
 

  

Abstract—System of linear balances in symmetrized max-

plus algebra has a similar role with system of linear equations 

in conventional algebra. Therefore, this study aimed to discuss 

the solution to system of linear balances in symmetrized max-

plus algebra for arbitrary coefficient matrix. The solution was 

characterized using minor rank of the coefficient matrix, which 

was partitioned to position the submatrix corresponding to 

minor rank in the upper-left corner. Additionally, the 

guaranteed existence of this balanced inverse submatrix was 

used to construct solution to system of linear balances. The 

results showed that solution to the system could be 

characterized based on minor rank of the coefficient matrix, 

such as full-row rank, full-column rank, or neither. 

 
Index Terms—Balanced inverse, minor rank, system of 

linear balances, symmetrized max-plus algebra 

 

 

I. INTRODUCTION 

HE max-plus algebra is defined as the set ℝ ∪ {−∞}, 

equipped with two binary operations, namely maximum 

(denoted as "max") for addition and conventional addition 

(denoted as "plus") for multiplication. In this context, ℝ 

represents the set of all real numbers and the algebraic 

structure is denoted by ℝmax. In comparison with 

conventional algebra, not every element in max-plus algebra 

has an additive inverse, except for the zero element [7]. 

The absence of additive inverse in max-plus algebra can 

be addressed through a symmetrization process. This 

process introduces a balance relation, denoted by ∇, to 

define additive inverse-like elements in max-plus algebra. 

The result of symmetrization process is called symmetrized 

max-plus algebra, represented by 𝕊. Typically, the structure  
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of 𝕊 comprises three different components, which include 

positive, negative, and balance parts. Furthermore, ℝmax can 

be interpreted as the positive parts of 𝕊, providing a broader 

framework for algebraic operations [3].  

The system of linear balances in 𝕊 serves a similar 

purpose to system of linear equations in conventional linear 

algebra. Detailed discussions on system of linear equations 

in linear algebra are available in [8], highlighting their 

numerous applications in daily scenarios. Many problems 

can be formulated and solved using system of linear 

equations. For instance, the system of linear equations in 

ℝmax was discussed in [3], and the solution was determined 

using the concept of greatest subsolution. Further studies on 

max-plus interval systems of linear equations are presented 

in [9], while the investigation into system of fuzzy numbers 

in max-plus equations is discussed in [10]. 

The study of system of linear balances 𝐴 ⊗ 𝑥∇𝑏, where 𝐴 

is an 𝑛 × 𝑛 matrix, has been examined in [3,1], but this 

discussion is limited to square coefficient matrix. Solving 

system of linear balances using 𝐴 ⊗ 𝑋 ⊗ 𝐴∇ 𝐴, where 𝐴 is 

an 𝑚 × 𝑛 matrix, as a generalized inverse in conventional 

algebra, has been addressed in [2]. However, this approach 

is considered inefficient for determining the solution to 

system of linear balances. Furthermore, the application of 

Cholesky decomposition to determine solutions for system 

of linear balances with 𝐴 ⊗ 𝑥∇𝑏, where 𝐴 is an 𝑛 × 𝑛 

matrix has been explored in [12]. 

Discussion about expands the solution of system of linear 

balances 𝐴 ⊗ 𝑥∇𝑏 presented in [3] to accommodate an 

arbitrary coefficient matrix 𝐴. The existence of a balanced 

inverse for submatrix of 𝐴 to construct solutions of system 

of linear balances is determined using minor rank, as 

described in [11]. The obtained result simplifies the 

calculation process for determining the solution, compared 

to the method described in [2]. Additionally, the solution in 

[3] is observed to be a special case of broader results 

developed in this study 

Based on the organization of this study, Section 1 

provides an introduction, explaining the motivation for 

studying the topics. Section 2 discusses symmetrized max-

plus algebra and its connection to conventional algebra. 

Sections 3, 4, and 5 present the main result, including the 

existence of balanced inverse of matrix in symmetrized 

max-plus algebra, characterization of solution for system of 

linear balances according to minor rank, and application of 
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system, respectively. Finally, Section 6 contains the 

conclusion and the summary of key findings.  

II. PRELIMINARIES 

Max-plus algebra is a mathematical system defined as 

ℝmax = ℝ ∪ {−∞}, equipped with two binary operations, 

namely addition and multiplication. In this context, ℝ 

represents the set of all real numbers, and the operations are 

defined as follows:  

𝑎 ⊕ 𝑏 = max(𝑎, 𝑏) 

𝑎 ⊗ 𝑏 = 𝑎 + 𝑏 

where max(𝑎, −∞) = 𝑎 and 𝑎 + (−∞) = −∞, for every 

𝑎, 𝑏 ∈ ℝmax. In max-plus algebra, the zero element is 

denoted as ℰ = −∞, while the unity element is denoted as 

𝑒 = 0. It is important to be aware that every non-zero 

element in ℝmax has no additive inverse 

Max-plus algebraic symmetrization can be used to derive 

a negative form, similar to the process of expanding natural 

numbers into integers, in order to obtain a balanced element. 

For a comprehensive discussion on the symmetrisation 

process in max-plus algebra, please refer to [3]. The addition 

and multiplication in ℝmax × ℝmax are defined as follows: 

(𝑎, 𝑏) ⊕ (𝑐, 𝑑) = (𝑎 ⊕ 𝑐, 𝑏 ⊕ 𝑑) 

(𝑎, 𝑏) ⊗ (𝑐, 𝑑) = (𝑎 ⊗ 𝑐 ⊕ 𝑏 ⊗ 𝑑, 𝑎 ⊗ 𝑑 ⊕ 𝑏 ⊗ 𝑐) 

for all (𝑎, 𝑏), (𝑐, 𝑑) ∈ ℝmax × ℝmax. The zero element is 

(ℰ, ℰ), the unity element is (0, ℰ), and the zero element is an 

absorbent for multiplication. 

Definition 1 [3] 

Let 𝑢 = (𝑎, 𝑏), 𝑣 = (𝑐, 𝑑) ∈ ℝmax × ℝmax. The balance 

relation, denoted by ∇ is defined as follows: 

𝑢∇𝑣 iff 𝑎 ⊕ 𝑑 = 𝑏 ⊕ 𝑐 

The balance relation is both reflexive and symmetric but 

not transitive. This implies that the relation can not be 

classified as equivalence. Consequently, it is not feasible to 

define the quotient set of ℝmax × ℝmax using ∇. 

Definition 2 [3] 

Let 𝑢 = (𝑎, 𝑏), 𝑣 = (𝑐, 𝑑) ∈ ℝmax × ℝmax. Relation ℬ in 

ℝmax × ℝmax is defined as 𝑢 ℬ 𝑣 iff 

  {
(𝑎, 𝑏)∇(𝑐, 𝑑)        , for 𝑎 ≠ 𝑏 and 𝑐 ≠ 𝑑

(𝑎, 𝑏) = (𝑐, 𝑑) , for 𝑎 = 𝑏 or 𝑐 = 𝑑
 

There are three types of equivalence classes generated by 

ℬ, including (𝑤, −∞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ called max-positive (shortened to 𝑤), 

(−∞, 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, known as max-negative (shortened to ⊖ 𝑤), and 

(𝑤, 𝑤)̅̅ ̅̅ ̅̅ ̅̅  referred to as balanced (shortened to 𝑤⦁). Max-zero 

class is denoted by (ℰ, ℰ)̅̅ ̅̅ ̅̅ ̅ and simply written as ℰ. The 

quotient set of ℝmax × ℝmax by ℬ is denoted as  

(ℝmax × ℝmax)/ℬ ≝ 𝕊 

where the zero element is denoted by ℰ = (ℰ, ℰ)̅̅ ̅̅ ̅̅ ̅ and the 

unity element is 𝑒 = (0, ℰ)̅̅ ̅̅ ̅̅ ̅. Additionally, 𝕊 is called 

symmetrized max-plus algebra. The set of all max-positive 

or zero class is denoted by 𝕊⊕, the set of all max-negative or 

zero class is represented as 𝕊⊖, and the set of all balanced 

class is denoted by 𝕊⦁. The set of all signed element is 

represented by 𝕊∨ = 𝕊⊕ ∪ 𝕊⊖. Then, 𝕊⊕ ∪ 𝕊⊖ ∪ 𝕊⦁ = 𝕊, 

𝕊⊕ ∩ 𝕊⊖ ∩ 𝕊⦁ = {(ℰ, ℰ)̅̅ ̅̅ ̅̅ ̅} and 𝕊∗
∨ = 𝕊∨\𝕊⦁ represents the set 

of all elements that have an inverse multiplication. Several 

conceptual analogies between symmetrized max-plus 

algebra and conventional algebra are shown in Table 1. 

