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Tripolar Fuzzy Bi-Ideals in Semigroups

Pannawit Khamrot, Aiyared Iampan, Thiti Gaketem

Abstract—In 2018, Rao gave expanded the concept of fuzzy
sets, bipolar fuzzy sets, and intuitionistic fuzzy sets to tripolar
fuzzy sets. This paper presents the concept and examines the
qualifications of tripolar fuzzy bi-ideals of semigroups. Finally,
we characterized regular semigroups in terms of tripolar fuzzy
bi-ideals.

Index Terms—Regular, Intra-regular, Tripolar fuzzy sets,
Tripolar fuzzy bi-ideals

I. INTRODUCTION

HE THEORY of fuzzy sets is the most appropriate

theory for dealing with uncertainty and was introduced
by Zadeh [1] in 1965. After the concept of fuzzy sets,
several researchers have generalized of the notions of fuzzy
sets with huge applications in computer science, artificial
intelligence, control engineering, robotics, automata theory,
decision theory, finite state machines, graph theory, logic,
operations research, and many branches of pure and applied
mathematics. In 1979, N. Kuroki [2] investigated the proper-
ties of fuzzy ideals and other types of semigroups. In 1986,
K. T. Attsnsov [3] gave the concept and studied the properties
of intuitionistic fuzzy sets. The bipolar fuzzy sets are an
extension of fuzzy sets whose memberely degree range is
[—1, 1] studied by Zhang in 1994, [4] In 2000, K. M. Lee [5]
developed knowledge of bipolar fuzzy sets extension to alge-
braic systems. In addition, Gaketem and Khamrot [6] studied
bipolar weakly interior ideals in semigroups. Gaketem et al.
[7] expand cubic bipolar fuzzy subsemigroups and ideals in
semigroups. In 2018, M. M. K. Rao [8] was introduced to
the concept of tripolar fuzzy set, which is a generalization of
fuzzy sets, bipolar fuzzy sets, and intuitionistic fuzzy sets.
In the same year, M. M. K. Rao and B. Venkateswarlu [9]
studied tripolar fuzzy ideals I'-semirings. In 2020, M. M. K.
Rao and B. Venkateswarlu [10] studied tripolar fuzzy soft
interior ideals I'-semirings. In 2022, N. Wattansiripong et
al. [11] present properties of tripolar fuzzy pure ideals in
ordered semigroups. In the same year, N. Wattansiripong et
al.[12] gave the concept of tripolar fuzzy interior ideals in
ordered semigroups and characterized semisimple ordered
semigroups in terms of tripolar fuzzy interior ideals. In
2024, T. Promai et al. [13] studied tripolar fuzzy ideals in
semigroups. In 2025, P. Khamrot et al. [14] find conditions
of types of tripolar fuzzy ideals in semigroups.
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In this paper, we give the definition of tripolar fuzzy bi-
ideals in semigroups. We discuss the properties of tripolar
fuzzy bi-ideals in semigroups together we will prove the
relationship between bi-ideals and tripolar fuzzy bi-ideals.
Moreover, we characterized regular semigroups in terms of
tripolar fuzzy bi-ideals.

II. PRELIMINARIES

In this section, we will recall some concepts and results,
which help us study the next sections.

Definition 2.1. A non-empty subset B of an SG (SG) S is

called

(1) a subsemigroup (SSG) of“S. zf82 C B,

(2) a left ideal (LI) of S if SBC B

(3) a right ideal (RI) of S if BS C B.

(4) an ideal (ID) B of S if it consistent with the (2) and
® o

(5) a generalized bi-ideal (GBI) of S if BSB C B.

(6) a bi-ideal (BI) of S if it consistent with SSG and GBI.

For any h; € [0,1], ¢ € .7-" define

V hi:=sup{h;} and A h;:= inf {h,}.
; ieF ieF

ieF ieF
We see that for any &, 7 € [0, 1], we have
h Vi =max{h,7} and hA#=min{h,i}.

A fuzzy set (FS) of a non-empty set £ is a function p:
£ —10,1].

For any two FSs p and © of a non-empty set &, define the
symbol as follows:

(1) p<v e p(h) <i(h) forall heé,
(2) p=ie pCiand i Cj

(3) (5AD)(h) = p(i) A i(h) and (5 D) (R) = p(h) v ()
for all h € £, For the symbol j < &, we mean v < p.
Let k be an element of an SG S. Then Fj := {(1n, i) €
S x 8 |k =mmi}.
For any two FSs p and © of a semigroup S. The product
of FSs p and ¥ of S is defined as follows, for all h € S

Vo {pn) AD(i)} i Fy # 0,

(1, R)EF;,
0 otherwise.

(50 9)(h) =

The characteristic function of a subset B of a non-empty
set £ is a fuzzy set of £

o 1 if heB

As(h) = .. )

5) {0 it h¢bB.
forall h € S.

Lemma 2.2. [2] Let B and L be non-empty subsets of an
SG S. Then the following holds.
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()IfBC,C then \z C/\
()/\ /\/\c—/\Bmz:
()/\O)‘z:—/\Bc

Definition 2.3. /2] A FS j of an SG S is said to be
(1) a fuzzy subsemigroup (FSSG) of S if p(h) A p(F) <
p(hr), for all h,7 € S. ) )

(2) a fuzzy left ideal (FLI) of S if p(i*) < p(hr), for all
h,i € S.

