex inequalities.
The smoothing method involves reformulating these inequal-
ities into an equivalent, non-differentiable optimization prob-
lem. And the proposed methodology demonstrates superior
numerical stability and computational efficiency compared to
conventional techniques, supported by both theoretical analy-
sis and numerical simulation. As noted in [22], [19], the main
idea of smoothing-type algorithm for solving inequalities is
to reformulate system (1) as a system of smoothing equations
via projection function.
Let

fi(x)
+ = max {0, fi(x)}, i = 1, 2, · · · ,m. (3)

We notice that the inequalities (7) is equivalent to the
following optimization problem

min
x∈Rn

m∑
i=1

fi(x)
+. (4)

Thus, the inequalities are formulated as an equivalent un-
constraint minimizing problem. However, formulation (4) is
non-differentiable and difficult to solve, rending classical
optimization methods inapplicable.We construct a differen-
tiable approximation by smoothing technique, simplifying
its application. To establish the properties of the smooth
function, we present the following assumptions.
Assumption 1. fi(x)(i = 1, 2, ...,m) satisfies the following:

lim
∥x∥→+∞

fi(x) = +∞(i = 1, 2, · · · ,m).

Assumption 2. fi(x)(i = 1, 2, ...,m) is a convex and
differentiable function.

Under Assumption 1, there exists at least a global minima
of problem (4). And Assumption 2 makes the analysis
simpler, and it is also a common assumption in the convex
inequalities literature (see, for example, [1], [9]).

Next, we connect the maximum function max{0, t} to
a parametric smoothing procedure with an adjustable pa-
rameter r, yielding the smooth function θr(·). Under the
mild conditions, the proposed smoothing function exhibits
important mathematical properties such as strong convexity
and, in many case, infinite differentiability, enabling the
inequality problem to be equivalently transformed into a
smooth nonlinear programming problem. As r → 0, the
smoothing function converges to the original non-smooth
maximum function, as will be rigorously proved later.

We introduce a real value function θr(·) map R into R+

to approximate the maximum function.
Define a function θr(t) by

θr(t) =
t+

√
t2 + 4r2

2
, (5)

where r > 0 is an adjustable parameter.
Remark 1 The function t+

√
t2+4r2

2 has a wide range of ap-
plications and is commonly used in the field of analysis and
control theory (see [24] and reference therein). In this paper,
we apply this function to approximate the convex inequalities
and analyze its properties for the first time. Furthermore,
the upper bound between the approximation function and
the original function is proposed. Next, we introduce some
important properties of the real value function θr(·).
Proposition 1 Let θr(·) : R −→ R+ be the function given

as above. Then the function θr(t) is strictly convex and
differentiable for all r ∈ (0, 1], and θ

′

r(0) > 0.
Proof Based on θr(t) defined in (9), we have

θ
′

r(t) =
1

2
(1 +

t√
t2 + 4r2

), θ
′′

r (t) =
2r2

(t2 + 4r2)
3
2

> 0.

This shows that θr(t) is strictly convex and differentiable
for any t ∈ R and r ∈ (0, 1]. In addition, we have
θ
′

r(0) =
1
2 > 0.

Proposition 2 Let θr(·) : R −→ R+ be the function
given as θr(t) =

t+
√
t2+4r2

2 , then we get that lim
r→0+

θr(t) =

max{0, t}. That is, the function θr(t) uniformly converges
to the maximum function max{0, t} when the adjustable
parameter r approaches to zero.
Proof We can compute that

lim
r→0+

θr(t) = lim
r→0+

t+
√
t2 + 4r2

2

= lim
r→0+

t+ |t|
2

If t < 0, then we have |t| = −t, which indicates
lim

r→0+

t+|t|
2 = lim

r→0+

t−t
2 = 0; otherwise, if t ≥ 0, we have

|t| = t, which gives lim
r→0+

t+|t|
2 = lim

r→0+

t+t
2 = t. Hence,

lim
r→0+

θr(t) = max{0, t}.
Proposition 3 For any t ∈ (−∞,+∞), the approximation
function θr(·) increase in r. Moreover, for 0 < r2 < r1 < 1,
we have 0 < θr1(·)− θr2(·) < r1 − r2.