Theorem 3 [3] 

If 𝑥, 𝑦 ∈ ℝmax, then  

𝑥 ⊕ (⊖ 𝑦) = {
 𝑥     , for 𝑥 > 𝑦
⊖ 𝑦 , for 𝑥 < 𝑦
𝑥⦁    , for 𝑥 = 𝑦

 

Theorem 4 [3] 

For all 𝑎, 𝑏, 𝑐 ∈ 𝕊, 𝑎 ⊖ 𝑐 ∇ 𝑏 if and only if 𝑎∇𝑏 ⊕ 𝑐.  

Theorem 5 [3] Weak Substitution 

For all 𝑎, 𝑏, 𝑐 ∈ 𝕊 and 𝑥 ∈ 𝕊∨, if 𝑥∇𝑎 and 𝑐 ⊗ 𝑥∇𝑏, then 

𝑐 ⊗ 𝑎∇𝑏. 

Theorem 6 [3] Reduction of Balance 

If 𝑎𝛻𝑏 then 𝑎 = 𝑏, for 𝑎, 𝑏 ∈ 𝕊∨. 

The properties in Theorems 5 and 6 are called weak 

substitution and reduction of balance in symmetrized max-

plus algebra, respectively. A balancing matrix over 

symmetrized max-plus algebra is similar to an equality 

matrix in conventional algebra. Specifically, for all 𝐴, 𝐵 ∈
𝕊𝑚×𝑛, 𝐴 ∇ 𝐵 iff 𝑎𝑖𝑗  ∇ 𝑏𝑖𝑗 for 𝑖 = 1,2, … , 𝑚 and 𝑗 =

1,2, … , 𝑛. 

The relationship between symmetrized max-plus algebra 

and conventional algebra is discussed in [5]. This 

connection is used to solve problems in symmetrized max-

plus algebra through conventional algebraic method. The 

mapping that defines this link is explained in the following 

definition. 

Definition 7 [5] 

A mapping ℱ with domain of 𝕊 × ℝ0 × ℝ0
+ is defined as 

ℱ(𝑎, 𝜇, 𝑠) = {

|𝜇|𝑒𝑎𝑠          , if 𝑎 ∈ 𝕊⊕

−|𝜇|𝑒|𝑎|⊕𝑠 , if 𝑎 ∈ 𝕊⊖

𝜇𝑒|𝑎|⊕𝑠       , if 𝑎 ∈ 𝕊⦁

 

where 𝑎 ∈ 𝕊, 𝜇 ∈ ℝ0, 𝑠 ∈ ℝ0
+. 

If 𝑓 and 𝑔 are functions, then 𝑓 is asymtotically equivalent 

to 𝑔 in the neighborhood of ∞, denoted as 𝑓~𝑔 for 𝑥 → ∞.  

Definition 8 [5] 

Let 𝑓(𝑠) ~ 𝑣𝑒|𝑎|⊕𝑠 in the neighborhood of ∞. The reverse 

function ℛ is defined as follows: 

ℛ(𝑓) = {
|𝑎|⊕      , if 𝑣 positive

⊖ |𝑎|⊕  , if 𝑣 negative
. 

III. THE BALANCED INVERSE 

This section discusses the inverse of matrix over 

TABLE I 

ANALOGY OF CONCEPTS OF CONVENTIONAL ALGEBRA 
AND SYMMETRIZED MAX-PLUS ALGEBRA 

Conventional 

Algebra 

Symmetrized 

Max-Plus Algebra 

+ ⊕ 

× ⊗ 

− ⊖ 

= ∇ 

0 𝑎⦁ 

ℝ+ 𝕊⊕ 

ℝ− 𝕊⊖ 
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symmetrized max-plus algebra in a “balanced” sense. The 

existence of balanced inverse for matrix over symmetrized 

max-plus algebra is demonstrated using the mapping in 

Definition 7 and 8. The following definition explains the 

balanced inverse of matrix in symmetrized max-plus 

algebra. 

Definition 9  

Let 𝐴 ∈ 𝕊𝑛×𝑛. If there exists a matrix 𝐵 ∈ 𝕊𝑛×𝑛 such that 

𝐴 ⊗ 𝐵∇𝐼𝑛 and ⊗ 𝐴∇𝐼𝑛 , then 𝐴 is said to be balanced 

invertible and 𝐵 is balanced inverse of 𝐴. Furthermore, the 

balanced inverse of 𝐴 is denoted by 𝐴∇
−1. 

First, the determinants of matrix in symmetrized max-plus 

algebra are discussed, along with their relationship to the 

determinants of a conventional matrix. 

Lemma 10 

Let ⊕𝑗=1
𝑛 (∏𝑖=1

𝑚 𝑥𝑖𝑗) = ℰ where 𝑥𝑖𝑗 ∈ 𝕊 for 𝑖 = 1,2, … , 𝑚 

and 𝑗 = 1,2, … , 𝑛. Then, each of  ∏𝑖=1
𝑛 𝑥𝑖𝑗  contains 𝑥𝑖𝑗 = ℰ.  

Proof. Since ⊕𝑗=1
𝑛 (∏𝑖=1

𝑚 𝑥𝑖𝑗) = ℰ then each of (∏𝑖=1
𝑚 𝑥𝑖𝑗) is 

ℰ. Consequently, 𝑥1𝑗 = ℰ or 𝑥2𝑗 = ℰ or … or 𝑥𝑚𝑗 = ℰ, and 

each ∏𝑖=1
𝑛 𝑥𝑖𝑗  contains 𝑥𝑖𝑗 = ℰ. ∎ 

Theorem 11 

Let 𝐴 ∈ 𝕊𝑛×𝑛 and 𝐴̃ = ℱ(𝐴, 𝑀𝐴,∙) where 𝑀𝐴 ∈ ℝ0
𝑛×𝑛 is the 

matrix which corresponds to 𝐴 by mapping in Definition 7. 

If det(𝐴̃) = 0 then det(𝐴) ∇ℰ. 

Proof. Suppose  

det(𝐴) = ⊕𝜎 (sign(𝜎) ⊗𝑖=1
𝑛 𝑎𝑖𝜎(𝑖)). 

For 𝑘 = 1,2, … , 𝑛!, let 𝑟𝑘 is the product of ⊗𝑖=1
𝑛 𝑎𝑖𝜎(𝑖) where 

𝑟1
⊕, 𝑟2

⊕, … , 𝑟𝑛!
2

⊕
 and 𝑟1

⊖, 𝑟2
⊖, … , 𝑟𝑛!