(3) a fuzzy right ideal (FRI) of S if p(h) < j(hr)), for all
h,7# € S. ) )

(4) a fuzzy ideal of S if it is both a FLI and a FRI of S.

Definition 2.4. [8] The tripolar fuzzy set (TFS) TF on a
non-empty set S if

TF = A{(h, js(h), i(h), 6

where p(h) : & — [0,1], ( ) S — [0,1] and p(h)

S — [-1,0], suchthat0<p(h) p(h) <1 forall heS.
The membership degree p(h) characterizes the extent that
the element S satisfies the property corresponding to TFS
TF i(h) characterizes the extent to the element € satisfies
the not property (irrelevant) corresponding to tripolar fuzzy
set p, and 5(h) characterizes the extent that the element
é satisfies the implicit counter property corresponding to
TFS TF. For Smelzczty TF :

for TF = {(h, p(h), v(h),
0 < p(h) +V(h) <1

5(h)) | e 8},

= (p, U, 0) has been used
( ) | b€ S} such that

The characteristic tripolar fuzzy set (CTES) TFg =
(Pg, U, Og) of a non-empty subset B of S is defined as
follows:

. 1 ifkeB,
05 k = . .
75 (k) {0 if i ¢ B,
. 0 ifkeB,
s k’ = . .
7(k) {1 it i ¢ B,
1 ifkeB
Sa(k) = Sl
5 {0 if k¢ B
for all £ € S. In this case of B = & defined TF £ =
(1,0,—1).

Definition 2.5. [13] A TFS is called a TF = (p, ¥, 5) of
an SG S is called a tripolar fuzzy subsemigroup (TFSSG) of
S if

(1) p(hk) > p(h) A p(k)
(2) i ( k) < (h) v (k)
(3) d(hk) < 8(h) v é(k)
for all hked.

Definition 2.6. [13] A TFS is called a TF = (p, v, 5) of
an SG 8§ is called a tripolar fuzzy left ideal (TFLI) ofS if
(1) p(hk) = p(k)

(2) #(hk) < (k)

) d(hk) < 3(F)

forall h,k € S.

Definition 2.7. [13] A TFS is called a TF = (p, v, 5) of
an SG S is called a tripolar fuzzy right ideal (TFRI) of S if
(1) ji(hk) > P(h)
(2) #(hk) < i(h)

(3) d(hk) < d(h)

for all h,k ed.

Definition 2.8. [13] A TFS is called a TF = (p, i, 6) of
an SG S is called a tripolar fuzzy ideal (TFID) of S if it is
both TFLI and TFRI of S.

Example 2.9. [13] Let S = {1, &), 5} be an SG with the
following Cayley table:

Define TF = (j, i, 8) by p(i0) = 0.4, p(i) = 0.7, p(§) =
0.8, p(2) = 0.3; (W) = 0.5, pE) = 0.2,p5(H) =

0.1, p(2) = 0.4 and é(w) = —0.7, (&) =
—0.3, §(2) = —0.3. Then T F is a TFLI of S.

Theorem 2.10. [13] Let BB be a non-empty subset of an SG

S. Then

(1) B is a SSG of S if and only if TFs = (g 53753) is
a TFSSG of S.

(2) Bisa LIofS if and only if TF 5 = (pg. 1/37(53) is a
TFLI of 8.

(3) Bis a RI of S if and only if TFg= Py, 93,53) is a
TFRI of S.

(4) Bis a ID of S if and only if TFg = (pg, 1/8,53) is a
TFI of 8.

The support of TF := (,5, i, 8) tripolar fuzzy set instead
of supp(TF) = {h € & | j(h) £ 0, (k) # 1, () # 0}.

Theorem 2.11. [I3] Let p, U and 5 be nonzero fuzzy sets
of an SG S. Then TF := (j, i, 8) is a TFSSG of S if and
only if supp(T F) is a SG of S.

For TF; = (p, ¥, ) and TFa = (X, ji, &) be a TFSs.
Defined the product 7F; o T F2 of an SG S as follows:

o Vo {p) AN} i Fy # 0,
(poN)(k) = { (m.i)efy
0 otherwise,
) { A ApGi) v i)} i Fi #0,
(Vo ji)(k) = { (rieFy
1 otherwise,
. . { A {oGm) vai)} if Fy #0,
(0 o) (k) = < (m)eFy
0 otherwise.

for all k € &. It is easy to verify that the structure (7 F,0)
is an SG. In the set of all TFSs of S we define the order
relation as follows: 7F; C T.FQ if and only if p(h) <
A(h), #(h) > ji(h) and 6(h) > c(h) for all h € S. Finally,
we define a binary operation M on 7 F as follows:

TF1NTFy:=

where (5 A )\)(h) = p(h) A )\(h) vV ,u)(h):
and (8 V &)(h) :=6(h) Vv a(h) forall h € S.

(PANDV 1,0 V@),
p(h)V ji(h)
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Theorem 2.12. [13] Let {T F;;cz} be a family of TFS of
an SG S. If {TF;jicz} be a family of TFSSG of S, then

the TFS (Vi3 TFi = (Miez by Usez ¥y Uses §) of Sisa
TFSSG of S.

III. TRIPOLAR FUZZY BI-IDEALS IN SEMIGROUPS

In this section, we mentioned the definition of tripolar
fuzzy bi-ideals in semigroups, and some of their properties
are investigated.

