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Abstract—Online social networks (OSNs) have significant-
ly improved the speed and universality of communication,
inadvertently fostering the propagation of rumors. However,
the spread of rumors not only harms individuals but also
threatens social stability and security, disrupting the social and
economic order. To explore the dynamics of rumor propagation
on OSNs and formulate the corresponding control strategies,
this paper presents a rumor-propagation model with a saturated
propagation rate, both with and without delay. First, the basic
regeneration number R0 is calculated using the next-generation
matrix method. The theoretical analysis focuses on the local and
global asymptotic stabilities of both the rumor-free and rumor-
prevailing equilibrium points, denoted as E0 and E∗, respec-
tively. The critical condition of the Hopf branch was obtained
by selecting time delay as a branch parameter. Pontryagin’s
maximum principle was used to determine the optimal control
for minimizing the frequency of rumor suppression. Finally,
several numerical simulations were conducted to verify the
accuracy of the theoretical results.

Index Terms—rumor propagation; stability analysis; time
delay; Hopf bifurcation; optimal control.

I. INTRODUCTION

INTERNET rumors refer to the dissemination of un-
substantiated information through online media. These

rumors may involve emergencies, public health, food and
drug safety, political figures, social phenomena, natural dis-
asters, and campus safety. Traditionally, rumors were spread
through word-of-mouth, newspapers, magazines, radio, or
television. However, with the rapid development of science
and technology, network information technology has made
significant breakthroughs, and the internet and mass media
have penetrated millions of households. In March 2024,
the China Internet Network Information Center released the
53rd Statistical Report on Internet Development e Internet in
China. The data in the report, shown in Figure 1, indicate
that by December 2023, China’s Internet users had reached
1.092 billion, an increase of 24.8 million from December
2022. The Internet penetration rate was 77.5%. Among
these users, 1.091 billion used mobile Internet, with the
proportion of Internet users accessing the Internet through
mobile phones as high as 99.9% [1]. Thus, mobile terminal
users have become key participants in OSNs. The Internet
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provides a virtual social platform [2], and its virtual nature
and anonymity have lowered netizens’ sense of responsibility
and legal awareness. The immediacy and openness of the
Internet have accelerated the spread of rumors and violence.
As Voltaire stated, “no snowflake is innocent during an
avalanche.” Netizens’ blind or even malicious comments and
posts on the Internet may contribute to online rumors and
cyber violence. Recently, frequent cyberviolence incidents
have led to many suicides. Long-term practice and research
have shown that understanding only the laws of scientific
communication can enable the development of effective
defense and intervention to mitigate the spread of rumors.
Therefore, it is crucial to investigate the propagation law
of rumors to develop effective methods for preventing their
spread.

In
te
r
n
e
t
u
se
r
si
z
e
(t
e
n
th
o
u
sa
n
d
)

In
te
r
n
e
t
p
e
n
e
tr
a
ti
o
n
r
a
te

0

20,000

40,000

60,000

80,000

100,000

120,000

0%

20%

40%

60%

78%

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

a

Line1

Figure 1. Size of Internet users and Internet penetration rate.

In this study, a rumor-propagation model was first estab-
lished and analyzed based on an infectious disease model.
Using the susceptible-infectious-recovered disease transmis-
sion model as an example, the population on the social
network was divided into three groups: those susceptible to
rumors, those who spread rumors, and those who recovered
from rumors. Such a model can simply and intuitively
describe the rumor-spreading process on social networks,
thereby predicting the development trend and peak value
of rumors through parameter analysis. In 1965, Daley and
Kendall highlighted the differences between the spread of
infectious diseases and rumors by proposing the classic
Daley–Kendal (DK) rumor spread model, which includes
detailed state-variable transfer rules [3], [4]. In 1973, Maki
and Thomson modified the DK model to create the Maki-
Thomson (MK) model, and proposed that rumors can spread
through two-way contact between spreaders and others in
the population. This model states that if the probability of
one spreader contacting another is y(y − 1), then only the
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first spreader becomes the stifler [5]. With the development
of social networks, many scholars have started using their
topological characteristics to study rumor propagation across
different environments. In 2001, Zanette [6], [7] was the first
to study rumor propagation within small-world networks,
highlighting the significant influence of the network topol-
ogy on rumor spread. In 2008, Kawachi [8] extended the
classical DK model to establish global behavioral patterns
for rumor-propagation models. Through continuous revisions
and improvements by scholars, the dynamic model of rumor-
propagation model has gradually matured and become more
comprehensive.

In recent years, most studies on internet rumor propagation
models have focused on ordinary differential equations in the
time dimension. These studies expand and develop the tradi-
tional SIR rumor propagation model by adding realistic con-
straints to better simulate and describe the rumor propagation
process in real life. Zhao et al. [9] studied the SIHR rumor
propagation model, which incorporates forgetting and mem-
ory mechanisms as hibernators (H) to the SIR model within a
homogeneous network. Wang et al. [10] proposed two media
reporting models to study the influence of different media on
rumor propagation. Considering real-world scenarios, Yu et
al. [11] investigated the dynamic behavior of the multilingual
2I2SR rumor propagation model, which examines rumor
propagation with and without time delay in a multilingual
environment. Based on people’s different attitudes towards
rumors, Hu et al. [12] proposed the susceptible-hospitalized-
asymptomatic-recovered (SHAR) model. Tong et al. [13]
studied deterministic and random class-age structure rumor
propagation models that consider media coverage and age-
related education, respectively. Additionally, considering the
heterogeneity of network users and the random disturbances
in the network environment, a random ignorants-forwarders-
collectors-deleters rumor propagation model was proposed
for heterogeneous networks. This model explores the dynam-
ic behavior of rumor propagation on social networks, paving
the way for effective control of rumor spread and providing
positive guidance for managing network public opinion.

Morbidity plays a crucial role in the transmission of
diseases and the spread of rumors. Initial studies on rumor
propagation models focused on rumor spread with bilinear
incidence. For example, in [14], [15], [16], a bilinear rumor
propagation model was proposed. However, further in-depth
research found that bilinear incidence does not closely reflect
reality , and that nonlinear incidence is more accurate. Using
both bilinear and standard incidence models is reasonable for
studying rumor propagation in a limited number of closed
chambers. Considering the public opinion system network,
the total population is very large, and an individuals contact
ability is limited. This prompted the study of the saturation
incidence of rumor propagation[17]. For example, Chen
et al. [18] proposed a novel susceptible-exposed-infected-
recovered delayed rumor propagation model with saturation
incidence in heterogeneous networks . Additionally, consid-
ering the cooling-off period, a modified innocents-spreaders-
calmness-removes model was introduced, incorporating sat-
urated incidence and time delay in a scale-free network[19].

Fake news and harmful statements spread on OSNs in a
manner similar to an epidemic, characterized by the sudden
dissemination of a large amount of malicious information

in a short time. When an emergency occurs and malicious
comments are forwarded rapidly, official platforms often
ban users [20] or blocks their accounts, while relevan-
t departments quickly release authoritative information to
refute rumors, This approach helps ensure the authenticity
of news and provides the public with a healthier and cleaner
network environment. However, in a public opinion system
network with a very large total population, the saturation
propagation rate is more realistic than bilinear propagation
rate. Therefore, we selected the saturation propagation rate
to study the mechanism of the rumor propagation model.

Based on the relevant background, we constructed time-
lagged and non-time-lagged rumor propagation models that
include saturation incidence and studied their properties
in depth. Through the next generation matrix method, we
accurately calculate the basic propagation number. Using
linear stability theory, we clarify the local stability conditions
of the system and conclude the global stability using Lypanov
function theory. To cope with the rumors, we designed
the optimal control strategy using the Pontrygin maximum
principle and verified its feasibility through numerical sim-
ulations. In addition, we study the existence conditions of
Hopf branching and determine the critical parameters and
time lag values. Finally, by fitting the numerical simulation to
a real case, we verify the accuracy of the theoretical analysis
and the effectiveness of the practical application.