2

⊖
 are the positive and the 

negative signed products, respectively. Let 

𝑟1
⊕ ⊕ 𝑟2

⊕ ⊕ … ⊕ 𝑟𝑛!
2

⊕ = 𝑟⊕ 

𝑟1
⊖ ⊕ 𝑟2

⊖ ⊕ … ⊕ 𝑟𝑛!
2

⊖ = 𝑟⊖ 

then 𝑟⊕ ⊕ 𝑟⊖⍫ℰ. 

Suppose 𝑎𝑖𝑗  corresponds to 𝑎̃𝑖𝑗 , 𝑟̃𝑘 is the signed product 

of ⊗𝑖=1
𝑛 𝑎̃𝑖𝜎(𝑖) in det(𝐴̃), for 𝑘 = 1,2, … , 𝑛!. If 

𝑟̃1
⊕, 𝑟̃2

⊕, … , 𝑟̃𝑛!
2

⊕
 are the positive signed product and 

𝑟̃1
⊖, 𝑟̃2

⊖, … , 𝑟̃𝑛!
2

⊖
 are the negative signed product in det(𝐴̃) 

then det (𝐴̃(𝑠)) ~𝑒𝑟⊕𝑠⊕𝑟⊖𝑠 = 𝑒(𝑟⊕⊕𝑟⊖)𝑠 ≠ 0, 𝑠 → ∞. 

Consequently,  

lim
𝑠→∞

det (𝐴̃(𝑠))

𝑒(𝑟⊕⊕𝑟⊖)𝑠
= 1 

where 𝑒(𝑟⊕⊕𝑟⊖)𝑠 ≠ 0 and det (𝐴̃(𝑠)) ≠ 0. Therefore, if 

det(𝐴) ⍫ℰ then det(𝐴̃) ≠ 0. ∎  

The following theorem shows the existence of balanced 

inverse of matrix over symmetrized max-plus algebra.  

Theorem 12 

Let 𝐴 ∈ 𝕊𝑛×𝑛. If det(𝐴)⍫ℰ then there is 𝐴∇
−1 ∈ (𝕊∨)𝑛×𝑛 

such that 𝐴 ⊗ 𝐴∇
−1∇ 𝐼𝑛 and 𝐴∇

−1 ⊗ 𝐴∇𝐼𝑛.  

Proof. If there exists a non-signed element in 𝐴 ∈ 𝕊𝑛×𝑛, 

then 𝐴̂ ∈ (𝕊∨)𝑛×𝑛 is defined as:  

𝑎̂𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑎𝑖𝑗  is signed element

|𝑎𝑖𝑗|
⊕

         , 𝑎𝑖𝑗  is non signed element
 

for all 𝑖, 𝑗. Since 𝑎̂𝑖𝑗∇𝑎𝑖𝑗 for all 𝑖, 𝑗, then 𝐴̂∇𝐴. Furthermore, 

if 𝐴̂∇𝐴, then 𝐴̂ ⊗ 𝐴∇
−1∇ 𝐼𝑛 and 𝐴∇

−1 ⊗ 𝐴̂∇ 𝐼𝑛. This shows 

that it is sufficient to prove the case of a signed matrix 𝐴. 

Then, assuming 𝐴 is a signed matrix.  

Let 𝐴̃ = [𝑎̃𝑖𝑗] be a matrix in conventional algebra that 

corresponds to 𝐴 = [𝑎𝑖𝑗] ∈ 𝕊𝑛×𝑛 by mapping in Definition 

7. According to Theorem 11, since det(𝐴)⍫ℰ, it follows 

that det(𝐴̃) ≠ 0.  

Suppose cof (𝐴̃(𝑠))
𝑇

is transpose of cofactor matrix in 

𝐴̃(𝑠), then  

𝐴̃(𝑠). cof (𝐴̃(𝑠))
𝑇

det (𝐴̃(𝑠))
~ 𝐼𝑛 

and 

cof (𝐴̃(𝑠))
𝑇

. 𝐴̃(𝑠)

det (𝐴̃(𝑠))
~𝐼𝑛 

for 𝑠 → ∞. Let  

𝐴̃̅(𝑠) ≝
cof (𝐴̃(𝑠))

𝑇

det (𝐴̃(𝑠))
 

then 𝐴̃(𝑠) and 𝐴̃̅(𝑠) satisfy 𝐴̃(𝑠)𝐴̃̅(𝑠)~𝐼𝑛 and 𝐴̃̅(𝑠)𝐴̃(𝑠)~𝐼𝑛, 

respectively. Consequently, it follows that 𝐴 ⊗ 𝐴∇
−1∇𝐼𝑛 and 

𝐴∇
−1 ⊗ 𝐴∇𝐼𝑛. This implies that the balanced inverse 𝐴∇

−1 ∈
(𝕊∨)𝑛×𝑛 exists for a signed matrix 𝐴 where 𝐴 ⊗ 𝐴∇

−1∇𝐼𝑛 and 

𝐴∇
−1 ⊗ 𝐴∇𝐼𝑛. By the weak substitution properties, the 

existence of 𝐴∇
−1 ∈ (𝕊∨)𝑛×𝑛 is also valid for a non-signed 

matrix 𝐴. ∎ 

According to [3], 𝐴 ⊗ cof(𝐴)𝑇 ∇ det(𝐴) ⊗ 𝐼𝑛. If 

det(𝐴) ⍫ℰ, then  

𝐴 ⊗ (det(𝐴)−1 ⊗ cof(𝐴)𝑇) ∇ 𝐼𝑛. 

This implies that (det(𝐴)−1 ⊗ cof(𝐴)𝑇) is also the balanced 

inverse form of 𝐴. The balanced inverse 𝐴∇
−1 offers more 

benefits than (det(𝐴)−1 ⊗ cof(𝐴)𝑇) as described in [3]. 

Since 𝐴∇
−1 ∈ (𝕊∨)𝑛×𝑛, the weak substitution property can be 

used to obtain another matrix in 𝕊𝑛×𝑛 which balances to 

𝐴∇
−1. Meanwhile, this is not necessarily true for 

(det(𝐴)−1 ⊗ cof(𝐴)𝑇), as the property may not be a signed 

matrix. 

Corollary 13 

Let 𝐴∇
−1 ∈ (𝕊∨)𝑛×𝑛 is the balanced inverse of 𝐴. For any 

𝐴∇
−1′ ∈ 𝕊𝑛×𝑛, if 𝐴∇

−1′
∇𝐴∇

−1 then it satisfies 𝐴 ⊗ 𝐴∇
−1′

∇ 𝐼𝑛 and 

𝐴∇
−1′

⊗ 𝐴 ∇ 𝐼𝑛. 

Proof. Since 𝐴∇
−1′∇𝐴∇

−1, 𝐴 ⊗ 𝐴∇
−1 ∇𝐼𝑛 and 𝐴∇

−1 ⊗ 𝐴∇𝐼𝑛 

where 𝐴∇
−1 ∈ (𝕊∨)𝑛×𝑛, then according to weak substitution 

properties, it follows that 𝐴 ⊗ 𝐴∇
−1′∇𝐼𝑛 and 𝐴∇

−1′ ⊗ 𝐴∇𝐼𝑛, 

respectively. ∎ 

Let 𝐴 = [
1 0⦁

−1 ⊖ 2
], then det(𝐴) =⊖ 3 ⍫ ℰ and  

𝐴̃(𝑠) = [
𝑒𝑠 1

𝑒−𝑠 −𝑒2𝑠] 

is a conventional matrix that corresponds to 𝐴. Since 

det (𝐴̃(𝑠)) = −𝑒3𝑠 − 𝑒−𝑠~−𝑒3𝑠 then 

𝐴̃(𝑠)−1 =
1

−𝑒3𝑠
[−𝑒2𝑠 −1
−𝑒−𝑠 𝑒𝑠 ] ~ [ 𝑒−𝑠 𝑒−3𝑠

𝑒−4𝑠 −𝑒−2𝑠]. 