Definition 3.1. A TFS is called a TF = (j, i’, 0) of an SG
‘? is called a tripolar fuzzy generalized bi-ideal (TFGIB) of
S if
(1) phki) > (k)
(2) o(hki) < (k)
(3) d(hki) < &(k)
for all h,k‘,r es.
Definition 3.2. A TFS is called a TF = (p, v, 5) of an SG

S is called a tripolar fuzzy bi-ideal (TFBI) of S if it is a
TFSSG and a TFGBI

It is clearly that every TFBI is a TFGBI in semigroups.
The following example is a TFGBI of an SG.

Example 3.3. [13] Let S = {4, &,4, 3} be an SG with the
following Cayley table:

Define TF = (p, i, 8) by p(i) = 0.6, p(i) = 0.3, p(§) =
04, p(2) = 0.1; v(w) = 0.1, (%) = 0.3, p(§) =
0.2, () = 04 and 6(w) = —0.1, §(i) = —0.4, §(j) =

—0.3, 0(2) = —0.5. Then TF is a TFLI of S.

Definition 3.4. [15] An SG S8 is called an regular if for each
h e S, there exist € S such that h = hih.

Definition 3.5. [15] An SG S is called an intra- -regular if
for each h € S, there exist k, v € S such that h = Gh2k.

Theorem 3.6. In regular and intra-regular of X, the TFBIs
and TFGBIs coincide.

Proof: Let TF = (p, 1, §) be a BCF GBI of a regular
of § and let h,k € S. Since S is regular, we have there
exists 77 € S such that k = krnk. Thus,

pUik) = phdkiink) = (i (ki) > ) A (),
(hk:) = u(hkmk’) (h(k:m)k) < u(h) v (k) and
6(hk) = d(hkink) = 6(h(km)k;) <o(h)V (5(k)
Hence, TF = (p, 7, 6) is a TFSSG of 8. By Definition
3.2, TF = (p, , ) is a TFBI of S.
Similarly, we can prove the other cases also. ]

Theorem 3.7. Every TFID of an SG S is a TFBI of S.

Proof: Let TF = (p, U, §) be a TFID of & and
let h,k € 8. Then TF = (p, 77, 6) is a TFLI and TFRI of
S. Thus,
p(hk) > p(k) i(hk) < i(k) and d(hk) < &(k). Hence,
p(hk) > p(h) A p(k) p(hk) < (k) V (k) and &(hk) <

5(h) Vv 6(k). This show that TF =
S.

. Let h k iedS. Then, p(hk”f’) > p(# ) V(hkr)§ ﬂ(i‘)._and
d(hki) < (5( ). Thus, p(hk) > p(h) i) p(hk) < i(h) v
(7) and §(hk) 5( )V (5( ). Therefore, TF = (p, i/, 9)
is a TFBI of S. “

Corollary 3.8. Every TFID of S is a TFGID of X.

The following theorem shows that the BCF Bls and BCF
IDs coincide for some types of semigroups.

Theorem 3.9. In regular of an SG S, the TFBIs and TFIDs
coincide.

Proof: Let TF = (p, U, 6) be a BCF BI of a regular
of S and let b,k € S. Since S is regular, we have hk €
(hSh)X C hSh which that hii = hik for some § € S.
Thus, p(hk) = p(hsk) > p(h) v(hk) = i(hsk) < i(h) and
6(hk) = d(hsk) < 6(h).

Hence, TF = (p, v, 5) is a TFRI of S. Similarly, we can
prove that TF = (p, i, 8) is a TFLI of S. Thus, TF =
(p, U, 8) is a TFID of S. |

Corollary 3.10. In regular of S, the TFGBIs and TFIDs
coincide.

Theorem 3.11. Ler TF = (j, i, 0) be a TFS in an SG S.
Then the following statements hold.

(p, 1, 6) is a TFSSG of

(1) TF = (p.p,9) is a TFSSG of .
(2) TF = (p,p,9) is a TFGBI of S.
(3) TF = (p,p,0) is a TFBI of S.

Proof- Let p=1— j and h,k € 8. Then

(1) plhkit) =1~ p(hki) < 1— (p(h) A p(k)) = 1= p(h) v
1 —p(k) = p(h) Vv p(k). Thus, TF = (p, p, 0) is a
TFSSG of S.

(2) p(hki) =1 — p(hki) < 1 — p(k)
(p, p, ) is a TFGBI of S.
(3) By (1) and (2), we have (3) is true.

= p(k). Thus, TF =

|
The following theorems show the connection between
GBIs and TFBIs in semigroups.

Theorem 3.12. Let B be a non-empty subset of an SG S.

Then the following statement holds;

(1) B is a GBI of S if and only ifTFg = (Pg Vg, (53) is
a TFGBI of S. )

(2) BisaBIof S if and only if TFy = (g, g, 033) is a
TFBI of S.

Proof:

Suppose that Bis a GBI of S and let h, k,# € S. Then
BSB C B.