The structure of this paper is as follows. In Section 2,
we consider the mechanism of rumor propagation and model
customization. In Section 3, the local and asymptotic stability
of the rumor-free equilibrium point and the rumor-prevailing
equilibrium point are analyzed by calculating the basic re-
generation number. In Section 4, the optimal control problem
is studied by using Pontryagin’s maximum principle. In
Section 5, the dynamical properties of the rumor propagation
model with time delay are studied, and the critical conditions
of Hopf bifurcation are obtained by taking time delay as
the branch parameter. In Section 6, the correctness of the
theoretical results is verified by numerical simulation. This
article is summarized in Section 7.

II. THE MODEL FORMULATION AND PRELIMINARIES

In [12], three common attitudes towards rumors among
the general public were assumed: liking rumor spreading,
disliking rumor spreading, and being hesitant or neutral
toward rumor spreading. Based on these assumptions, a
SHAR model was established to incorporate the different
attitudes of individuals toward rumor spreading. The model
is formulated as follows:

dS(t)

dt
= B − αSI − µS,

dH(t)

dt
= θ1αSI − ηH − µH,

dI(t)

dt
= θ2αSI + ϕηH − εI − µI,

dR(t)

dt
= (1− θ1 − θ2)αSI + (1− ϕ)ηH + εI − µR.

(1)
The basic reproduction number of the model was calculated,
and the local and global stabilities of the rumor-free and
prevailing equilibria were analyzed. This helped demonstrate
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how parameter changes influence rumor propagation through
numerical simulations.

In [21], [22], [23], the influence of media refutation
of rumors on rumor spreading was considered following
emergencies. Additionally, in [24], [25], a rumor propagation
model with a forced silence function was proposed for social
networks.

Figure 2. The dynamic transitions between different groups.

Inspired by the literature reviewed above, we propose a
rumor propagation model tailored for online social network-
s, incorporating a saturation propagation rate. The rumor
spreading process is illustrated in Figure 2. The transmission
dynamics equations of the model are formulated as follows:

dI(t)

dt
=Π− βI(t)S(t)

1 + ξS(t)
− vI(t)− δI(t),

dD(t)

dt
=φ1

βI(t)S(t)

1 + ξS(t)
−mD(t) + bS(t)− δD(t),

dS(t)

dt
=φ2

βI(t)S(t)

1 + ξS(t)
−mS(t)− bS(t)− δS(t),

dR(t)

dt
=(1− φ1 − φ2)

βI(t)S(t)

1 + ξS(t)
+mD(t)

+mS(t) + vI(t)− δR(t).

(2)

In our study, the total number of individuals in online
social networks is denoted as N(t), which changes over time.
Individuals in the online social network can be classified
into four categories: I(t) (ignorants), who are susceptible to
rumors; D(t) (discussants), who are exposed to rumors but
do not spread them; S(t) (spreaders), who actively spread
rumors; and R(t) (recoverers), who are exposed to rumors
but do not believe them.

The following assumptions were made in developing the
rumor spreading model on OSN.

(1) On the social networking platform, assuming that the
number of individuals entering each unit of time is constant,
with an immigration rate denoted as Π. Each category
experiences the same immigration rate, represented as δ.

(2) After an emergency, when a rumor-prone individual
comes into contact with a rumor-spreading individual, the
susceptible individual undergoes a type change. The trans-
mission rate is denoted as β; φ1 represents the probability
that a rumor-spreading individual spreads a rumor to a rumor-
susceptible individual, who then becomes a believer of the
rumor but does not spread it. φ2 represents the probability
that the rumor-susceptible individual believes and spreads the
rumor upon compact. 1− φ1 − φ2 represents the probability

that the rumor-susceptible individual does not believe the
rumor and thus does not spread it.

(3) Because each individual possesses the ability of self-
judgment, D(t) and S(t) can transition to rumor-recovery
individuals R(t) at a rate m, known as the self-recovery
rate. Upon identifying the rumor source, relevant authori-
ties promptly release authoritative information to refute the
rumor, causing susceptible individuals to transition to rumor-
recovery status at a rate of v. When rumors spread, the ratio
b represents the proportion of government and social media
platforms that ban or block users engaged in malicious rumor
spreading.

System (2) with the initial conditions

I(0) ≥ 0, D(0) ≥ 0, S(0) > 0, R(0) ≥ 0.

It is already known that the size of the entire set of individ-
uals within online social networks is N(t) , that is

N(t) = I(t) +D(t) + S(t) +R(t).

It is easy to know that dN(t)
dt = Π− (δ+ v)N . Thus N(t) =(

N0 − Π
δ+v

)
e−(δ+v)t + Π

(δ+v) and N0 = I(0) + D(0) +

S(0) + R(0). Then we have limt→+∞N(t) = Π
δ+v . Thus,

the positive variant set of system (2) is

Γ =

{
(I,D, S,R) ∈ R+

4 : I +D + S +R ≤ Π

δ + v

}
.

III. ANALYSIS OF THE MODEL

3.1 Rumor-free equilibrium and the basic reproduction num-
ber

In this section, we will apply the next - generation matrix
method proposed in [26] to derive the basic reproduction
number R0 for the purpose of exploring the characteristics
of rumor propagation. Subsequently, a detailed investigation
into the dynamics of system (2) will be carried out.

Evidently, it can be observed that D(t) and R(t) are
independent of the system of differential equations governing
I(t) and S(t). Consequently, we are able to solve the
system of ordinary differential equations for I(t) and S(t)
without taking D(t) and R(t) into account. For the sake of
convenience, system (2) can be simplified to the following
equivalent form:

dI(t)

dt
= Π− βI(t)S(t)

1 + ξS(t)
− vI(t)− δI(t),

dS(t)

dt
= φ2

βI(t)S(t)

1 + ξS(t)
−mS(t)− bS(t)− δS(t),

(3)

with the initial conditions I(0) ≥ 0, S(0) > 0.
Let X = (I, S)T , then model yields dX

dt = F −V , where
F ,V are define as

F = φ2
βI(t)S(t)

1 + ξS(t)
, V = (m+ δ + b)S(t).

The Jacobian of system (3) around E0 = ( Π
δ+v , 0), one gets

F = φ2βI0, V = m+ δ + b,

then R0 is the spectral radius of FV −1 , which takes the
following form

R0 =
φ2βΠ

(δ + v)(m+ δ + b)
.
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In order to conduct a local and global qualitative analysis
of the proposed model in the vicinity of the rumor - free
equilibrium, we make use of the following results.

Theorem 1. The rumor-free equilibrium E0 = ( Π
δ+v , 0)

of system (2) is locally asymptotically stable when R0 < 1,
while it is unstable when R0 > 1 .

Proof: The Jacobian matrix of system (3) at the rumor-
free equilibrium E0 is

J(E0) =

(
−(δ + v) − βΠ

δ+v

0 φ2βΠ
δ+v − (m+ δ + b)

)
. (4)

Accordingly, the characteristic equation can be readily ob-
tained from matrix (4) as

(λ+ δ + v)

(
λ− φ2βΠ

δ + v
+ (m+ δ + b)

)
= 0. (5)

The eigenvalues of J(E0) are given by

λ1 = −(δ + v),

λ2 =
φ2βΠ

δ + v
− (m+ δ + b)

= −(m+ δ + b)(1−R0).

Since λ1 is negative and λ2 depend on the value of R0,
which mean that all eigenvalues of J(E0) are negative if
and only if R0 < 1. Consequently, system (2) is locally
asymptotically stable at the rumor-free equilibrium E0. Now,
when R0 > 1, the Jacobian matrix J(E0) has both positive
and negative eigenvalues. Specifically, λ1 is negative and λ2

is positive. This indicates that system (2) is unstable, and the
rumor - free equilibrium E0 is an unstable saddle point.