This corresponds with 𝐴∇
−1 = [

−1 −3
−4 ⊖ (−2)

]. Note that  

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 1931-1939

 
______________________________________________________________________________________ 



 

𝐴 ⊗ 𝐴∇
−1 = [

0 ⊖ (−2)⦁

⊖ (−2)⦁ 0
] ∇  𝐼2  

and  

𝐴∇
−1 ⊗ 𝐴 = [

0 (−1)⦁

⊖ (−2)⦁ 0
] ∇  𝐼2. 

Meanwhile,  

det(𝐴)−1 ⊗ cof(𝐴)𝑇 = [
−1 (−3)⦁

−4 ⊖ (−2)
] 

This also satisfies 𝐴 ⊗ (det(𝐴)−1 ⊗ cof(𝐴)𝑇) ∇ 𝐼2 and 

(det(𝐴)−1 ⊗ cof(𝐴)𝑇) ∇ 𝐼2. In this context, the matrix 

det(𝐴)−1 ⊗ cof(𝐴)𝑇 is not a signed matrix, since there is a 

balance entry (−1)⦁. Furthermore, det(𝐴)−1 ⊗ cof(𝐴)𝑇 is 

one of matrix that balances with 𝐴∇
−1 and satisfy the balance 

inverse of 𝐴. 

 

IV. THE SOLUTION OF SYSTEM OF LINEAR BALANCES 

In this section, the solution of system of linear balances 

𝐴 ⊗ 𝑥∇𝑏 for arbritary coefficient matrix 𝐴 is discussed. The 

solution is determined using minor rank of a square 

submatrix of coefficient matrix 𝐴. The solution of system of 

linear balances 𝐴 ⊗ 𝑥 ∇ 𝑏, is characterized for cases where 

𝐴 has full-row rank, full-column rank, or neither. The 

identification of minor rank of 𝐴 is performed in order to 

achieve a partition of 𝐴 as described in [4]. Subsequently, 

the balanced inverse of the square submatrix of 𝐴 

corresponding to minor rank is used to construct the solution 

of system of linear balances. 

Definition 14 [7] 

Let 𝐴 ∈ 𝕊𝑚×𝑛. Max-algebraic minor rank of 𝐴 is the 

dimension of the largest square submatrix of max-algebraic 

determinant of 𝐴 which is not balanced. 

Theorem 15 [3]  

Let 𝐴 ⊗ 𝑥∇𝑏 be system of linear balances where 𝐴 ∈ 𝕊𝑛×𝑛, 

det(𝐴) ∈ 𝕊∗
∨, 𝑏 ∈ 𝕊𝑛 and cof(𝐴)𝑇 ⊗ 𝑏 ∈ (𝕊∨)𝑛. Then, there 

exists a unique solution of 𝐴 ⊗ 𝑥∇𝑏 and it satisfies 

𝑥 ∇ (cof(𝐴)𝑇 ⊗ 𝑏)𝑇 ⊗ det(𝐴)−1. 

Theorem 15 is called Cramer’s rule in symmetrized max-

plus algebra. In addition, it shows determination of the 

solution of system of linear balances 𝐴 ⊗ 𝑥∇𝑏 for matrix 𝐴 

of size 𝑛 × 𝑛 and det(𝐴) ∈ 𝕊∗
∨. This study extends system of 

linear balances 𝐴 ⊗ 𝑥∇𝑏 to an arbitrary coefficient matrix 

of size 𝑚 × 𝑛. The following properties present the partition 

of 𝐴 based on minor rank and permutation matrix. 

Lemma 16 

Let 𝐴 ∈ 𝕊𝑟×𝑛 and minor rank of 𝐴 is 𝑟. Then, there exists a 

permutation matrix 𝑄 ∈ 𝕊𝑛×𝑛 such that 𝐴 = [𝐴1 𝐴2] ⊗
𝑄𝑇 , where 𝐴1 ∈ 𝕊𝑟×𝑟  is a submatrix of 𝐴 which corresponds 

to minor rank of 𝐴. 

Proof. Since minor rank of 𝐴 ∈ 𝕊𝑟×𝑛 is 𝑟, there exists an 

𝑟 × 𝑟 submatrix whose determinant is not balanced with ℰ. 

Let the columns corresponding to minor rank of 𝐴 be 

𝑘1, 𝑘2, … , 𝑘𝑟. Subsequently, a column swap is performed to 

position 𝑘1, 𝑘2, … , 𝑘𝑟 in the 1,2, … , 𝑟𝑡ℎ columns, 

respectively. After the column changes, a matrix is obtained 

where the entries in the first 𝑟 column are 𝑞𝑖𝑗 = 𝑒 for 𝑖𝑗 =

𝑘11, 𝑘22, … , 𝑘𝑟𝑟 and 𝑞𝑖𝑗 = ℰ for others. This matrix is a 

permutation matrix 𝑄 ∈ 𝕊𝑛×𝑛. Consequently, it follows that 

𝐴 ⊗ 𝑄 is a matrix where the first 𝑟 column corresponds to 

minor rank of 𝐴. 

Let 𝐴1 be a matrix whose columns correspond to the 𝑟 

columns associated with minor rank of 𝐴, and let 𝐴2 be a 

matrix whose columns represent the remaining (𝑛 − 𝑟) 

columns that do not correspond to minor rank of 𝐴. 

Therefore, the matrix 𝐴 can be partitioned as  

𝐴 ⊗ 𝑄 = [𝐴1 𝐴2]. 

Since 𝑄 is permutation matrix, there exists 𝑄𝑇 ∈ (𝕊∨)𝑛 

such that 𝑄 ⊗ 𝑄𝑇 = 𝐼𝑛 and 𝑄𝑇 ⊗ 𝑄 = 𝐼𝑛. Consequently, 

𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇 .∎ 

Lemma 17 

Let 𝐴 ∈ 𝕊𝑚×𝑟 minor rank of 𝐴 is 𝑟. Then, there exists a 

permutation matrix 𝑃 ∈ 𝕊𝑚×𝑚 such that 𝐴 = 𝑃𝑇 ⊗ [
𝐴1

𝐴2
] 

where 𝐴1 ∈ 𝕊𝑟×𝑟 is a submatrix of 𝐴 which corresponds to 

minor rank of 𝐴. 

Proof. Since minor rank of 𝐴 ∈ 𝕊𝑚×𝑟  is 𝑟, there exists an 

𝑟 × 𝑟 submatrix whose determinant is not balanced with ℰ. 

Let the rows corresponding to minor rank 𝐴 be denoted as 

𝑏1, 𝑏2, … , 𝑏𝑟. A row swap is then performed such that the 

positions 𝑏1, 𝑏2, … , 𝑏𝑟  are placed in the 1,2, … , 𝑟𝑡ℎ rows, 

respectively. After the rows swap, a matrix is obtained 

where entries in the first 𝑟 rows are 𝑝𝑖𝑗 = 𝑒 for 𝑖𝑗 =

1𝑏1, 2𝑏2, … , 𝑟𝑏𝑟  and 𝑝𝑖𝑗 = ℰ for others. This matrix is a 

permuation matrix 𝑃 ∈ 𝕊𝑚×𝑚, and it follows that 𝑃 ⊗ 𝐴 is a 

matrix where the first 𝑟 rows correspond to minor rank of 𝐴.  

Let 𝐴1 be a matrix whose rows correspond to 𝑟 associated 

with minor rank of 𝐴, and let 𝐴2 be a matrix whose rows are 

the remaining (𝑚 − 𝑟) rows that do not correspond to minor 

rank of 𝐴. Therefore, 𝐴 can be partitioned as 𝑃 ⊗ 𝐴 = [
𝐴1

𝐴2
]. 