If h,# € B, then hki € B. Thus, pB(h) = pp(i) =
pB(thr) = 1, Z/B(h) = vy(¥) = Z/B(hkr) = 0 and
dg(h) = 05(F) = dz(hki) = —1. Hence, pB( r)
pB(h Pi(r), U (hki) < g (h)Viyg(7) and d5(hki)
0(h) v 5 5(7).

fh ¢ Bori ¢ B, then pB(hkr) > pB(h) A pi(F),
VB(hkT) < VB(h)VVB( )and§ (hki) < b5 s(h )\/5 ().
Therefore, TF gz = (g, V3. o5 ) is a TFGBI of S

For the converse, assume that 7Fy = (g, Vg, 56) is
a TESSG of S, let h, k,#* € S with h, i € B. If hki* ¢

(1)

>
<

’—‘Oﬂ
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B. Then jig(h) = j5(i) = L ig(h) = (i) = 0,
q (h) = 64(F) = —1, and jg(hiei) = 0, ig(hiei) = 1,
0(hki) = 0. Thus, 0 = fg(hki) > pg(h) Apg(r) =1,
1= ﬁB(hkin‘) < g(h) vV ig(#) = 0 and 0 = d5(hki) <
5 ( 1) VO 5(r) = —1. It is a contradiction so, hki € B.

Therefore B is a GBI of S.
(2) It follows from Theorem 2.10 and (1).

Theorem 3.13. Let p, iV and & be nonzero fuzzy sets of an

SG S. Then the following statement holds;

(1) TF := (p,,0) is a TFGBI of S if and only if
supp(TF) is a GBI of S.

(2) TF :=(p, v, 5) is a TFBI of S if and only if supp (T F)
is a BI of S.

Proof:

Suppose that TF = (g, ¥, 4) is a TFGBI of S an
h ki e S with h,i € supp(T]-') Then p(

1)
(>¢0u<)¢1u<>7§1and5<>#
() # 0. By assumption, j(hki’) > p(h) A p(F
vV é

0.

(1)
?g

0,
),

(hk;r) < V(h) Vv U(#) and 5(hk:r) < 6( )V O(F).
Thus, p(hki) # 0, (hki?) # 1 and §(hki) #

hki* € supp(TF). Hence, supp(7TF) is a GBI of S.
For the converse, suppose that supp(7F) is a SG of

S and let TF = (p, U, 6) is not a TFGBI of S. Then
there exist h, k, 7 € S such that p(hk;r) < p(h) p(7),
p(hkir) > i(h) V i(#) and 6(hki) > 6(h) V §(#). Since
supp(TF) is a GBI of & we have hki' € supp(TF).
Thus, j(hki*) # 0, i(hk#) # 1 and §(hk+) # 0.
If h,i e supp(7F), then p( ) # 0, p(i) # 0, I/(h) #
();élandé( )750 6(#) # 0. Thus, p(hk)z
g(h AP(F), v(hki) < p(R)Vi(#), and 6 (hki) < 8(h)V
o(7

)
). It is a contradiction.
If h ¢ supp(T]:) or i* ¢ supp(7F), then p(hkr) >
p(h) A p(#), v(hki) < (h) V(i) and d(hki) < 8(h)V
5 (#). It is a contradiction.
Therefore, TF = (j5, i/, 0) is a TFGBI of S.
(2) It follows from Theorem 2.11 and (1).

So

|

Next, we give the definition of a p-level B-cut, i-level

B-cut and é-level B cut. And we prove the set j-level -cut,
i-level S-cut and d-level S-cut are ideals of SGs.

Definition 3.14. [13] Let TF = (p, ¥, 5) be a TFS of an
SG S and § € [0,1]. Then the set [jj —{hES p(h) >
B vy =1{h €S :u(h) < p, andd _{heS d(h) < =
are called a p-level B-cut, i-level 6 cut and &-level (-cut of
S respectively.

Theorem 3.15. [13] Let TF = (j, i/, 6) be a TFS of an
SGS. If TF = (p, 1, 6) is a TFSSG of S, then the j-level
B cut, v-level B-cut and §-level ﬁ cut SGs of S, for every
B € Im(p) N Im(i7) C [0,1] and —f € Im(d).

Theorem 3.16. Let TF = (p, i, 0) be a TFS of an SG S.
Then the following statement holds;

) IfTF = (p, 7, 6) is a TFGBI of S, then the p-level
B-cut, i-level B cut and b-level [3-cut GBls of S, for
every 3 € Im(p) NIm(i?) C [0,1] and —f € Im(5).

2) IfTF = (p, v, 6) is a TFBI ofS then the j-level j3-
cut, v-level B-cut and é-level (B-cut Bls ofS for every
B € Im(p) N Im(i) C [0,1] and —f € Im(¥).

Proof: Let 3 € Im(p) NIm(’) C [0,1] and —3 € Im(d)

with b, k € TF := (j, ¥, d)

(1) If h,i € pj, then p(h) > 3, p(¥) > . Thus, p(hki) >
p(h) A p(#) > B. Hence, hki € Pj-
If h,i € i, then i(h) < f, (7)) < B. Thus, i(hki) <
(h) V (i) < j3. Hence, hki € V.
If h,k € 65, then 6(h) < =B, o(F ) < —p. Thus,
o(hkit) < 6() V §(7) < —fB. Hence, hki € 55.
Therefore, j-level B-cut, ¥-level S-cut and §-level S-cut

GBIs of S.
(2) It follows Theorem 3.15 and (1).

Theorem 3.17. Let {TF; | i € I} be a family of TFS of an
SG S. Then the following statement holds;

(1) If {TF; | i € I} be a family of TFGBI of S, then the

TFS (; IT}' = (Miez P> Uiz 7y Usesr ) ofS isa
TFGBI of &.