3.2 Global stability of the rumor-free equilibrium

Theorem 2. The rumor-free equilibrium (I0, 0, 0, 0) is
globally asymptotically stable, if βΠ ≤ δ(δ + v).

Proof: We consider the Lyapunov function:

V (t) = D(t) + S(t) +R(t).

Calculating the derivative of V (t) along positive solutions
of system (2) yields

V ′(t) =φ1
βI(t)S(t)

1 + ξS(t)
−mD(t) + bS(t)− δD(t)

+ φ2
βI(t)S(t)

1 + ξS(t)
−mS(t)− bS(t)− δS(t)

+ (1− φ1 − φ2)
βI(t)S(t)

1 + ξS(t)

+mD(t) +mS(t) + vI(t)− δR(t)

=
βI(t)S(t)

1 + ξS(t)
− δ(D(t) + S(t) +R(t))

=

(
βI(t)

1 + ξS(t)
− δ
)
S(t)− δ(D(t) +R(t)).

Since I ≤ Π
δ+v , we have

V ′(t) =

(
βI(t)

1 + ξS(t)
− δ
)
S(t)− δ(D(t) +R(t))

≤ (βI(t)− δ)S(t)− δ(D(t) +R(t))

≤ (−δ +
βΠ

δ + v
)S(t)− δ(D(t) +R(t)) ≤ 0,

if
βΠ

δ + v
≤ δ.

Moreover, since δ > 0, it follows that V ′(t) ≤ 0, if βΠ ≤
δ(δ + v).

Furthermore, V ′(t) ≤ 0 holds if and only if D = S =
R = 0. The only solution of system (2) within the invariant
region Γ satisfying V ′(t) = 0 is the rumor-free equilibrium
E0. By LaSalle’s Invariance Principle [28], every solution
of system (2) converges to E0 as t → ∞. Therefore, the
rumor-free equilibrium E0 is globally asymptotically stable
in the region Γ.

3.3 The existence of the rumor-existence equilibrium

Assuming that E∗ (I∗, D∗, S∗, R∗) is the steady state of
system (2), then we obtain the following equations:

I∗ =
(m+ δ + b)(1 + ξS∗)

βφ2
,

D∗ =
1

δ +m

(
φ1βI

∗S∗

1 + ξS∗
+ bS∗

)
,

S∗ =
δ + v

β + ξ(δ + v)
(R0 − 1),

R∗ =
(1− φ1 − φ2)βI∗S∗

δ(1 + ξS∗)
+mδ(D∗ + S∗).

Clearly the rumor-existence equilibrium exists, if R0 > 1.
Thus we state the following lemma

Lemma 1. If R0 > 1, the rumor-existence equilibrium
exists, otherwise, it does not.

To conduct a local qualitative analysis in the vicinity of
the rumor - existence equilibrium, we utilize the following
result.

Theorem 3. When R0 > 1, the rumor - existence
equilibrium state E∗ of the proposed system (2) exhibits local
asymptotic stability.

Proof: The Jacobian matrix of system (2) at rumor
equilibrium E∗ can be expressed as

J(E∗)

=


−βS∗

1+ξS∗ − k1 0 −βI∗
(1+ξS∗)2 0

φ1βS
∗

1+ξS∗ −(m+ δ) φ1βI
∗

(1+ξS∗)2 + b 0
φ2βS

∗

1+ξS∗ 0 φ2βI
∗

(1+ξS∗)2 − k2 0
(1−φ1φ2)βS∗

1+ξS∗ m (1−φ1φ2)βI∗

(1+ξS∗)2 +m −δ

 ,

(6)
where k1 = δ + v and k2 = m + δ + b. Evidently, among
the eigenvalues of J(E∗), λ1 = −δ, λ2 = −(m + δ)
possess negative real parts. For the remaining eigenvalues,
we analyze the following matrix:

A =

(
−βS∗

1+ξS∗ − k1
−βI∗

(1+ξS∗)2

φ2βS
∗

1+ξS∗
φ2βI

∗

(1+ξS∗)2 − k2

)
. (7)
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The eigenvalues of the above matrix (7) are negative if the
Hurwitz criterion [30], [31] (H1): tr(A) < 0 and det(A) > 0
is satisfied. Therefore, the tr(A) of matrix A is as follows:

tr(A) =− βS∗

1 + ξS∗
+

φ2βI
∗

(1 + ξS∗)2
− k1 − k2

=
1

(1 + ξS∗)2

[
− βS∗(1 + ξS∗) + φ2βI

∗

− k1(1 + ξS∗)2 − k2(1 + ξS∗)2
]

=
1

(1 + ξS∗)2

[
− βS∗(1 + ξS∗) + k2(1 + ξS∗)

− k1(1 + ξS∗)2 − k2(1 + ξS∗)2
]

=
1

(1 + ξS∗)2

[
− βS∗(1 + ξS∗)− k1(1 + ξS∗)2

− k2ξS
∗ − k2ξ

2S∗2
]

=
1

(1 + ξS∗)2

[
− βS∗(1 + ξS∗)− k1(1 + ξS∗)2

− k2ξS
∗(1 + ξS∗)

]
<0.

(8)
Similarly determinant of A becomes

det(A) =

(
− βS∗

1 + ξS∗
− k1

)(
φ2βI

∗

(1 + ξS∗)2
− k2

)
+

βI∗

(1 + ξS∗)2

φ2βS
∗

(1 + ξS∗)

=

(
− βS∗

1 + ξS∗

)
φ2βI

∗

(1 + ξS∗)2
+

k2βS
∗

1 + ξS∗

− k1φ2βI
∗

(1 + ξS∗)2
+ k1k2 +

βI∗

(1 + ξS∗)2

φ2βS
∗

(1 + ξS∗)

=k2βS
∗(1 + ξS∗)− k1φ2βI

∗ + k1k2(1 + ξS∗)2

=k2βS
∗(1 + ξS∗)− k1k2(1 + ξS∗)

+ k1k2(1 + ξS∗)2

=k2βS
∗(1 + ξS∗)− k1k2 − k1k2ξS

∗

+ k1k2(1 + 2ξS∗ + ξ2S∗2)

=k2βS
∗(1 + ξS∗) + k1k2ξS

∗(1 + ξS∗)

>0.
(9)

It can be observed from equations (8) and (9) that the
Hurwitz criterion (H1) holds if and only if R0 > 1.
Specifically, this implies that all eigenvalues of the matrix
have negative real parts if and only if R0 > 1.

3.4 Global stability of the rumor-existence equilibrium

Theorem 4. If R0 > 1, then the rumor-existence equilib-
rium state E∗(I∗, D∗, S∗, R∗) of the proposed system (2) is
globally asymptotically stable.

Proof: Consider the Lyapunov function:

W (t) =
[
(I(t)− I∗) + (D(t)−D∗)

+ (S(t)− S∗) + (R(t)−R∗)
]2
.

Calculating the derivative of W (t) along positive solutions

of system (2) yields

W ′(t) =2[(I(t)− I∗) + (D(t)−D∗) + (S(t)− S∗)
+ (R(t)−R∗)][I ′(t) +D′(t) + S′(t) +R′(t)]

=2[(I(t)− I∗) + (D(t)−D∗) + (S(t)− S∗)
+ (R(t)−R∗)]

[
Π− δI(t)− δD(t)

− δS(t)− δR(t)
]
.