Since 𝑃 is permutation matrix, there exists 𝑃𝑇 ∈ (𝕊∨)𝑛 such 

that 𝑃 ⊗ 𝑃𝑇 = 𝐼𝑚 and 𝑃𝑇 ⊗ 𝑃 = 𝐼𝑚. Consequently, 𝐴 =

𝑃𝑇 ⊗ [
𝐴1

𝐴2
].∎ 

Corollary 18 

Let 𝐴 ∈ 𝕊𝑚×𝑛 and minor rank of 𝐴 is < 𝑚, 𝑟 < 𝑛. Then, 

there exists a permutation matrix 𝑃 ∈ 𝕊𝑚×𝑚 and 𝑄 ∈ 𝕊𝑛×𝑛 

such that 

𝐴 = 𝑃𝑇 ⊗ [
𝐴1 𝐴2

𝐴3 𝐴4
] ⊗ 𝑄𝑇  

where 𝐴1 ∈ 𝕊r×r is submatrix of 𝐴 corresponding to minor 

rank of 𝐴. 

Proof. Analogous to Lemma 16 and 17. ∎ 

Lemma 16 and 17 are used to analyze the coefficient 

matrix of system of linear balances 𝐴 ⊗ 𝑥 ∇ 𝑏 in order to 

create partition matrix 𝐴. Furthermore, the solution of the 

system of linear balances 𝐴 ⊗ 𝑥 ∇ 𝑏 is determined based on 

minor rank of 𝐴. The existence of balanced inverse of the 

submatrix of 𝐴 corresponding to minor rank of 𝐴 is used to 

construct a solution of system of linear balances. 

Let 𝐴 ⊗ 𝑥∇𝑏 be a system of linear balances, 𝐴 ∈ 𝕊𝑟×𝑛 

and minor rank of 𝐴 is 𝑟. According to Lemma 16, the 

system of linear balances is formulated as follows:  

[𝐴1 𝐴2] ⊗ 𝑄𝑇 ⊗ 𝑥∇𝑏      (1) 

where 𝑄 ∈ 𝕊𝑛×𝑛 is a permutation matrix and 𝐴1 ∈ 𝕊𝑟×𝑟  is a 

submatrix of 𝐴 corresponding to minor rank of 𝐴. Since 

det(𝐴1) ⍫ℰ, the existence of balanced inverse of 𝐴 is 

guaranteed. Let 𝐴1∇
−1 be the balanced inverse of 𝐴, then 

[𝐴1 𝐴2]𝑟×𝑛 ⊗ [𝐴1∇
−1

ℰ
]

𝑛×𝑟
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= [𝐴1 𝐴2]𝑟×𝑛 ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [𝐴1∇
−1

ℰ
]

𝑛×𝑟

∇ 𝐼𝑟 .  (2) 

If constant vector in (1) is 𝑏 = ℰ, then system of linear 

balances is as follows: 

[𝐴1 𝐴2] ⊗ 𝑄𝑇 ⊗ 𝑥∇ℰ.       (3) 

Let 𝐹 = 𝐴1∇
−1 ⊗ 𝐴2. If both equality is multiplied by 𝐴1 then  

𝐴1 ⊗ 𝐹 = 𝐴1 ⊗ 𝐴1∇
−1 ⊗ 𝐴2 ∇ 𝐴2. 

If 𝐴2 is a signed matrix, then by the weak substitution 

property, it is obtained that: 

𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑥 ∇ ℰ.     (4) 

Since [𝐼𝑟 𝐹]𝑟×𝑛 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] = 𝐹⦁ then  

[𝐼𝑟 𝐹]𝑟×𝑛 ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] = 𝐹⦁. 

Therefore, 

[𝐼𝑟 𝐹]𝑟×𝑛 ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ∇ ℰ.     (5) 

According to (2) and (5) the following theorems are 

considered, respectively. 

Theorem 19 

Let 𝐴 ⊗ 𝑥 ∇ 𝑏 be a system of linear balances, 𝐴 ∈ 𝕊𝑟×𝑛 and 

𝑏 ∈ 𝕊𝑟 . If minor rank of 𝐴 is 𝑟, 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇  where 

𝐴1 ∈ 𝕊𝑟×𝑟  is a submatrix of 𝐴 which corresponds to minor 

rank of 𝐴 and 𝑄 is an 𝑛 × 𝑛 permutation matrix then 

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] 

is solution of system of linear balances. Furthermore, if  

𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ∈ (𝕊∨)𝑛 

then all of 𝑥 which 

𝑥∇𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] 

is also the solution of system of linear balances. 

Proof. If there exists a non-signed element in 𝐴 ∈ 𝕊𝑟×𝑛, 

then 𝐴̂ ∈ (𝕊∨)𝑟×𝑛 is defined as  

𝑎̂𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑎𝑖𝑗  is signed element

|𝑎𝑖𝑗|
⊕

        , 𝑎𝑖𝑗  is non signed element
 

for all 𝑖, 𝑗. Since 𝑎̂𝑖𝑗∇𝑎𝑖𝑗 for all 𝑖, 𝑗, it follows that 𝐴̂∇𝐴. If 

𝐴̂∇𝐴 and 𝐴̂ ⊗ 𝑥∇𝑏, then 𝐴 ⊗ 𝑥∇𝑏. Therefore, it is sufficient 

to prove a signed matrix 𝐴.  

Let 𝐴 be a signed matrix. Since 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇 , it 

follows that 

 𝐴 ⊗ (𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
]) 

 = [𝐴1 𝐴2] ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] 

 ∇ 𝐼𝑟 ⊗ 𝑏 = 𝑏. 

Furthermore, 𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] satisfies 𝐴 ⊗ 𝑥 ∇ 𝑏, 

and it is a solution of 𝐴 ⊗ 𝑥 ∇ 𝑏.  If 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ∈

(𝕊∨)𝑛, then by the weak substitution, it follows that all of 𝑥 

where 𝑥 ∇ 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] also solutions to the system of 

linear balances 𝐴 ⊗ 𝑥 ∇ 𝑏. ∎ 

Theorem 20  

Let 𝐴 ⊗ 𝑥 ∇ ℰ be a system of linear balances, 𝐴 ∈ 𝕊𝑟×𝑛. If 

minor rank of 𝐴 is 𝑟, 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇  with 𝐴1 ∈ 𝕊𝑟×𝑟  is 

the submatrix corresponding to minor rank of 𝐴, 𝑄 is an 

𝑛 × 𝑛 permutation matrix and 𝐹 = 𝐴1∇
−1 ⊗ 𝐴2 then 

𝑥 = 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

for 𝑦 ∈ 𝕊𝑛−𝑟, is solution of the system of linear balances. If  

𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛 

then all of 𝑥 which 

𝑥∇𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

for 𝑦 ∈ 𝕊𝑛−𝑟, is also the solution to the system of linear 

balances. 

Proof. If there exists a non-signed element in 𝐴 ∈ 𝕊𝑟×𝑛, 

then 𝐴̂ ∈ (𝕊∨)𝑟×𝑛 is defined as follows:  

𝑎̂𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑎𝑖𝑗  is signed element

|𝑎𝑖𝑗|
⊕

         , 𝑎𝑖𝑗  is non signed element
 

for all 𝑖, 𝑗. Since 𝑎̂𝑖𝑗∇𝑎𝑖𝑗 for all 𝑖, 𝑗, it follows that 𝐴̂∇𝐴. If 

𝐴̂∇𝐴 and 𝐴̂ ⊗ 𝑥∇𝑏, then 𝐴 ⊗ 𝑥∇𝑏. This shows that it is 

sufficient to prove a signed matrix 𝐴.  