(2) If {TF; | i € I} be a family of TFBI of S, then the

TES ﬂzel—.T]: (ﬂ’LGI IO’ UZGIV UZGI ) OfS is a
TFBI of S.

Proof: Note that we defined
Nici TFi = (Niei by Useq V5 Usei 6) as follows:

(7)o

(U y) (h) := | #(h) : sup{i(h) € T}

s inf{p;( ) €I},

= Ai(h)

i€l

i€l iel
and
(U 5) U(S - sup{d;(h) € I},
€L iel
forall h € S.

(1) Let h,k,# € S. Then

(ﬂ ) (hki)

ﬂ pi( hkr

1€l
= inf{p;(h) | i € I}
> inf{p(h) A ji 7 ) |Z €}

_mpz /\pz

iel

= (ﬂ p‘) (h) A (ﬂ p‘) ()
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) (hki) = ) vs (ki)
iel

= sup{v;(hki) | i € I}
> sup{Di(h) V i (7 ) |iel}

—U Ui( )\/1/Z

= (U V) (h) v (U y> (#)

(hkei) = | 0s(hki)
€T
= sup{d;(hki) | i e I}
> sup{0;(h) v &;() | i € T}

= J@ihy v 8

i€l

= (US) (h) v (US) (¥)
iel iel
ThUS, anIT‘Fl =

(Miez £s Usez Vs User ) of Sisa
TFGBI of S.

(2) It follows Theorem 2.12 and (1).

[

and

()

Theorem 3.18. [13] Let TF = (j, is, 0) be TFS of an SG
S. Then TF = (p, U, 0) is a TFSSG of S if and only if
TFoTFETF.

Theorem 3.19. Let TF = (p, i, ) be TFS of an SG S.
Then the following statement holds;

(1) TF = (p, v, 8) is a TFGBI of S if and only if TF o
TFsoTFETF. )
(2) Tf (p, 1, 0) is a TFBI of S if and only if TF o

TFCTFand TFoTFgoTF ETF, where TF 5 =
(Fs: V) 05)-
Proof:

Assume that TF =
hes.

If Fj; = 0. Then (po g op)(h) =0< p(ﬁ),
(Vovgoir)(h) =1 > y( 1) and (608 508)(h) = 0 > §(h).
If Fj # 0. Then

(Fops)o ) = V  {(Fops)i) A B
(m, n)E%’h

= V. { V. {s@)Aps(@)}Ap(i)}

(i) €S (5.d) €S
= V. _{ V. {GAr1Api)}

(", ) €T (B,4)ESm

(p, 7, ) is a TFGBI of S and let

=N 0 iy
(i, A €S}, (B,4)ETm

VTN T e aseny < v i)
(1i,71) €5, (B,4) €8 (", 1) ES},

—ph,

(ovs)oi)(h) = N A{(Fois)(in)Vvi)(i)}

(1) GS,L
= AN { A {#B)Vvis@}vpi)}

(1, R) €T, (5,d) €S

= A A VOV
() €S}, (5,4)ESm
= AN { A {EG)}vii)}
(", 1) €Sy, (B,4) €T
=N A W veay = A s
(s, 1) €8, (5.6) € (i) e
=wh), . )
((60ds)od)(h) = AN {(0ois)(in)Vo)(ii)}
(m n)E%’h .
= AN { A @) vos(@} v}
(i) €S;, (B,§)€Fm )
A LA BH) v -1}y
() €Sy, (F,4)€8m .
= AN { A {6} vi(i)}
(1, 1) €8, (H,4)ESm . .
= A AN @ v}t = A (P
(1, i) €8, (5,d) €S (7, 1) €T,
:5(h),
Hence, TF o TFgoTFC TF.

Conversely, assume that TFoTFgoTFETF and
h k # € &. Then
phEF) > ((po ps) o ) (hki)
=V (B ds) (i) A )i}
(7, 1) €S}y jose
= V. { V {0 Arps(@}np(i)}

(1,1) ESfjos (5,8)ES

= V. { V {pG)A1}Api)}
(1,1) ES s (5,0)ESwm )
V Vo A{B®) A p(i)} = plh) A p(F),
(1i0,1) €1 (B,6) €S -
V) (hki)
= A {(Bous)(i) v i}

(hk )< ((Poisg)o
(17, 1) €5 ks
= AN { A {#®)vis@}vi(i)}

(170,71) €T e (D,G) €T

= A U AN G VOrvi(i)}

() €S (H,4)ES
(i)} < (h) A (),

)
A A AvB) v

(170, 71) €T o (B, 4) € L
S(hki) < ((803s) 0 8)(hki)
- {6 us) () v O)(70)}

(77, 1) €8 o )
= A { AN {6()Vis(@} Vi
(1,1) ESjjos (5,8)ES

= A { A {8()voyvai)}

(170,71) €S s (B,G) ES i

= A A {0(p) v o(i)} < o(h) AS(#).
(7,1) €S}, 35+ (P, G) ET v
Thus, 7F = (j, i/, §) is a TEGBI of S.

(2) It follows Theorem 3.18 and (1).

|
Definition 3.20. [/3] Let ¢ : X - y be a map and let
TFi=(p, v, 8) and TFy = (X, ji, &) be a TFSs in X and

Y, respectively. The pre-image of T F under p, denoted by
@ YT Fz) is a TFS in X defined by:

P (TF2) = (07 (N, 07 (i) o7 (@),

whrer o=1(A) = M), o1 (j1) = (), 71 @) = (p).