Proof Since ∂θr(t)
∂r = 2r√

t2+4r2
> 0, which follows θr(·)

is increasing in r.
Further, we get that

θr1(t)− θr2(t) =
4r21 − 4r22

2(
√
t2 + 4r21 +

√
t2 + 4r22)

≤ 4r21 − 4r22
2(2r1 + 2r2)

= r1 − r2.

Figure 1 shows the smoothing function θr(t) approaches
function max{0, t} under different parameters r. It can be
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Fig. 1. The pattern of θr(t) and max{0, t} for different r.

observed that a smaller value of the parameter r leads to
a higher degree of approximation. Specially, θr(t) exactly
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approaches max{0, t} when r = 0. However, if parameter r
is zero, the function θr(t) is non-smooth.

Based on the discussion aforementioned, the function θr(·)
with a adjustable parameter r is applied here to replace the
plus function of (8) and obtain a differentiable optimization
problem

max
x

ϕr(x) =
m∑
i=1

fi(x) +
√
f2
i (x) + 4r2

2
(6)

This problem is a strongly convex, unconstrained minimiza-
tion problem, ensuring the existence of a unique optimal
solution. We demonstrate that the solution of problem (1) can
be obtained by solving problem (9) as r approaches zero.
Remark 2 Similar algorithmic framework has been discussed
in [20] and [21] for solving the system of inequalities. One
main feature of this work is that the method proposed is
conceptually simple and numerically stable.
Remark 3 Huang and Zhang [22] converted inequalities into
a system of smooth equations, focusing on the case n = m
and introducing slack variable for n < m. In contrast, our
approach reformulates the inequalities into an optimization
problem and presents a novel smooth function, which is
applicable regardless of whether n = m or n < m or n > m.

We begin with two simple lemmas that is the basis of our
theoretical analysis. Since their proof can be found in [25]
(Theorem 1.3.10) , we here omit the proof due to space.
Lemma 1 Suppose that gi(x) : V −→ R+(i = 1, 2, · · · , l)
are convex functions with convex set V ⊆ Rn and nonneg-
ative real number λi(i = 1, 2, · · · , l), then

∑l
i=1 λigi(x) is

also convex function in convex set V .
Lemma 2 Suppose that gi(x) : V −→ R+(i = 1, 2, · · · , l)
are differentiable function with V ⊆ Rn being a set and
λi(i = 1, 2, · · · , l) are real number, then

∑l
i=1 λigi(x) is

also differentiable function in set V .
Threorem 1 Let ϕr(x) be the function defined as (3), then
ϕr(x) is strictly convex and differentiable.

Proof By the expression of ϕr(x), together with Lemma 1
and Lemma 2, we immediately obtain the desired conclusion.
Threorem 2 For any x and r > 0 it holds

ϕr(x)−
m∑
i=1

max{0, fi(x)} ≤ mr.

If r1 > 0, r2 > 0 and r1 ≥ r2, we get that

0 ≤ ϕr1(x)− ϕr2(x) ≤ m(r1 − r2).

Proof According to (10), we have

ϕr(x)−
m∑
i=1

max{0, fi(x)}

=
1

2

m∑
i=1

4r2√
f2
i (x) + 4r2 +

√
f2
i (x)

≤ 1

2

m∑
i=1

4r2

2r
= mr.

Note that ϕr(x) is increasing in r, we get that ϕr1(x) −

ϕr2(x) ≥ 0 for r1 ≥ r2. Furthermore, we have

ϕr1(x)− ϕr2(x) =
m∑
i=1

4r21 − 4r22

2(
√
f2
i (x) + 4r21 +

√
f2
i (x) + 4r22)

≤
m∑
i=1

4r21 − 4r22
2(2r1 + 2r2)

= m(r1 − r2).

Theorem 1 indicates that the approximate function is dif-
ferentiable convex function. Thus unconstraint optimization
method can be applied to solve this problem.