Let 𝐴 be a signed matrix. Since 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇  then 

[𝐴1 𝐴2] ⊗ 𝑄𝑇𝑥 ∇ ℰ. Since 𝐴2 is a signed matrix, then 

 [𝐴1 𝐴1 ⊗ 𝐹] ⊗ 𝑄𝑇 ⊗ (𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦) 

    = [𝐴1 𝐴1 ⊗ 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

    = 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝐼𝑛 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

    = 𝐴1 ⊗ (⊖ 𝐹 ⊕ 𝐹) ⊗ 𝑦 

    = 𝐴1 ⊗ 𝐹⦁ ⊗ 𝑦 ∇ ℰ,  

for 𝑦 ∈ 𝕊𝑛−𝑟. The expression 𝑥 = 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 where 

𝑦 ∈ 𝕊𝑛−𝑟 satisfies the balance linear systems 𝐴 ⊗ 𝑥 ∇ ℰ, 

and it is solution to 𝐴 ⊗ 𝑥 ∇ ℰ. 

If 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛, then by applying the weak 

substitution property, it follows that all of 𝑥 where  

𝑥 ∇ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦, 𝑦 ∈ 𝕊𝑛−𝑟 

also solution to the balanced linear systems. ∎ 

Corollary 21 

Let 𝐴 ⊗ 𝑥 ∇ ℰ be a system of linear balances, 𝐴 ∈ 𝕊𝑟×𝑛 and 

𝑏 ∈ 𝕊𝑟 . If minor rank of 𝐴 is 𝑟, 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇  with 

𝐴1 ∈ 𝕊𝑟×𝑟  is the submatrix corresponding to minor rank of 

𝐴, 𝑄 is an 𝑛 × 𝑛 permutation matrix and 𝐹 = 𝐴1∇
−1 ⊗ 𝐴2 

then 

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦  

for 𝑦 ∈ 𝕊𝑛−𝑟, is solution of system of linear balances. If  

𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛 

then all of 𝑥 which 

𝑥∇𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦  

for 𝑦 ∈ 𝕊𝑛−𝑟, is also solution to the system of linear 

balances. 

Proof. Since  

𝐴 ⊗ (𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦) 

= 𝐴 ⊗ (𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
]) ⊕ 𝐴 ⊗ (𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦) 
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 ∇ 𝑏 ⊕ ℰ = 𝑏, 

then  

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦  

for 𝑦 ∈ 𝕊𝑛−𝑟, satisfies the system of linear balances. 

Therefore, it is solution to 𝐴 ⊗ 𝑥 ∇ 𝑏. 

If  𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛 then 

according to the weak substitution property, it is obtained 

that all of 𝑥 where 

𝑥∇𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

for 𝑦 ∈ 𝕊𝑛−𝑟, also solution of the balance linear systems. ∎ 

Let 𝐴 ⊗ 𝑥∇𝑏 be the system of linear balances, 𝐴 ∈ 𝕊𝑚×𝑟 

and minor rank of 𝐴 is 𝑟. According to theorem 17, it is 

obtained that 𝑃𝑇 ⊗ [
𝐴1

𝐴2
] ⊗ 𝑥∇𝑏. If 𝑃 is partitioned into 𝑃 =

[
𝑃1

𝑃2
], then [

𝑃1

𝑃2
]

𝑇

⊗ [
𝐴1

𝐴2
] ⊗ 𝑥∇ 𝑏, with 𝑃 ∈ 𝕊𝑚×𝑚 is a 

permutation matrix and 𝐴1 ∈ 𝕊𝑟×𝑟  is a submatrix 

corresponding to minor rank of 𝐴. Since det(𝐴1) ⍫ℰ, then 

the existence of the balanced inverse of 𝐴 is guaranteed. 

Let 𝐺 = 𝐴2 ⊗ 𝐴1∇
−1 ∈ 𝕊(𝑚−𝑟)×𝑟 then ⊗ 𝐴1∇𝐴2. If 𝐴2 is a 

signed matrix then  

[
𝐼𝑟

𝐺
] ⊗ 𝐴1 ⊗ 𝑥∇ [

𝑃1

𝑃2
] ⊗ 𝑏.  

Consequently, two sub-balance linear systems are obtained 

as follows: 

𝐴1 ⊗ 𝑥∇𝑃1 ⊗ 𝑏           (6) 

𝐺 ⊗ 𝐴1 ⊗ 𝑥∇𝑃2 ⊗ 𝑏.         (7) 

The value of 𝑥 that satisfies 𝐴 ⊗ 𝑥∇𝑏 need to also satisfy 

equations (6) and (7). According to Theorem 15, the 

expression 𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 satisfies equation (6) as well 

as equation (7), expressed below.  

𝐺 ⊗ 𝐴1 ⊗ 𝑥 

= 𝐺 ⊗ 𝐴1 ⊗ 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏  

∇ 𝐺 ⊗ 𝑃1 ⊗ 𝑏. 

Therefore, 𝐺 ⊗ 𝑃1 ⊗ 𝑏 ∇ 𝑃2 ⊗ 𝑏.  

Theorem 22  

Let 𝐴 ⊗ 𝑥 ∇ 𝑏 be a system of linear balances, 𝐴 ∈ 𝕊𝑚×𝑟 

and 𝑏 ∈ 𝕊𝑟 . If minor rank of 𝐴 is 𝑟, 𝐴 = 𝑃𝑇 ⊗ [
𝐴1

𝐴2
] where 

𝑃 = [
𝑃1

𝑃2
] is an 𝑚 × 𝑚 permutation matrix, 𝐴1 is an 𝑟 × 𝑟 

submatrix of 𝐴 which corresponds to minor rank of 𝐴, 𝐺 =
𝐴2 ⊗ 𝐴1∇

−1 and 𝑃2 ⊗ 𝑏 ∇ 𝐺 ⊗ 𝑃1 ⊗ 𝑏, then 

𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 

is solution to the system of linear balances. 

If 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 ∈ (𝕊∨)𝑟 then 𝑥 ∇ 𝐴1∇

−1 ⊗ 𝑃1 ⊗ 𝑏 is also 

the solution to the system of linear balances. 

Proof. If there exists a non-signed element in 𝐴 ∈ 𝕊𝑟×𝑛, 

then 𝐴̂ ∈ (𝕊∨)𝑟×𝑛 is defined as follows:  

𝑎̂𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑎𝑖𝑗  is signed element

|𝑎𝑖𝑗|
⊕

         , 𝑎𝑖𝑗  is non signed element
 

for all 𝑖, 𝑗. Since 𝑎̂𝑖𝑗∇𝑎𝑖𝑗 for all 𝑖, 𝑗, it follows that 𝐴̂∇𝐴. If 

𝐴̂∇𝐴 and 𝐴̂ ⊗ 𝑥∇𝑏, then 𝐴 ⊗ 𝑥∇𝑏. This implies that the 

theorem is sufficient to prove a signed matrix 𝐴.  

Let 𝐴 be a signed matrix. Since 𝐺 = 𝐴2 ⊗ 𝐴1
−1 then 

𝐴2∇ 𝐺 ⊗ 𝐴1 for 𝐴2 is a signed matrix. Let 𝐴 is partitioned 

into 𝐴 = [
𝑃1

𝑃2
]

𝑇

⊗ [
𝐴1

𝐴2
], then [

𝐴1

𝐴2
] ⊗ 𝑥 ∇ [

𝑃1

𝑃2
] ⊗ 𝑏, would 

lead to two sub-systems of linear balances as follows: 

 𝐴1 ⊗ 𝑥 ∇ 𝑃1 ⊗ 𝑏        (8) 

𝐴2 ⊗ 𝑥 ∇ 𝑃2 ⊗ 𝑏        (9) 

Provided that 𝑥 satisfies both Equations (8) and (9).  