Theorem 3.21. [13] Let ¢ : X —~ Y bea homomorphism
of semigroups. If TF = (p, U, §) is a TFSSG of Y, then_
¢ U TF) = (o (p), ¢~ (D), ¢~ 1(0)) is a TFSSG of X.
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Theorem 3.22. Let ¢ : X = Y bea homomorphism of
semigroups. Then the following statement holds;

(1) If TF = (p, v, 8) is a TFGBI of ), then
e HTF) = (¢1(p), ¢~ V), ™ 1(9)) is a TFGBI of
X.

(2) If TF = (p, is, 0) is a TFBI of ), then
o WTF) = (¢ 1(p), ¢~ 1(¥), ¢~ 1(0)) is a TFBI of
X.
Proof:

(1) Assume that 7F =
h,k,7# € X. Then

(k) =

(p, 1, 6) is a TFGBI of ) and

ple(hkit)) = ple(h)p(k))e(F)
> i) A ()
=7 (pp(h)) Ao~ (po()),

< (p(h) vV i(p(k)p(7)

= o(@(e(h)) vV o~ (B(e())),
and

@ 1 (5(hki)) = d(p(hk#)) = d(p(h)e(F))

> d(¢p(h)) V"5(<p(7")) )

= o 1 (6(e(h))) vV o~ (0(()))
Thus, = Y(TF) = (¢71(p), ¢ H(D), ¢71(9)) is a
TFGBI of X.

(2) By Theorem 3.21 and (1).

Lemma 3.23. Let K and L be non-empty subsets of an
semigroup S. Then the following statements are true

(1) T]:,@ |_|T.7:5 = T]:im.c
2) TFpoTFi=TFii
where T]:IC = (pIOV)C’(SIC) and T]:ﬁ = (pﬁ, V£,5£)

The following lemma will be used to prove in Theorem
3.25.

Lemma 3.24. [15] Let S be an SG. Then the following are
equivalent:

(1)  is a regular ) .

(2) ANL C AL, for every GBI A and every LI L.

Theorem 3.25. Let S be an SG. Then the following are

equivalent:

(1) S is regular,

(2) TFANITF2 ETFioTFy, for every TFGBI TF, =
(p,7,8) and every TFLI TFy = (X, ji, &) of S.

Pmof (1) = (2) Let TF1 = (p, 7, §) and TFy =
(A, ji,) be a TEGBI and a TFLI of S respectively and let
h e S Since & is regular, there exists k € S such that
h = hih. Thus,
(BoX)(h) =V {(B(rn) AN)(ii)}
(fh,n)ES’} e
=V A{@) AN} = s(h) AAKRR) = j(h) AA(R)
(1, 7) €S,
— (5 A R)(h)

oi)(h) = A {0R) v ji)(i)}
(m,n)ESh
= A

{(@(n) v i) (i)} < B(h) V ji(kh)
(m n)Esh

p(h) v jilh) = (v ji)(h)

(§OWL)(h): A {0GR) v @) (i)}

(rnn)eﬁ"h .
= A {0G) va) (i)} < d(h) va(kh)
(fhm)ES’,

< 8(h) v i(h) = (6 @)(h).

So. (o X)) = (AN,
(o fi)(h) < @V ji)(h) and (50 w)(h) < (5 V@) (h).

Hence, TF1 N TFs ETF10TFs.

2) = ()LetAandi’)beaGBIandaLIofS’
respectively. Then by Theorem 3.12 and 2.10, TF 4 =
(P 4>V s (5) and TF; = (pL,I/L,(Sﬁ) is a TFGBI and
TFLI of S respectively. By supposition and Lemma 3.23,
we have

T]:.Ahﬁ = (TfA) M (T]:ﬂ)
C(TF ) o(TF;)
= T‘FAZ'
Thus, h e .AE and so, ANL - AL. Tt follows that by
Lemma 3.24, S is regular. [ |

The following lemma will be used to prove in Theorem
3.27.

Lemma 3.26. [15] Let S be an SG. Then the following are
equivalent

(1) Sis regular,
(2) B = BSB, for each BI B ofS
(3) A= ASA, for each GBI A of S.

Theorem 3.27. Let S be an SG. Then the following are
equivalent:
(1) S is regular, )
(2) TFoTFgoTF =TUF, forevery TFBI TF1 = (p, /,0)
of S.
(3) TFoTFgzoTF = TF, for every TFFGBI TF, =
(5.5,6) of &
Proof: (1) = (3) Let TF = (p, 7, 6) be a TFBI of &
and let i € S. Then there exists #* € S such that i = hih =
(hih)ih. Thus,

((Bops)op)(h) = NV {(pops)(m) A p)(i)}
(", 1) EF},
Vo (G ) 0i) A ) (i)
(m’ﬁ)eg(ﬂfrﬁﬁ)iﬁ
> (po ps)((hih)i) A p)(h)
=V () A ps(a)} A ()
(i, d)eg(hrl )i
p(ha:h ) A ps(E)) A ( ) = - (p (hxh) A1) A p(h)
— p(hih) A p(h) > p(h) A p(R) A Ry = p(h),
((Povs)o )(h) {(@ois)() v i)(i)}
(m, )Egh
= A {(Woig)(m)Vi)(i)}
(m’ﬁ)eg(hzh)mh