It is easy to see that Π = δI∗ − δD∗ − δS∗ − δR∗. Then,
we can get

W ′(t) =2[(I(t)− I∗) + (D(t)−D∗) + (S(t)− S∗)
+ (R(t)−R∗)][I ′(t) +D′(t) + S′(t) +R′(t)]

=2[(I(t)− I∗) + (D(t)−D∗) + (S(t)− S∗)
+ (R(t)−R∗)][δI∗ + δD∗ + δS∗ + δR∗

− δI − δD − δS − δR]

=2[(I(t)− I∗) + (D(t)−D∗) + (S(t)− S∗)
+ (R(t)−R∗)][δ(I∗ − I(t)) + δ(D∗ −D(t))

+ δ(S∗ − S(t)) + δ(R∗ −R(t))]

=2δ[(I∗ − I(t)) + (D∗ −D(t))

+ (S∗ − S(t)) + (R∗ −R(t))]2

≤0.

Therefore, according to LaSalle’s Invariance Principle [28],
the equilibrium point E∗ is globally asymptotically stable.

IV. THE OPTIMAL CONTROL

In cases where a rumor persists, effective measures must
be implemented to suppress it. In this section, we propose
an optimal control mechanism [32], [33], [34], [35] aimed
at preventing rumor transmission. We utilize three control
variables designed to restrain the spread of rumors over an
expected period while minimizing costs.

(i) σ1(t) represents the intensity of popular science edu-
cation as a control variable. By educating ignorants through
popular science programs, their ability to discern and refute
rumors is improved, making them immune to rumors.

(ii) σ2(t) represents the intensity of deleted posts in the
network influenced by rumors as a control variable. The
percentage of those affected by the rumors in the media is
reduced by removing high-impact posts.

(iii) σ3(t) represents the punishment intensity for mali-
cious spreaders as a control variable. Rumors are primarily
spread through dissemination by these spreaders. Punishing
malicious spreaders, banning or blocking them, and suppress-
ing their effectivities are effective means of controlling the
spread of rumors.

To reduce the negative impact of rumor propagation on so-
cial stability, productivity, and daily life, while also reducing
control costs and maximizing social utility, this study aims
to reduce the proportion of affected individuals in the media.
By ensuring that those who have not been exposed to rumors
can learn the truth without spreading false information, the
goal is to maximize the number of individuals who recover
and minimize the costs associated with controlling rumor
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propagation.

J (σ1(t), σ2(t), σ3(t)) =

∫ T

0

[
w1S(t) +

1

2

(
w2σ

2
1(t)

+ w3σ
2
2(t) + w4σ

2
3(t)

)]
dt,

(10)

subject to the control system

dI(t)

dt
=Π− βI(t)S(t)

1 + ξS(t)
(1− σ1(t))− σ3I(t)− δI(t),

dD(t)

dt
=φ1

βI(t)S(t)

1 + ξS(t)
(1− σ1(t))−mD(t)

+ σ2S(t)− δD(t),

dS(t)

dt
=φ2

βI(t)S(t)

1 + ξS(t)
(1− σ1(t))−mS(t)

− σ2S(t)− δS(t),

dR(t)

dt
=(1− φ1 − φ2)

βI(t)S(t)

1 + ξS(t)
+mD(t) +mS(t)

+ σ3I(t)− δR(t).
(11)

The initial data for system(2) satisfied I(0) ≥ 0, D(0) ≥
0, S(0) > 0, R(0) ≥ 0.

The feasible region of σ1(t) , σ2(t) and σ3(t) is

Ω =

{
(σ1(t), σ2(t), σ3(t)) | 0 6 σ1(t) 6 σmax

1 , 0 6 σ2(t)

6 σmax
2 , 0 6 σ3(t) 6 σmax

3 , t ∈ (0, T ]

}
,

where σmax
1 ≤ 1 , σmax

2 ≤ 1 and σmax
3 ≤ 1 are the

upper bound of σ1(t), σ2(t) and σ3(t), respectively. Optimal
control σ∗1 , σ∗2 and σ∗3 satisfy

J (σ∗1 , σ
∗
2 , σ
∗
3) = min

{
J (σ1(t), σ2(t), σ3(t)) :

(σ1(t), σ2(t), σ3(t)) ∈ Ω
}
.

In order to obtain the optimal control, we construct the
following Lagrangian function

L (S(t), σ1(t), σ2(t), σ3(t)) =w1S(t) +
1

2

(
w2σ

2
1(t)

+ w3σ
2
2(t) + w4σ

2
3(t)

)
.

The Hamiltonian function is defined as
H(S(t), σi(t), λj(t))

=w1S(t) +
1

2

(
w2σ

2
1(t) + w3σ

2
2(t) + w4σ

2
3(t)

)
+ λ1

[
Π− βI(t)S(t)

1 + ξS(t)
(1− σ1(t))− σ3I(t)− δI(t)

]
+ λ2

[
φ1
βI(t)S(t)

1 + ξS(t)
(1− σ1(t))−mD(t)

+ σ2S(t)− δD(t)

]
+ λ3

[
φ2
βI(t)S(t)

1 + ξS(t)
(1− σ1(t))−mS(t)

− σ2S(t)− δS(t)

]
+ λ4

[
(1− φ1 − φ2)

βI(t)S(t)

1 + ξS(t)
+mD(t)

+mS(t) + σ3I(t)− δR(t)

]
,

(12)

where i = 1, 2, 3, and j = 1, 2, 3, 4. Using Pontryagins Max-
imum Principle[36], we can obtain the following theorem.

Theorem 5. Let I∗, D∗, S∗ and R∗ be optimal state solu-
tions with an associated optimal control (σ1(t), σ2(t), σ3(t))
for optimal control problem (11). Then, there exist adjoint
variables λ1(t), λ2(t), λ3(t) and λ4(t) satisfying



dλ1(t)

dt
=(1− σ1(t)) (λ1(t)− φ1λ2(t)− φ2λ3(t))

βS∗

1 + ξS∗

− (1− φ1 − φ2)λ4(t)
βS∗

1 + ξS∗

+ (λ1(t)− λ4(t))σ3(t) + λ1(t)δ,

dλ2(t)

dt
=(m+ δ)λ2(t)− λ4(t)m,

dλ3(t)

dt
=− ω1 + (1− σ1(t)) (λ1(t)− φ1λ2(t)− φ2λ3(t))

× βI∗

(1 + ξS∗)2
− λ4(t)

(1− φ1 − φ2)βI∗

(1 + ξS∗)2

− σ2(t)λ2(t) + (σ2(t) + δ)λ3(t)

+m(λ3(t)− λ4(t)),

dλ4(t)

dt
=δλ4(t),

(13)
with the transversality conditions λj(T ) = 0, for j =
1, 2, 3, 4. The optimal control σ∗1 , σ

∗
2 and σ∗3 are given by

σ∗1 = min

{
max

{
1

w2

[
(φ1λ2(t)− φ2λ3(t)− λ1(t))

× βI∗S∗

1 + ξS∗

]
, 0

}
, σmax

1

}
,

σ∗2 = min

{
max

{
1

w3
[(λ3(t)− λ2(t))S∗] , 0

}
, σmax

2

}
,

σ∗3 = min

{
max

{
1

w4
[(λ1(t)− λ4(t))I∗] , 0

}
, σmax

3

}
.

(14)

Proof: By Pontryagins Maximum Principle, and let
I(t) = I∗, D(t) = D∗, S(t) = S∗, R(t) = R∗, we obtain
following adjoint equation

dλ1(t)

dt
=(1− σ1(t)) (λ1(t)− φ1λ2(t)− φ2λ3(t))

βS∗

1 + ξS∗

− (1− φ1 − φ2)λ4(t)
βS∗

1 + ξS∗

+ (λ1(t)− λ4(t))σ3(t) + λ1(t)δ,

dλ2(t)

dt
=− ∂H(t)

∂D(t)
= (m+ δ)λ2(t)− λ4m,

dλ3(t)

dt
=− ω1 + (1− σ1(t)) (λ1(t)− φ1λ2(t)− φ2λ3(t))

× βI∗

(1 + ξS∗)2
− (1− φ1 − φ2)λ4(t)

βI∗

(1 + ξS∗)2

− σ2(t)λ2(t) + (σ2(t) + δ)λ3(t)

+m(λ3(t)− λ4(t)),

dλ4(t)

dt
=− ∂H(t)

∂R(t)
= λ4δ.