III. ALGORITHM AND CONVERGENCE FOR THE
INEQUALITIES

Based on the above discussions, the inequality problem
can be converted into an unconstraint smoothing optimization
problem:

minϕr(x) =
m∑
i=1

fi(x) +
√

f2
i (x) + 4r2

2

By making use of the result of the previous section and taking
advantage of the differentiable of the objective function of
problem (10), we prescribe a Newton algorithm with Armijo
stepsize that makes the algorithm globally convergent.
Let

F (x) =

m∑
i=1

max
1≤i≤m

{fi(x), 0}

Algorithms is as follows:

Algorithm 1 The algorithm for smoothing approximation

Ensure: x(0), r0 > 0, l ∈ (0, 1) and ϵ > 0.
Step 1(Initialization) Given r0 > 0, l ∈ (0, 1), and ϵ > 0.
Select a initial point x(0) and let k := 0.
Step 2(Termination)
if |F (x(k))− ϕrk(x

(k))| > ϵ then
Step 3 Solve problem (10) and denote by x(k) its
optimal solution:
3.1 Newton direction dk: Solve the linear equation

∇2
xxϕr(x

(k))dk = −∇xϕr(x
(k))

3.2 Armijo stepsize: Select λk = {1, 1
2 ,

1
4 , · · · }such that

ϕr(x
(k))dk − ϕr(x

(k)) + λkd
k)

≥ −δλk[∇xϕr(x
(k))]T dk

where δ ∈ (0, 1
2 ).

Step 4 Update the parameter rk+1 = lrk.
Step 5 Set x(k+1) = x(k), k := k+1 and go to Step 2.

end if

To guarantee the algorithm is well-defined, we next give
a convergent theorem of solution.
Threorem 3 Let the level set L{x|ϕr(x) ≤ ϕr0(x

(0))}
is bounded and the function ϕr(x) is defined as (3), then
the limited point of {x(k)} is the optimal solution of the
inequality problem.
Proof Noting that ϕr(x) is convex function, according to the
convergence theorem of convex programming we know that
the limited point of x∗ which deriving from the algorithm
is the global solution of the function ϕr(x). Considering the
Theorem 1 and Theorem 2, this limit also is the optimal
solution of the inequalities.
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TABLE I
SIMULATIONS FOR EXAMPLES

Examples ST NI SOL F

Example 1

(
0

0

)
5

(
−1.623521

0.216929

)


−0.998610

−0.976563

−11.048299

−3.353867

−4.765113

−1.787725



Example 2


0

0

0

0

 5


0.800814

0.551510

0.224163

0.000002





−0.199186

−0.897924

−0.448489

−0.800009

−0.775837

−0.502467


Example 3

(
0

5

)
5

(
0.030293

0.009044

) (
−0.999001

−0.999001

)

Example 4


0.5

2

1

0

0

 3


0.706607

0.706899

1.000000

0.992802

0.992802




−0.293393

2.076067

−0.293100

5.002926

−0.071977



IV. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness and efficiency of
the smoothing method, we provide examples. The al-
gorithms are implemented in MATLAB Online (http-
s://matlab.mathworks.com/) using the following notations:
ST denotes the value of starting point x(0), SOL represents
the feasible solution obtained by the algorithm, and NI
indicates the number of iterations. The other parameters are
set as follows:

r0 = 1, l =
1

4
, ε = 10−6

Example 1[26] f1(x) = sin(x1) ≤ 0, f2(x) = − cos(x2) ≤
0, f3(x) = x1 − 1 ≤ 0, f4(x) = x2 − π

2 − 2 ≤ 0, f5(x) =
x1 − π ≤ 0, f6(x) = −x2 − π

2 ≤ 0.
Example 2[27] f1(x) = x1− 1 ≤ 0, f2(x) = 10(x2−x2

1) ≤
0, f3(x) = x2 − 1 ≤ 0, f4(x) = 10(x3 − x2

2) ≤ 0, f5(x) =
x3 − 1 ≤ 0, f6(x) = 10(x4 − x2

3) ≤ 0.
Example 3[26] f1(x) = x2

1 + x2
2 − 1 ≤ 0, f2(x) = −x2

1 −
x2
2 + 0.9992 ≤ 0.