< (o is)((hih)E) v i) (h)
= A A{v(@) vis(d}vii)

(i,d)EF

(iizh)m
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and
((60ds)od)(h) = A {(00ds)(i) v d)(i)}
(mn)Egh .
— A {(Bods)iin) v i)
(m,n)EF

< (Gobs)((hih)) v H)(B)
A @) Vs v
()5 3,
< (§(hith) v Ss(#)) v §(h) =
Z §(hah) v §(h) < 8(h) v
)

) )

Hence, ((jio jis) o 7)(h) > j(h), (5o s)0#)(h) < (i)
and (((§ 0 ds) 0 8)(h) < §(h). It implies that, TF C TF o
TFgoTF. By Theorem 3.19 we have, TFoT FgoTF C
'T]: Thus, TFoTFgzoTF=TF.

(3) = (2) This is obv1ous because every TFBI of S is a
TFGBI of S.

(2) = (1). Let B be a BI of S. Then by Theorem 3.12,
TFys = (Pg. Vs, 63) is a TFBI of S. By supposition and
Lemma 3.23, we have

(1)

((hith) v —1) v 3(h)
h) v é(h) = o(h).

TF gogors = (TFp) 0 (TFg) o (TFg)
Thus, h € B and SO, B = BSB. 1t follows that by Lemma
3.24, S is regular. [ |

IV. MINIMAL AND MAXIMAL TRIPOLAR Fuzzy
GENERALIZED BI-IDEAL

Definition 4.1. An GBI B of an SG S is called

(1) a minimal if for every GBI of J of S such that J C B,
we have J = B,

(2) a maximal if for every GBI of J of S such that B C J,
we have B= 7.

Definition 4.2. A TFGBI TF =

called

(1) a minimal if for every TFGBI of TF1 = (\, ji, @
of S such that TF, C TF, we have supp(TF)
supp(7F),

(2) a maximal if for every TFGBI of TF1 = (\, ji, @
of S such that TF C TF, we have supp(Tfl)
supp(TF).

Theorem 4.3. Let B be a non-empty subset of an SG S.

Then the following statement holds.

(1) B is a minimal GBI of S if and only if TFg =
()\B, jig @) is a minimal TEGBI of S,

(2) B is a maximal GBI of S if and only if TFyz =
()\B, fig @) is a maximal TFGBI of S.

Proof:

(1) Suppose that B is a minimal GBI of S. Then B is a GBI
of S. Thus, by Theorem 3.12, TFi = g, fig @)
is a TRGBI of S. Let TF = (), ji, &) be a TRGBI
of S such that TF C TF . Then supp(TF) C
supp(7T Fpg). Thus, supp(T]-') C supp(TFg) = B.

(p, U, 6) of an SG 8§ is

&

&

Hence, supp(7.F) C B. Since TF = (), ji, &) is
a TRGBI of & we have supp(7F) is a GBI of S.

By assumption, supp(7F) C B = supp(TF ). So
supp(7F) = supp(7 Fj). Hence, TF; is a minimal
TRGBI of S.
Conversely, TFy is a minimal TRGBI of S. Then
TFg = ()\B, fig &) is a TRGBI of S. By Theorem
3.12, Bis a GBI of S. Let j be a GBI of S such that
J C B. Then by Theorem 3.12, TF; = (A o B W)
is a TRFI of & such that TF; C TJFj. Hence,
J = supp(TF ;) C supp(TFg) = B. By assumption,
B = supp(TFg) = J = supp(TF 7) = J. So,
B = J. Hence, B is a minimal GBI of S

(2) Suppose that B is a maximal GBI of S. Then B is a GBI
of S. Thus, by Theorem 3.12, TFg = (A & B @)
is a TRGBI of &. Let TF = (X, ji, &) be a TRGBI
of S such that TFi C TF. Then supp(TFy) C
supp(7T F). Thus, B = supp(TFyz) € supp(TF).
Hence, B C supp(TF). Since TF = (X, ji, @) is
a TRGBI of S we have supp(7F) is a GBI of S.
By assumption, supp(7F) C B = supp(7TFy). So
supp(TF) = supp(T Fy). Hence, TF is a maximal
TRGBI of S.
Conversely, TFy is a maximal TRGBI of S. Then
TFs = (g, fig &) is a TRGBI of S. By Theorem
3.12, Bis a GBI of S. Let [ be a GBI of S such that
B C J. Then by Theorem 3.12, TF5 = (AJ, fi @)
is a TRFI of S _s_uch that TFz C T}"j. Hence,

B= supp(TfB) cJ= supp(T]:j) By assumption,
B = supp(T]-' ;) = J = supp(T}' ) = J. So,
B = J. Hence, B is a maximal GBI of S

||

Definition 4.4. An BI B of an SG S is called

(1) a minimal if for every BI of J of S such that J C B,
we have j = B’ . . . .

(2) a maximal if for every BI of J of S such that B C J,
we have B = 7.

Definition 4.5. A TFBI TF = (j5, ¥, 0) of an SG S is called

(1) a minimal if for every TFBI of TFy1 = (\, ji, &) of
S such that TF, C TF, we have supp(TF1) =
supp(7F),

(2) a maximal if for every TFBI of TF1 = (X, ji, &) of
S such that TF C TFi, we have supp(TF,) =
supp(TF).