(15)
Under the optimality condition, the derivative of (14) with
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respect to σ1(t), σ2(t) and σ3(t) are as follows

∂H(t)

∂σ1(t)
|σ1(t)=σ∗

1
=w2σ

∗
1(λ1(t)− φ1λ2(t)− φ2λ3(t))

× βI∗S∗
1 + ξS∗

= 0,

∂H(t)

∂σ2(t)
|σ2(t)=σ∗

2
=w3σ

∗
2 + λ2(t)S∗ − λ3(t)S∗ = 0,

∂H(t)

∂σ3(t)
|σ3(t)=σ∗

3
=w3σ

∗
3 + λ4(t)S∗ − λ1(t)S∗ = 0.

(16)
By combining the properties of bounded set Ω, the interval
of σ∗1(t), σ∗2(t) and σ∗3(t) are shown in the following form

σ∗1 = min

{
max

{
1

w2

[
(φ1λ2(t)− φ2λ3(t)− λ1(t))

× βI∗S∗

1 + ξS∗

]
, 0

}
, σmax

1

}
,

σ∗2 = min

{
max

{
1

w3
[(λ3(t)− λ2(t))S∗] , 0

}
, σmax

2

}
,

σ∗3 = min

{
max

{
1

w4
[(λ1(t)− λ4(t))I∗] , 0

}
, σmax

3

}
.

(17)

V. RUMOR PROPAGATION WITH TIME-DELAY

During the process of rumor spreading in social net-
works, users cannot be immediately banned or blocked by
the platform. In this study, we further incorporate a time
delay effect associated with the implementation of control
measures. Consequently, system (2) is redefined as follows:

dI(t)

dt
=Π− βI(t)S(t)

1 + ξS(t)
− vI(t)− δI(t),

dD(t)

dt
=φ1

βI(t)S(t)

1 + ξS(t)
−mD(t) + bS(t− τ)− δD(t),

dS(t)

dt
=φ2

βI(t)S(t)

1 + ξS(t)
−mS(t)− bS(t− τ)− δS(t),

dR(t)

dt
=(1− φ1 − φ2)

βI(t)S(t)

1 + ξS(t)
+mD(t) +mS(t)

+ vI(t)− δR(t),
(18)

with the initial conditions
I(t) ≥ 0, t ∈ (−τ, 0],

D(t) ≥ 0, t ∈ (−τ, 0],

S(t) > 0, t ∈ (−τ, 0],

R(t) ≥ 0, t ∈ (−τ, 0].

Similarly, for the sake of simplicity, we focus solely on the
following equivalent subsystem of system (18).

dI(t)

dt
= Π− βI(t)S(t)

1 + ξS(t)
− vI(t)− δI(t),

dS(t)

dt
= φ2

βI(t)S(t)

1 + ξS(t)
−mS(t)− bS(t− τ)− δS(t),

(19)
with the initial conditions{

I(t) ≥ 0, t ∈ (−τ, 0],

S(t) > 0, t ∈ (−τ, 0].

5.1 Hopf bifurcation of the rumor-free equilibrium

First, we discuss the stability and Hopf bifurcation of
system (19) at rumor-free equilibrium E0 = ( Π

δ+v , 0) .
Theorem 6. In system (19), the rumor-free equilibrium E0

exhibits local asymptotic stability when R0 < 1, whereas it
is unstable when R0 > 1.

Proof: The Jacobian matrix of system (19) at E0 =(
Π
δ+v , 0

)
is

J(E0) =

(
−(δ + v) − βΠ

δ+v

0 φ2βΠ
δ+v − (m+ δ)− be−λτ

)
. (20)

The characteristic equation is given by

λ2 +

[
(m+ δ)− φ2βΠ

δ + v
+ (δ + v) + be−λτ

]
λ

− (δ + v)

[
φ2βΠ

δ + v
− (m+ δ)− be−λτ

]
= 0.

(21)

When τ = 0 , it is known that the rumor - free equilibrium
E0 is locally asymptotic stable when R0 < 1.

Next, we consider the effect of time delay on system
stability. When τ > 0, we assume that λ = iω is a solution
of (21), then we have

−ω2 +

[
(m+ δ)− φ2βΠ

δ + v
+ (δ + v) + be−iωτ

]
iω

− (δ + v)

[
φ2βΠ

δ + v
− (m+ δ)− be−iωτ

]
= 0.

(22)

After separating the real and imaginary parts of the above
equation, it can be rewritten as follows:

−ω2 − φ2βΠ + (δ + v)(m+ δ) + b
[
ωsin(ωτ) + (δ + v)

× cos(ωτ)
]

+ i

[
(m+ δ)ω − ωφ2βΠ

δ + v
+ (δ + v)ω

+ b
[
ωcos(ωτ)− (δ + v)sin(ωτ)

]]
= 0,

(23)
specifically

ωsin(ωτ) + (δ + v)cos(ωτ) =
1

b

[
ω2 + φ2βΠ

− (δ + v)(m+ δ)
]

=
1

b

(
ω2 + (δ + v)M

)
,

ωcos(ωτ)− (δ + v)sin(ωτ) =
1

b

[
− (δ + v)ω +

ωφ2βΠ

δ + v

− ω(m+ δ)

]
=

1

b
ω (M − (δ + v)) ,

(24)
where M = φ2βΠ

δ+v − (m + δ). Square and add the two
equations of (24), and let z = ω2, we obtain

z2 + f2z + f1 = 0, (25)

where

f1 = (δ + v)2(M2 − b2), f2 = (δ + v)2 +M2 − b2.
(26)

It can be readily shown that if f1 ≥ 0, then f2 >
0,conversely, if f2 ≤ 0, then f1 < 0. In the case where
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if f1 < 0, equation (25) necessarily has at least one positive
root. Hence,
(i) When f1 < 0, there is a unique positive roots of (25),
defined by z1 = ω2

1 (ω1 > 0);
(ii) When f1 ≥ 0, there does not exist any positive root for
(25).

If f1 < 0, by (24), we obtain

cosω1τ =
M

b
, sinω1τ =

ω1

b
. (27)

Thus

τi =
1

ω1
arccos

M

b
+

2iπ

ω1
, (28)

where i = 0, 1, 2, . . . and (21) possesses a pair of purely
imaginary roots in the form of ±iω1 when τ = τi. Then
from the derivative of (22) with respect to τ , one has

2λ
dλ

dτ
+

dλ

dτ

(
(δ + v)−M + be−λτ

)
− (δ + v + λ)be−λτ

(
λ+

dλ

dτ
τ

)
= 0.

(29)

Then(
dλ

dτ

)−1

=
1

(λ+ δ + v)λ
+

2λ+ (δ + v)−M
be−λτ (λ+ δ + v)λ

− τ

λ
.

(30)

According to (21), one gets

be−λτ (δ + v + λ) = −
(
λ2 + (δ + v −M)λ− (δ + v)M

)
.

(31)
Use (31) to simplify (30) it shows that(

dλ

dτ

)−1

=
1

(λ+ δ + v)λ
− τ

λ

− 2λ+ (δ + v)−M
[λ2 + (δ + v −M)λ− (δ + v)M ]λ

.

(32)

After substituting λ = iω1 and τ = τ1 into (32), separate
the real part and the imaginary part to obtain that

d(Reλ)

dτ

∣∣∣∣
λ=iω1,τ=τ1

= Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω1,τ=τ1

=
1

ω2
1 +M2

> 0.