For 𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏, the solution is derived as 

follows: 

     𝐴1 ⊗ 𝑥 

     = 𝐴1 ⊗ 𝐴1
−1 ⊗ 𝑃1 ⊗ 𝑏  

     ∇ 𝐼𝑟 ⊗ 𝑃1 ⊗ 𝑏 = 𝑃1 ⊗ 𝑏 

and 𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏, satisfies equation (8). Since 

     𝐴2 ⊗ 𝑥 

     = 𝐴2 ⊗ 𝐴1
−1 ⊗ 𝑃1 ⊗ 𝑏 

     = 𝐺 ⊗ 𝑃1 ⊗ 𝑏∇ 𝑃2 ⊗ 𝑏  

then 𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 also satisfies equation (9). 

Therefore, 𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 satisfies 𝐴 ⊗ 𝑥 ∇ 𝑏. If  

𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 ∈ (𝕊∨)𝑟 

then all of 𝑥 that satisfies 𝑥 ∇ 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏 also solution to 

𝐴 ⊗ 𝑥 ∇ 𝑏. ∎ 

According to Corollary 21 and Theorem 22, a solution to 

system of linear balances 𝐴 ⊗ 𝑥∇𝑏, where 𝐴 is not full-row 

rank and full-column rank, can be constructed as seen in the 

subsequent theorem.  

Theorem 23  

Let 𝐴 ⊗ 𝑥 ∇ 𝑏 be a system of linear balances, 𝐴 ∈ 𝕊𝑚×𝑛 

and 𝑏 ∈ 𝕊𝑚. If minor rank of 𝐴 is 𝑟 < min{𝑚, 𝑛} and 

𝐴 = 𝑃𝑇 ⊗ [
𝐴1 𝐴2

𝐴3 𝐴4
] ⊗ 𝑄𝑇  

with 𝑃 = [
𝑃1

𝑃2
] is an 𝑚 × 𝑚 permutation matrix, 𝑄 is an 

𝑛 × 𝑛 permutation matrix, 𝐴1 is an 𝑟 × 𝑟 submatrix of 𝐴 

which corresponds to minor rank, 𝐹 = 𝐴1∇
−1 ⊗ 𝐴2, 𝐺 =

𝐴3 ⊗ 𝐴1∇
−1, and 𝑃2 ⊗ 𝑏∇𝐺 ⊗ 𝑃1 ⊗ 𝑏 then  

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦,  

for 𝑦 ∈ 𝕊𝑛−𝑟 , is solution of the system of linear balances. 

If 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛 then 

all of 𝑥 which   

𝑥 ∇ 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦,  

for 𝑦 ∈ 𝕊𝑛−𝑟, is also solution to the system of linear 

balances. 

Proof. If there exists a non-signed element in 𝐴 ∈ 𝕊𝑟×𝑛, 

then 𝐴̂ ∈ (𝕊∨)𝑟×𝑛 is defined as:  

𝑎̂𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑎𝑖𝑗  is signed element

|𝑎𝑖𝑗|
⊕

        , 𝑎𝑖𝑗  is non signed element
 

for all 𝑖, 𝑗. Since 𝑎̂𝑖𝑗∇𝑎𝑖𝑗 for all 𝑖, 𝑗, it follows that 𝐴̂∇𝐴. If 

𝐴̂∇𝐴 and 𝐴̂ ⊗ 𝑥∇𝑏, then 𝐴 ⊗ 𝑥∇𝑏. Therefore, it is sufficient 

to prove a signed matrix 𝐴.  

Since the property holds for signed matrix, the verification 

can proceed accordingly, 

𝐴 = 𝑃𝑇 ⊗ [
𝐴1 𝐴2

𝐴3 𝐴4
] ⊗ 𝑄𝑇 , 𝑃 = [

𝑃1

𝑃2
] 
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and  

[
𝐴1 𝐴2

𝐴3 𝐴4
] ⊗ 𝑄𝑇 ⊗ [

𝑥1

𝑥2
] ∇ [

𝑃1

𝑃2
] ⊗ 𝑏. 

Since 𝐹 = 𝐴1∇
−1 ⊗ 𝐴2 and 𝐺 = 𝐴3 ⊗ 𝐴1∇

−1, then 𝐴2∇𝐴1 ⊗ 𝐹 

and 𝐴3∇𝐺 ⊗ 𝐴1, respectively. Consequently 

[
𝐼𝑟

𝐺
] ⊗ 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑥 ∇ [

𝑃1

𝑃2
] ⊗ 𝑏    (10) 

and there are two sub-systems of linear balances, i.e 

𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑥 ∇𝑃1 ⊗ 𝑏      (11) 

𝐺 ⊗ 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑥 ∇𝑃2 ⊗ 𝑏.    (12) 

If 𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] and 𝑥 = 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 are 

substituted to (11) then 

𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ (𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
]) 

= 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ [
⊗ 𝑃1 ⊗ 𝑏

ℰ
] ∇ 𝑃1 ⊗ 𝑏 

and  

𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

= (⊖ (𝐴1 ⊗ 𝐹) ⊕ (𝐴1 ⊗ 𝐹)) ⊗ 𝑦 ∇ ℰ 

for 𝑦 ∈ 𝕊𝑛−𝑟, respectively. Therefore 

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

for 𝑦 ∈ 𝕊𝑛−𝑟 satisfies (11).   

Furthermore, if we substitute 𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] 

and 𝑥 = 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦  to (12) then we have 

   𝐺 ⊗ 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
]  

   = 𝐺 ⊗ [𝐴1 𝐴1 ⊗ 𝐹] ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] 

   = 𝐺 ⊗ 𝑃1 ⊗ 𝑏 ∇ 𝑃2 ⊗ 𝑏 

and  

   𝐺 ⊗ 𝐴1 ⊗ [𝐼𝑟 𝐹] ⊗ 𝑄𝑇 ⊗ 𝑄 ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

   = 𝐺 ⊗ [𝐴1 𝐴1 ⊗ 𝐹] ⊗ [
⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

   = 𝐺 ⊗ (𝐴1 ⊗ 𝐹)⦁ ⊗ 𝑦 ∇ ℰ,  

for 𝑦 ∈ 𝕊𝑛−𝑟. Therefore, we have 

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 

for 𝑦 ∈ 𝕊𝑛−𝑟 satisfies (12). Since  

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦  

for 𝑦 ∈ 𝕊𝑛−𝑟 satisfies (11) and (12), it satisfies 𝐴 ⊗ 𝑥 ∇ 𝑏.  

If 

𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦 ∈ (𝕊∨)𝑛  

then according to the weak substitution property, it is 

obtained that all of 𝑥 which 

𝑥 ∇ 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦, 

for 𝑦 ∈ 𝕊𝑛−𝑟, is also solution to 𝐴 ⊗ 𝑥∇𝑏. ∎ 

Theorem 15 in [3] discusses solution of system of linear 

balances 𝐴 ⊗ 𝑥∇𝑏 where 𝐴 is square matrix. This theorem 

can be viewed using Corollary 21 and Theorem 22 for 𝑟 =
𝑚 = 𝑛 as in the following corollary. 

Corollary 24 

Let 𝐴 ⊗ 𝑥 ∇ 𝑏 be the system of linear balances, 𝐴 ∈ 𝕊𝑛×𝑛 

with minor rank 𝑟 = 𝑛, then 𝑥 = 𝐴1∇
−1 ⊗ 𝑏 is solution of the 

system of linear balances. Furthermore, if 𝐴1∇
−1 ⊗ 𝑏 ∈ (𝕊∨)𝑛 

then all of 𝑥 which 𝑥∇𝐴1∇
−1 ⊗ 𝑏 is also solution of system of 

linear balances. 