Theorem 4.6. Let BB be a non-empty subset of an SG S.

Then the following statement holds.

(1) B is a minimal BI of S if and only if TFsz =
()\B, jiz &) is a minimal TFBI of S,

(2) B is a maximal BI of S if and only if TFy =
()\B, jiz &) is a maximal TFBI of S.

V. PRIME AND SEMIPRIME TRIPOLAR FUzzy
GENERALIZED BI-IDEAL
Definition 5.1. An GBI of an SG S is called
(1) a prime if hi EB then he B ori € B for all h,r €S,
(2) a semiprime if h*> € B, then h € B for all h € S

Definition 5.2. A TFGBI TF = (p, ji, 6) of an SG S is
called
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(1) a prime if p(hi') < j(h) v (i), jihi®) > ji(h) A ()
and §(hit) > §(h) v d(7) for all h,7 € S, B

(2) a semiprime if p(hh) < p(h), ji(hh) > ji(h) and
6(hh) > 8(h) for all h € 8.

Theorem 5.3. Let B be a non-empty subset of an SG S.

Then the following statement holds.

(1) B is a prime GBI of S if and only if TFg =
()\B, jig @) is a prime TFGBI of S,

(2) B is a semiprime GBI of S if and only if TFp =
()\B, figg W) is a semiprime TFGBI of S.

Proof:

(1) Suppose that B is a prime GBI of S. Then B is a GBI
of S. Thus, by Theorem 3.12, TF; = ()\B, fig ©g) 18
a TRGBI of S. Let h,i € S. If hit € B, then h € B

or i € B. Thus, p(hr) =1=ph) = p(i), i(hi) =
0 = ji(h) = ji(¥) and §(hi") = —1 = 6(h) = 4(#). S
FF) = 1 < GV (), i(hit) = 0 > i(h) A j(i) and
$(hiY) = —1 > b(h) v 5(7).

IfhrgéB thenp(hr)—OS (h) p(i), i ( Py=12>
ji(h) A miu(i) and d(hit) = 6(h) V &(#). Hence,

T Fpg is a prime TRGBI of S

Conversely, 7 F; is a prime TRGBI of S. Then TFg

(Ng» fi &) is a TRGBI of S. By Theorem 3.12, B is

a GBI of S. Let h,# € S with hi* € B. Then p(hr) =1,
(hr) = 0 and §(h#) =-1L1If h ¢ B and i ¢ B, then
p(h) = 0 = j(#), jih) = 1 = ji(i) and d(h) = 0 =
8(7): Thus, 1= p(hi) < (k) 0) =0, 0 = k) >
ji(h) A ji(7) = 1 and 1—§(hr)>5()\/5()

It is a contradiction so, h € B or i € B. Hence, B is a

prime GBI of S.

(2) Suppose that B is a semiprime GBI of S. Then B is a
GBI of S. Thus, by Theorem 3.12, T F 5 = ()\B, fig ©g)
is a TRGBI of S. Let h,e S. IfhheB then h €
B. Thus, j(hh) = 1 = p(h) ji(hh) = 0 = u(h) and
S(hi) = —1 = 5( ). So p(hh) =1< (h) ji(hh) =
0 >/},( ) and é(hh) —1>6(h )

If hh ¢ B, then j(hh) = 0 < j(h), i(hh) = 1 > ji(h)
and 0(hh) =0> 4(h). Hence, T Fpg is a semiprime
TRGBI of S.
Conversely, TFp is a semiprime TRGBI of S. Then
TFg = (\g, jigiys) is a TRGBI of S. By Theorem
3.12, Bis a GBI of S. Let h,€ S with hh € B. Then
p(hh) =1, ,u(hh) =0 and 6(hh) — —1.If h ¢ B, then
p( 1) =0, ji(h )—landé(h)—O Thus, l—p(hh)
( )*0 O*u(hh)>u(h)*land lfd(hh)
6(h) = 0. It is a contradiction so, i € B . Hence, B is
a semiprime GBI of S.
|

Definition 5.4. An BI B of an SG S is called
(1) aprime if hi* € B, then h € B or i € B for all h,7 € S,
(2) a semiprime if h? € B, then h € B for all h € S

Definition 5.5. A TFBI 7']-"" (B, i, ) of an SG S is called

(1) a prime if (i) < () v (), ji(hi) > (k) A ji(F)
and 6(hi') > 6(h) V 6(#) for all h,7 € S, )

(2) a semiprime if p(hh) < p(h), p(hh) > [(h) and
5(hh) > 6(h) for all h € S.

Theorem 5.6. Let B be a non-empty subset of an SG S.
Then the following statement holds.

(1) B is a prime BI of S ifand only if TFp = ()\g, flz Cop)
is a prime TFBI of S,

(2) B is a semiprime BI of S if and only if TFp =
()\B, jiz Q) is a semiprime TFGBI of S.

VI. CONCLUSION

In paper, we study concpet tripolar fuzzy ideals in semi-
group and connection between generalized bi-ideals and
tripolar fuzzy generalized bi-ideals in semigroups. In the
important results, regular and intra-regular semigroups are
characterized in terms of tripolar fuzzy generalized bi-ideals
are provided. In the future work, we can study tripolar fuzzy
interior ideals in semigroups and their fuzzifications in other
algebraic structures.
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