(33)

In summary, we can get the following theorem.
Theorem 7. If R0 < 1 holds and f1 < 0 is satisfied, then

the following conclusions apply to system (19).
(1) When τ ∈ [0, τ1), the rumor-free equilibrium point E0

of system (19) is locally asymptotically stable.
(2) When τ > τ1, the rumor - free equilibrium point E0 of

system (19) becomes unstable. The value τ = τ1 corresponds
to a Hopf bifurcation point. Specifically, system (19) exhibits
a branch of periodic solutions that bifurcate from the rumor
- free equilibrium point E0 in the vicinity of τ = τ1.

5.2 Hopf bifurcation of the rumor-prevailing equilibrium

In this section, we analyze the stability and Hopf bifur-
cation of system (19) at the rumor - prevailing equilibrium

point E∗ = (I∗, S∗). Specifically, the Jacobian matrix of
system (19) evaluated at E∗

J(E∗)

=

(
− βS∗

1+ξS∗ − (δ + v) − βI∗

(1+ξS∗)2

φ2βS
∗

1+ξS∗
φ2βI

∗

(1+ξS∗)2 − (m+ δ)− be−λτ

)
.

(34)
The characteristic equation is

λ2 + (P +Q)λ+ PQ+ be−λτ (λ+Q) +
β2φ2I

∗S∗

(1 + ξS∗)3
= 0,

(35)
where

P = m+ δ − φ2βI
∗

(1 + ξS∗)2
, Q =

βS∗

1 + ξS∗
+ δ + v. (36)

When τ = 0, according to Theorem 3, the rumor-prevailing
equilibrium point E∗ of system (19) is locally asymptotically
stable if (H1) is satisfied.

Next, we consider the effect of the time delay on system
stability. When τ > 0, we assuming that λ = iω is a solution
of (35), then we obtain

−ω2 + (P +Q)ωi+ PQ

+ be−iωτ (iω +Q) +
β2φ2I

∗S∗

(1 + ξS∗)3
= 0.

(37)

After separating the real and imaginary parts of the equation
above, it can be rewritten as below

−ω2 + PQ+
β2φ2I

∗S∗

(1 + ξS∗)3
+ b (ω sin(ωτ) +Q cos(ωτ))

+ i [(P +Q)ω + b(ω cos(ωτ)−Q sin(ωτ))] = 0,
(38)

namely
ω sin(ωτ) +Q cos(ωτ) =

1

b

[
ω2 − PQ− β2φ2I

∗S∗

(1 + ξS∗)3

]
,

ω cos(ωτ)−Q sin(ωτ) = −1

b
(P +Q)ω.

(39)
Respectively squaring and adding the two side of (39) and
letting z = ω2 leads to

z2 + f4z + f3 = 0, (40)

where

f3 =

(
PQ+

β2φ2I
∗S∗

(1 + ξS∗)3

)2

− b2Q2,

f4 = P 2 +Q2 − 2β2φ2I
∗S∗

(1 + ξS∗)3
− b2.

(41)

Denote that

F (z) = z2 + f4z + f3. (42)

If f3 < 0, there must be a positive root of (42).
If f3 ≥ 0, f4 ≥ 0, there does not exist any positive root for
(42).
If f3 ≥ 0, f4 < 0, F (−f4/2) = −f2

4 /4 + f3 > 0, there does
not exist any positive root for (42).
If f3 ≥ 0, f4 < 0, F (−f4/2) = −f2

4 /4+f3 ≤ 0, there must
be two positive roots of (42).

Hence, we have the following results.
(i) When (G1) f3 < 0 holds, there must be a positive root
of (42), defined by z0 = ω2

0 .
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(ii) When (G2) f3 > 0 and f4 < 0 and F (−f4/2) =
−f2

4 /4 + f3 < 0 holds, there must be two positive roots
of (42), defined by z1 = ω2

1 and z2 = ω2
2 .

(iii) When (G3) f3 ≥ 0, f4 ≥ 0 or f3 ≥ 0, f4 < 0 and
F (−f4/2) = −f2

4 /4 + f3 > 0 holds, there does not exist
any positive root for (42).

Without loss of generality, we assume that (42) exists the
only positive root z0 = ω2

0 . By (42), we obtain

cosωτ =
−PQ2 − Qβ2φ2I

∗S∗

(1+ξS∗)3 − Pω
2

(ω2 +Q2) b
, (43)

and then

τi =
1

ω0
arccos

−PQ2 − Qβ2φ2I
∗S∗

(1+ξS∗)3 − Pω
2
0

(ω2
0 +Q2) b

+
2iπ

ω0
, (44)

where i = 0, 1, 2, . . ., and ±iω0 is a pair of purely imaginary
roots of (35) with τ = τi. Then from the derivative of (35)
with respect to τ , one has

2λ
dλ

dτ
+

dλ

dτ
(P +Q)

+ be−λτ
[

dλ

dτ
−
(

dλ

dτ
τ + λ

)
(λ+Q)

]
= 0.

(45)

Then(
dλ

dτ

)−1

=
1

λ(λ+Q)
+

2λ+ P +Q

λ(λ+Q)be−λτ
− τ

λ
. (46)

According to (35) , one gets

be−λτ (λ+Q) = −
[
λ2 + (P +Q)λ+ PQ+

β2φ2I
∗S∗

(1 + ξS∗)3

]
.

(47)
Thus(

dλ

dτ

)−1

=
1

(λ+Q)λ
− τ

λ

− 2λ+ P +Q[
λ2 + (P +Q)λ+ PQ+ β2φ2I∗S∗

(1+ξS∗)3

]
λ
.

(48)

After substituting λ = iω0 and τ = τ0 into (49), separate
the real part and the imaginary part to obtain that

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω0,τ=τ0

= − 1

ω2
0 +Q2

+
(P +Q)2ω2

0 + 2ω2
0

(
−ω2

0 + PQ+ β2φ2I
∗S∗

(1+ξS∗)3

)
ω4

0(P +Q)2 + ω2
0

(
−ω2

0 + PQ+ β2φ2I∗S∗

(1+ξS∗)3

)2 .

(49)

According to (37), squaring and adding both sides and
substitute ω by ω0, we have

b2
(
ω2

0 +Q2
)

=

(
−ω2

0 + PQ+
β2φ2I

∗S∗

(1 + ξS∗)3

)2

+ ω2
0(P +Q)2.

(50)

Then

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω0,τ=τ0

=
−ω2

0b
2 + (P +Q)2ω2

0 + 2ω2
0

(
−ω2

0 + PQ+ β2φ2I
∗S∗

(1+ξS∗)3

)
ω2

0b
2 (ω2

0 +Q2)

=
F ′
(
ω2

0

)
ω2

0b
2 (ω2

0 +Q2)
.

(51)
When (G1) and F ′

(
ω2

0

)
> 0 hold, it can be readily verified

that

d(Reλ)

dτ

∣∣∣∣
λ=iω0,τ=τ0

= Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω0,τ=τ0

> 0.