Let the system of linear balance 

0 ⊗ 𝑥1 ⊕ 1 ⊗ 𝑥2 ∇ 3 

0 ⊗ 𝑥1 ⊖ 0 ⊗ 𝑥2 ∇ 1.      (13) 

then, consider system of linear balances 𝐴 ⊗ 𝑥 ∇ 𝑏, for 

𝐴 = [
0 1
0 ⊖ 0

], 𝑥 = [
𝑥1

𝑥2
] and 𝑏 = [

3
1

]. 

Minor rank of 𝐴 is 2, and the submatrix of 𝐴1 which 

corresponds to minor rank 𝐴 is expressed as 𝐴1 = 𝐴, and 

𝐴1∇
−1 = [

−1 0
−1 ⊖ (−1)

]. 

According to Corollary 24, it follows that  

𝑥 = 𝐴1∇
−1 ⊗ 𝑏 = [

2
2

] 

is the solution of system of linear balances. This vector 

represents the unique solution of equation (13) in 𝕊∨. 

However, the balance solution in 𝕊⦁ can also be determined 

using the weak substitution property of balance relations. 

Since 𝑥 is a signed vector, the weak substitution property 

guarantees that any vector 𝑥′ satisfying 𝑥′∇ [
2
2

] is also a 

solution of system of linear balances.  

The solution to system of linear balances can be 

interpretated as a geometric interpretation of the solutions 

for the two-dimensional case in the plane of signed 

coordinates 𝕊∨ × 𝕊∨. It can be interpreted as coordinates 

(𝑥1, 𝑥2), which is the intersection of two linear balances. 

Fig. 1 shows the geometric interpretation of the signed 

solution of system in equation (13). The signed vector [
2
2

] as 

the intersection point at coordinates (𝑥1, 𝑥2) = (2,2) in the 

𝕊∨ × 𝕊∨ plane.  

 
 

Fig. 1. Geometric interpretation of solution of system of linear balances 

(13) in two-dimensional plane 𝕊∨ × 𝕊∨. 
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If the second linear balance in (13) is replaced with its 

“parallel” given by 0 ⊗ 𝑥1 ⊖ 0 ⊗ 𝑥2 ∇ 3 then a new 

system of linear balances is obtained as follows: 

0 ⊗ 𝑥1 ⊕ 1 ⊗ 𝑥2 ∇ 3 

0 ⊗ 𝑥1 ⊖ 0 ⊗ 𝑥2 ∇ 3.      (14) 

The vector 𝑥 = [
3
2⦁] is a solution of system of linear 

balances in (14). However, determining a balanced solution 

in 𝕊⦁ directly using the weak substitution property in 

balance relation is not feasible because 𝑥 is not a signed 

vector.  

Fig. 2 shows a geometric interpretation of the signed 

solutions for the system of linear balances in (14). The 

vector [
3
2⦁] is represented as the intersection point at 

coordinates (𝑥1, 𝑥2) = (3, 2⦁) in the 𝕊∨ × 𝕊∨ plane.  

 

In this context, 𝑥2 = 2⦁ is a balanced element and 

includes all element 𝑥2′ ∈ 𝕊∨ that are balanced with 2⦁ 

specifically ranging from 𝑥2
′ =⊖ 2 until 𝑥2

′ = 2. 

Furthermore, a point (3, 2⦁) is represented by all points 

where 𝑥1 = 3 and 𝑥2 = 2⦁ that is from ⊖ 2 until 2. 

 

V. APPLICATION OF SYSTEM OF LINEAR BALANCES 

The solution of system of linear balances in symmetrized 

max-plus algebra can be applied to the reachability analysis 

of linear system over max-plus algebra ℝmax. Given an 

initial state 𝑋(0) ∈ ℝmax
𝑛  and a state 𝑋, the tasks include 

determining an input vector 𝑈𝑞 that drives the system state 

from 𝑋(0) to 𝑋(𝑞) = 𝑋. This is mathematically equivalent 

to determining an input vector 𝑈𝑞 which satisfies the 

following relation: 

𝑋 = 𝐴𝑞 ⊗ 𝑋(0) ⊕ ℐ𝑞 ⊗ 𝑈𝑞     (15) 

where ℐ𝑞 represents the reachability matrix of linear system. 

In case of max-plus algebra,  

𝐴𝑞 ⊗ 𝑋(0) ⊕ ℐ𝑞 ⊗ 𝑈𝑞  

cannot be equal to states that are less than the unforced 

terminal state 𝐴𝑞 ⊗ 𝑋(0) due to the properties of max 

operation. Additionally, the framework is not possible to 

independently control all components except for a small 

class of systems.  

Since ℝmax is a special case of 𝕊, the problem described 

in equation (15) can be viewed as a system of linear 

balances in 𝕊. Let the balance relation be expressed as 

𝑋 ∇ 𝐴𝑞 ⊗ 𝑋(0) ⊕ ℐ𝑞 ⊗ 𝑈𝑞  

then it is obtained  

ℐ𝑞 ⊗ 𝑈𝑞  ∇ 𝑋 ⊖ (𝐴𝑞 ⊗ 𝑋(0)).     (16) 

The problem of determining the input vector 𝑈𝑞 that 

satisfies equation (16) is similar to solving system of linear 

balances, where the coefficient matrix is ℐ𝑞 and the constant 

vector is 𝑋 ⊖ (𝐴𝑞 ⊗ 𝑋(0)). By identifying minor rank of 

the coefficient matrix ℐ𝑞, the solution for 𝑈𝑞 can be 

obtained. Consequently, an input vector 𝑈𝑞 is derived, 

which drives the system state from 𝑋(0) to 𝑋(𝑞) ∇ 𝑋. If all 

entries of Equation (14) consist of signed elements, the 

reduction of balance properties can be used to simplify 

“balance” relation into an “equal” sense. 

 

VI. CONCLUSION  

In conclusion, the solution of the system of linear 

balances 𝐴 ⊗ 𝑥∇𝑏 can be determined by analyzing minor 

rank of 𝐴. Given minor rank of 𝐴 as 𝑟, and 𝐴1 representing 

an 𝑟 × 𝑟 matrix corresponding to this minor rank, then 𝐴 can 

be characterized into partition matrix according its minor 

rank. Specifically, the partition is 𝐴 = [𝐴1 𝐴2] ⊗ 𝑄𝑇 , 

when 𝐴 is full-row rank, 𝐴 = 𝑃𝑇 ⊗ [
𝐴1

𝐴2
] when 𝐴 is full-

column rank, and 𝐴 = 𝑃𝑇 ⊗ [
𝐴1 𝐴2

𝐴3 𝐴4
] ⊗ 𝑄𝑇  when it is 

neither. Then, the existence of balanced inverse of 𝐴1 is 

used to construct solution of system of linear balances 𝐴 ⊗
𝑥∇𝑏. For a full-row rank 𝐴, the solution is given by  

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦. 

In the case of a full-column rank 𝐴 the solution simplifies to 

𝑥 = 𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏. When 𝐴 is neither full-column rank or 

full-row rank, the solution becomes  

𝑥 = 𝑄 ⊗ [𝐴1∇
−1 ⊗ 𝑃1 ⊗ 𝑏

ℰ
] ⊕ 𝑄 ⊗ [

⊖ 𝐹
𝐼𝑛−𝑟

] ⊗ 𝑦. 

If the solutions are signed vector, then all vectors balanced 

with the solution also qualify. Geometrically, the solution 

vector is interpreted as the intersection of all linear balances 

in system of linear balances.  

Further studies can be carried out on the application of 

system of linear balances in reachability and observability of 

linear system over symmetrized max-plus algebra. 

Additionally, the system of linear balances can be extended 

to complex sets over symmetrized max-plus algebra. 
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