Example 4[26] f1(x) = x1+x3−1.6 ≤ 0, f2(x) = 1.333x2+
x4 − 3 ≤ 0, f3(x) = −x3 −x4 +x5 ≤ 0, f4(x) = x2

1 −x2
3 −

1.25 = 0, f5(x) = x1.5
2 + 1.5x4 − 3 ≤ 0.

Examples 1 and 2 correspond to the case where n < m, while
examples 3 and 4 addresses the scenario where n = m. The
results are shown in Table 1.

Compared to [26], which obtains a feasible solution for
Example 1 in six iterations, our method achieves the same
in five iterations. For Examples 3 and 4, [26] requires eight
and four iterations, respectively, while our method achieves
comparable efficiency. Table 2 provides a comparison of
iterations with other methods. From Table 2, it is evident that
all tested problems were solved with fewer iterations, demon-
strating the effectiveness and applicability of our method.

TABLE II
COMPARISON OF ITERATIONS

Example
Iterations Feasible solution

Ours Reference [26] Ours Reference [26]

Example 1 5 6

(
−1.623521

0.216929

) (
−0.0294

1.5416

)

Example 3 5 8

(
0.030293

0.009045

) (
−0.6188

0.7853

)

Example 4 3 4


0.706607

0.706899

1.000000

0.992802

0.992802




0.5557

1.3242

0.9703

0.9840

1.1546



To further demonstrate the robustness and practicality of
the proposed algorithm for large-scale problems, we present
Example 5. This example is designed to test the algorithm’s
performance on high-dimensional systems, highlighting its
efficiency and scalability. The results show that the algorithm
maintains its effectiveness even as the problem size increases,
confirming its suitability for real-world applications where
large-scale inequalities are common. Additionally, the algo-
rithm’s insensitivity to initial points and its ability to handle
cases where n ̸= m further underscore its versatility and
robustness.

Example 5[27] (Rosenbrocks function) f2k−1(x) = xk −
1 ≤ 0, f2k(x) = 10(xk+1 − x2

k) ≤ 0, k = 1, 2, · · · , 19.
The problem has 20 variables and 38 equations. We
choose different initial points x0 = (0, 0, · · · , 0)T ,
x0 = (1, 1, · · · , 1)T , x0 = (10, 10, · · · , 10)T , x0 =
(−1,−1, · · · ,−1)T and x0 = (−10,−10, · · · ,−10)T ,
which denote by [0]n, [1]n, [10]n, [−1]n and [−10]n, re-
spectively. The numerical results are listed in Table 3.

V. CONCLUSION

In this paper, we propose a novel smooth formulation that
convert traditional inequality into a smooth unconstrained
optimization problem, which is efficiently solved using a
Newton-Armijo algorithm. This approach overcomes key
limitations such as ill-conditioning and computational com-
plexity while delivering high computational efficiency and
superior performance. Moreover, the implementation of this
algorithm is relatively simple. Future work will focus on
exploring alternative smooth functions and further enhancing
convergence speed.
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TABLE III
SIMULATIONS FOR EXAMPLE 5

ST SOL ST SOL ST SOL

[0]n



0.894726

0.738793

0.484395

0.178177

0.000001

0.000000

0.0000001

0.000000

0.000000

0.000000

0.499998

0.499998

0.499998

0.499998

0.499998

0.499998

0.499998

0.499998

0.499998

0.499998



[1]n



0.995128

0.982720

0.957440

0.903360

0.796501

0.617491

0.350470

0.104180

0.005427

0.003173

0.501102

0.501102

0.501102

0.501102

0.501102

0.501102

0.501102

0.501102

0.501102

0.501102



[10]n



0.994287

0.980996

0.953633

0.896082

0.785068

0.596175

0.339016

0.085009

0.004026

0.003169
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