(52)
In the following, we continue to study the stability switches
of the rumor-prevailing equilibrium point E∗. If (G2) holds,
there must be two positive roots of (41), defined by z1 = ω2

1

and z2 = ω2
2 , where z1 > z2, ω1 > ω2 and F ′ (ω2) <

0, F ′ (ω1) > 0. As same as (44) and (52), we obtain that

τp1 =
1

ω1
arccos

−PQ2 − Qβ2φ2I
∗S∗

(1+ξS∗)3 − Pω
2
1

(ω2
1 +Q2) b

+
2pπ

ω1
,

p = 0, 1, 2, · · · ,

τ q2 =
1

ω2
arccos

−PQ2 − Qβ2φ2I
∗S∗

(1+ξS∗)3 − Pω
2
2

(ω2
2 +Q2) b

+
2qπ

ω2
,

q = 0, 1, 2, · · · ,
(53)

and assume that λ1 = v1 + iω1, λ2 = v2 + iω2, we get

Re

(
dλ1

dτ

)−1
∣∣∣∣∣
λ1=iω1,τ=τp

1

=
F ′
(
ω2

1

)
ω2

1b
2 (ω2

1 +Q2)
> 0,

namely,
d (Reλ1)

dτ

∣∣∣∣
λ1=iω1,τ=τp

1

> 0, p = 0, 1, 2, · · · ,

Re

(
dλ2

dτ

)−1
∣∣∣∣∣
λ2=iω2,τ=τq

2

=
F ′
(
ω2

2

)
ω2

2b
2 (ω2

2 +Q2)
< 0,

namely,
d (Reλ2)

dτ

∣∣∣∣
λ2=iω2,τ=τq

2

< 0, q = 0, 1, 2, · · · .

(54)
Lemma 2. If ω1 > ω2, then τ i1 < τ i2.

Proof: Define

f(ω) =
−PQ2 − Qβ2φ2I

∗S∗

(1+ξS∗)3 − Pω
2

(ω2 +Q2) b
,

g(ω) = arccos f(ω), G(ω) =
1

ω
g(ω).

Then

f ′(ω)

=
−2Pω

(
ω2 +Q2

)
b+ 2bω

(
PQ2 + Qβ2φ2I

∗S∗

(1+ξS∗)3 + Pω2
)

(ω2 +Q2)
2
b2

=
2Qβ2φ2S

∗I∗

(1+ξI∗)3 ω

(ω2 +Q2)
2
b
,

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 1955-1971

 
______________________________________________________________________________________ 



and we know that Q > 0 and b > 0,

f ′(ω) =
2QQβ2φ2I

∗S∗

(1+ξI∗)3 ω

(ω2 +Q2)
2
b

> 0.

Thus, f(ω) is a monotonically increasing function. It can
be readily deduced that g(ω) is a monotonically decreasing
function. Then

G′(ω) = − 1

ω2
g(ω) +

1

ω
g′(ω) < 0.

Therefore, τ i1 < τ i2 when ω1 > ω2. This proves the lemma.

Theorem 8. If R0 > 1 holds, the following statements are
true for system (19).
(1) If (G3) holds, the rumor-prevailing equilibrium point
E∗ of system (19) is locally asymptotically stable for all
τ ∈ [0,∞).
(2) If condition (G1) holds, then for τ ∈ [0, τ0), the rumor -
prevailing equilibrium E∗ of system (19) is locally asymp-
totically stable, whereas it becomes unstable when τ > τ0.
Specifically, system (19) undergoes a Hopf bifurcation at E∗

when τ = τ0.

VI. NUMERICAL SIMULATIONS

Example 1. The stability of rumor free equilibrium.
System (2) adopts the following parameters: Π = 10, β =

0.002, φ1 = 0.1, φ2 = 0.2, ξ = 1, δ = 0.01,m = 0.02, b =
0.01, and v = 0.1. Through calculation, it can be shown that
when R0 = 0.9091 < 1, system (2) has a unique rumor -
free equilibrium point E0 = ( Π

δ+v , 0). Additionally, it can
be shown that the rumor - free equilibrium point is globally
asymptotically stable when R0 = 0.9091 < 1. To validate
the global stability of the equilibrium point, we choose
several parameter sets with distinct initial values. As depicted
in Figure 3(a), all trajectories converge to the equilibrium,
with S(t) approaching zero. Figure 3(b) clearly illustrates
that I(t) asymptotically converges to Π

δ+v , confirming the
local asymptotic stability of system (2).
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Figure 3. Dynamical behaviors of system (2) with R0 < 1.
Example 2. The stability of the rumor-existence equilibrium.

Similarly, considering the system with the following pa-
rameters Π = 10, β = 0.2, φ1 = 0.1, φ2 = 0.2, ξ = 1, δ =
0.01,m = 0.02, b = 0.5, and v = 0.1. We can obtain that
R0 = 6.8611 > 1. Then, according to Theorem 3, the system
has a unique rumor - equilibrium point E∗.This equilibrium
point E∗ is locally asymptotically stable when tr(A) < 0
and det(A) > 0. As illustrated in Figure 4(a), all trajectories
approach a stable state. Moreover, as depicted in Figure 4(b),
all trajectories converge to the equilibrium point E∗. This
observation confirms the local asymptotic stability of E∗.
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Figure 4. Dynamical behaviors of system (2) with R0 > 1.
Example 3.

For widely spreading rumors, we propose an optimal
control mechanism to prevent their spread. This mechanism
involves intensifying popular science education, deleting
influential posts affected by rumors to reduce the percentage
of media influence, and intensifying the punishment for ma-
licious disseminators. These control optimization measures
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aim to minimize the scale of rumors. Figure 5 clearly illus-
trates the control effect. Figure 5(a) represents the dynamics
of susceptible individuals with control (green dotted) and
without (optimal) control (red dotted). Similarly, Figures
5(b), (c), and (d) show the dynamics of individuals who come
into contact with rumors but do not spread them, those who
spread rumors, and those who do not believe them, both
with control (green dotted) and without control (red dotted).
This clearly indicates that after joining the control group, the
number of people susceptible to rumors, those who believe
rumors but do not spread them, and those who spread rumors
are greatly reduced, while the number of people recovering
from rumors increases. This is consistent with our goal of
suppressing the spread of rumors.
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Figure 5. Dynamics of four population classes in
controlled and uncontrolled.

Example 4.
Choose a set of parameters: Π = 20, β = 0.1, φ1 =

0.1, φ2 = 0.2, ξ = 1, δ = 0.2,m = 0.02, b = 0.5, and
v = 0.5. Then, system (18) can be expressed in the following
specific form:

dI(t)

dt
= 20− 0.1I(t)S(t)

1 + S(t)
− 0.5I(t)− 0.2I(t),

dS(t)

dt
= 0.2

0.1I(t)S(t)

1 + S(t)
− 0.02S(t)− 0.5S(t− τ)− 0.2S(t),

Where τ = 3 < τ1 = 3.143. By calculating, we can get

R0 = 0.6098 < 1,

E0 ≈ (39.389, 0).

For model (19), the waveform diagrams are depicted in
Figures 6 and 7. Analysis shows that the curves of each state
node asymptotically converge to a straight line, confirming
the local asymptotic stability of the model at E0.
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Figure 6. The waveform diagram of model (55) when
τ = 3 < 3.143.

However, when τ = 3.2 > τ1 = 3.143, the waveform
and phase diagrams of each node are shown respectively
in Figure 9. Under this condition, the waveform diagram
exhibits periodic oscillations, indicating that the model be-
comes unstable at E0 and undergoes a Hopf bifurcation at
this equilibrium point.
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Figure 7. The waveform diagram of model (55) when
τ = 3.2 > 3.143.

Example 5.
Choose a set of parameters: Π = 60, β = 0.3, φ1 =

0.1, φ2 = 0.2, ξ = 1, δ = 0.2,m = 0.02, b = 0.6, and
v = 0.3. Then, system (18) can be expressed in the following
specific form:

dI(t)

dt
=60− 0.3I(t)S(t)

1 + S(t)
− 0.3I(t)− 0.2I(t),

dD(t)

dt
=0.1

0.3I(t)S(t)

1 + S(t)
− 0.02D(t)

+ 0.6S(t− τ)− 0.2D(t),

dS(t)

dt
=0.2

0.3I(t)S(t)

1 + S(t)
− 0.02S(t)

− 0.6S(t− τ)− 0.2S(t),

dR(t)

dt
=(1− 0.1− 0.2)

0.3I(t)S(t)

1 + S(t)

+ 0.02D(t) + 0.02S(t) + 0.3I(t)− 0.2R(t),
(55)

where τ = 2.52 < τ0 = 2.71, By calculating, we can get

R0 = 8.7805 > 1,

E∗ ≈ (80.1226, 22.3248, 4.8628, 192.687).

The waveform and phase diagrams of the nodes in model (18)
are presented in Figures 8, 9, and 10. The waveform curve of
each state node asymptotically converges to a straight line,
and the phase diagram converges to the limit point. This
observation indicates that the model is locally asymptotically
stable at E∗ .
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Figure 8. The waveform diagram of model (55) when
τ = 2.52 < 2.71.
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Figure 9. Two-dimensional phase diagram of model (55) when
τ = 2.52 < τ0 = 2.71.
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Figure 10. 3D phase diagram of model (55) when
τ = 2.52 < τ0 = 2.71.

However, when τ = 2.73 > τ0 = 2.71, the waveform
and phase diagrams of each node are shown in Figures 11,
12, and 13 respectively. Under this condition, the waveform
diagram exhibits periodic oscillations, and a limit cycle
emerges on the phase - diagram curve. This indicates that
the model becomes unstable at E∗, and a Hopf bifurcation
occurs at this equilibrium point of the system.
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Figure 11. The waveform diagram of model (55) when
τ = 2.73 > 2.71.
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Figure 12. Two-dimensional phase diagram of model
(55) when τ = 2.73 > τ0 = 2.71.
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Figure 13. 3D phase diagram of model (55)
when τ = 2.73 > τ0 = 2.71.

Example 6.
Considering the time delay for official media to deny

rumors and for social platforms to ban accounts when

unexpected events cause rumors to spread, we used τ = 2,
τ = 2.4 and τ = 2.6 to draw the S(t) trajectory, as
shown in Figure 14, to reflect the impact of time delay on
rumor spread, keeping other parameters unchanged. Through
careful observation, we found that the larger the delay, the
greater the amplitude of the orbit oscillation and the longer it
takes to reach a stable state, which is not conducive to rumor
control. Therefore, minimizing the societal harm caused by
rumor propagation requires official media to release rumor-
refuting news and social platforms to ban user accounts
spreading malicious rumors as quickly as possible.
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Figure 14. The trajectories of S(t) with R0 > 1;
τ = 2, τ = 2.4 and τ = 2.6.

Example 7. The relationship between the basic reproduction
number R0 and the parameters β, v, and b.

The basic reproduction number R0 directly determines
whether rumors will spread. In the context of rumors spread-
ing due to unexpected events, the parameter v represents the
probability of official media refuting rumors, b represents
the probability of social platforms banning accounts, and
β represents the transmission rate from disseminators to
susceptible individuals. Analyzing the relationship between
R0, v, b, and β is crucial for understanding the rumor
system. As shown in Figure 15, R0 is positively correlated
with β and b. This indicates that in online networks, the
timely banning of users harmful remarks by social media
and a decrease in the transmission rate β from disseminators
to susceptible individuals reduce R0, thereby inhibiting the
spread of rumors. Furthermore, as shown in Figure 15, care-
ful observation indicates that objective, open, and transparent
rumor-refuting news released by official media over time is
negatively correlated with R0. This figure also shows the
effects of b and v on R0, providing practical suggestions for
curbing the spread of rumors.
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(a)

Figure 15. The relation between b, β and R0.

(b)

Figure 16. The relation between b, v and R0.

Example 8. Model application.

There is a particularly attention-grabbing incident that il-
lustrates this phenomenon. On December 22, 2017, shocking
news appeared on Sina Weibo: tourists angered elephants by
pranking them in Thailand, and a Chongqing tour guide was
trampled to death while attempting to save them. The inci-
dent was widely reported, and immediately aroused heated
discussions among all sectors of the community. However,
the narrative was reversed on December 25, when the Thai
police released an official message stating that there had been
no such incident of tourists provoking elephants by dragging
their tails. For simplicity, we refer to this news as the ”rumor
of elephants trampling tourists.”

To verify the validity of the constructed model, we selected
real data from the literature [11]. For the specific rumor
of elephant trampling tourists, we conducted meticulous
statistical work, focusing on recording the number of times
the rumor was posted every after its outbreak. By analyzing
these statistics and combining them with the corresponding
graphs (as shown in Figure 17), we can clearly observed a re-
markable phenomenon: the rumor spread effectively between
the 8th and 22nd hours. At the 8th hour, the rumor entered
a rapid spreading stage, likely owing to the initial exposure
of the event and involvement of some key communication
nodes. However, by the 22nd hour, its spreading effectiveness
gradually diminished, perhaps because of to the gradual
revelation of the truth, decline of public attention, or the
emergence of other new hotspots.

TABLE I
THE PARAMETERS EMPLOYED IN EXAMPLE 7.

Parameters Value Source
Π 14429 [11]
β 1.02 × 10−4 Fitted
ξ 0.0001 Fitted
δ 0.045 [11]
m 0.045 [11]
b 0.4 Fitted
φ1 0.49 Estimated
φ2 0.16 Estimated
v 0.5 Fitted
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Figure 17. The number of reprints, date from [11].
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Figure 18. The evolution of rumor Spreaders
and real data.

The key result of R0 = 0.8818 < 1 was computed.
Based on Theorem 2, the rumor-free equilibrium exhibits
global asymptotic stability. This characteristic is of great
significance because it clearly indicates that rumors eventu-
ally disappear. From a realistic perspective, this is perfectly
consistent with actual situations. Using the parameters set
in Table 1 and the real data in Figure 17, the evolution
of the specific event of “rumor of elephant trampling on
tourists” is illustrated in Figure 18. Notably, the simulation
results of the “rumor-free” equilibrium point show the global
asymptotic stability. Notably, the simulation results showed
excellent consistency with real data. This suggests that that
the proposed model and analysis method can effectively
simulate and predict the evolution of rumor spread. In this
case, it accurately reflects the entire dynamic change of the
”elephant trampling on tourists rumor,” from its emergence to
its gradual disappearance. This consistency not only verifies
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the scientific validity of our research methodology but also
provides strong support and reference for further in-depth
investigations of the rumor-propagation dynamics and the
formulation of corresponding prevention and control strate-
gies. With the emergence of new hotspots, the effectiveness
of spreading rumors has gradually diminished.

VII. CONCLUSION

In this study, a rumor propagation model with a saturation
propagation rate is considered. First, the next-generation
matrix method is used to calculate the basic reproduction
number R0 of network rumors, establishing the threshold for
rumor spread in social networks. Second, the global stability
of the model is proven by constructing the Lyapunov
function, and the local asymptotic stability of the two
equilibrium points is analyzed using the Routh-Hurwitz
stability criterion and linearization technique. Based on this
analysis, the rumor-free equilibrium point E0 is found to
be locally asymptotically stable when R0 < 1, globally
asymptotically stable when βΠ ≤ δ(δ + v), and locally
and globally asymptotically stable when R0 > 1. By
applying the Pontryagin maximum principle, real-time
optimal control was achieved at the desired time, aiming
to prevent rumors from spreading within the expected
time at minimal cost in online social networks. This was
accomplished through measures such as improving public
media literacy, strengthening media supervision, enhancing
rumor monitoring and response, and timely issuance of
authoritative information to refute rumors. In addition,
considering practical scenarios, network time delay τ was
added to system (2), and the conditions for the existence
of bifurcation were obtained by selecting the time delay
as the Hopf bifurcation parameter. Finally, the numerical
simulation and practical application have strongly verified
the scientificity, accuracy and practicability of the relevant
conclusions obtained, which provide a solid foundation
for our further in-depth study of the rumor propagation
phenomenon.
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