

Abstract—The identification of critical nodes and edges is of

great significance for maintaining the normal operation of the
high-speed rail network(HSRN). Based on the basic lines of the
HSRN and empirical operation data of high-speed trains, this
study constructs a weighted service-physical dual-layer network.
A heuristic algorithm with immune mechanism and greedy
repair strategy is designed based on the constraints of node
dominance and connectivity, with the goal of minimizing the
network weight ratio. A method for identifying key nodes and
edges in the HSRN is proposed, based on the Minimum
Weighted Connected Domination Set (MWCDS). Using the
Chinese high-speed railway network as a case study, the results
show that the backbone network identified by MWCDS consists
of key stations and key train flows, and its service scope
achieves full coverage of the HSRN. The identified key stations
are primarily network hubs, while the key edges exhibit high
transportation service efficiency, enabling the simultaneous
identification of critical stations and service edges. By
leveraging the mapping relationship between the
service-physical dual-layer network, trunk railway lines can be
derived from an operational perspective. Finally, the
effectiveness of MWCDS is verified, demonstrating that the
identified backbone network has broad spatial span and
coverage, playing a crucial role in maintaining network
stability.

Index Terms—High-speed rail network, Minimum Weighted
Connected Domination Set, Immune mechanism, Greedy
heuristic, Backbone network

I. INTRODUCTION
S a critical infrastructure driving national economic
development, the high-speed railway network not only

reduces intercity travel duration but also significantly
enhances regional spatial connectivity. Nevertheless, with
continuous network expansion, the system demonstrates
increasingly complex, dynamic, and open complex
characteristics, rendering it more vulnerable to operational
risks and external disruptions. This evolving context makes
conducting structural analysis of network components
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particularly crucial to identify critical components that ensure
sustainable long-term operation - a pressing challenge
requiring immediate resolution in contemporary railway
maintenance and management practices.
The rapid advancement of network science has driven
substantial methodological progress in critical component
identification. Current approaches are systematically
taxonomized into two dominant frameworks: social network
analysis [1] and system network analysis [2]. Social network
analysis measures the importance of node/edge based on its'
topologicalmetrics, with established techniques including
network centrality [3], K-shell decomposition [4], and
PageRank algorithms [5]. These methods demonstrate robust
applicability in transportation networks. Du et al. [6]
analyzed spatiotemporal characteristics of urban commuting
passenger flow to evaluate topological criticality in urban rail
systems. Cheng et al. [7] developed flow-weighted centrality
metrics capturing passenger delay propagation. Kim et al. [8]
formulated an aviation network model with distance and
passenger flow demand as edge weights and identified a set
of key nodes. In addition, inspired by traditional social
network analysis methods, many researchers have applied
methods such as evidence theory [9], structural hole theory
[10], and gravity model [11] to identify key components of
the network. System network analysis posits that component
importance equates to induced functionality degradation.
Researchers quantify this through pre/post-removal
comparisons of Giant connected component size
[12] ,Average path length variance [13] ,Global efficiency
reduction [14]. Xin et al. [15] examined the robustness of
China's railway transportation network under different attack
strategies and identified its backbone network structure. He et
al. [16] analyzed the interdependence of multimodal
transportation networks and identified key nodes in the Dutch
freight network, adopting total travel time during disruptions
as the network performance metric.. Li et al. [17] integrated
topological characteristics with operational functionality to
investigate how station and train failures affect the service
efficiency of High-Speed Rail Networks (HSRN).
The above methods evaluate the importance of network
components from different perspectives, but they have the
following shortcomings: they study nodes and edges
separately as independent individuals, thereby losing the
correlation between nodes and edges, and are unable to
systematically identify the network's backbone structure.
More importantly, these methods may overlook components
with low centrality that play a crucial role in maintaining the
network's structural integrity. The Connected Dominating Set
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(CDS) identifies key nodes and edges by integrating
dominance and connectivity, thereby offering a novel
approach to uncovering backbone structures. Dominance
reflects the control ability of nodes over the network, and
connectivity ensures the correlation between nodes. However,
the structure complexity of network brings about a massive
amount of network data, and maintaining a few key
components to support the normal operation of the network is
of great significance. Theoretically, the Minimum Connected
Dominating Set (MCDS) provides a programmatic method
for constructing connected network topologies [19]. It
achieves full network domination via minimal key nodes
while preserving inter-node connectivity. MCDS can
efficiently extract backbone structures in large-scale complex
networks [20]. Studies indicate that unweighted networks fail
to capture real-world system complexities, whereas weighted
networks better represent actual network attributes.. To
address this, Wang et al. [21] proposed the Minimum Weight
Connected Dominating Set (MWCDS) method. The
MWCDS identifies backbone structures in weighted
networks under dominance and connectivity constraints,
thereby yielding effective outcomes in real-network analysis.
The successful implementation of MCDS in transportation
networks [22] informs the methodological foundation of this
study. Therefore, based on previous research, we propose
applying MWCDS to identify backbone structures in HSRN.
This article analyzes the service and topological
characteristics of HSRN, which evaluates inter-station
transportation efficiency through train operating frequency
and travel time, and constructs a service-physical dual-layer
network. To reduce algorithmic search space in large-scale
networks, an immune mechanism combined with a greedy
heuristic strategy is introduced. An immune greedy heuristic
(IGH) algorithm was proposed to develop a problem-solving
approach for MWCDS. Taking the Chinese high-speed
railway network as a case study, we leverage actual train
operation data to identify its backbone structure,
simultaneously pinpoint key nodes and edges. The proposed
MWCDS method is compared with traditional identification
approaches to validate its effectiveness.

II. METHODOLOGY

A. MWCDS Basic Theory
As the theoretical foundation for identifying key nodes and

edges in weighted complex networks, the MWCDS concept
has evolved from its predecessors the MDS and MCDS.
In undirected graph G, V is the set of nodes and E is the set

of edges.
Definition 1.Minimum Dominating Set (MDS)
In undirected graph  ,G V E , S V , S   , if
v V S   is directly connected to at least one node in S,

then S is the dominating set of graph G. If

S S  does not

constitute the dominating set of graph G, then S is the
minimum dominating set of graph G[23]. S is the minimum
number of dominant nodes. As shown in Fig. 1 (a),
 2 7 11, ,v v v forms dominant relationships with other nodes.
Definition 2. The Minimum Connected Dominating Set

(MCDS)
If S is the minimum dominating set of graph  ,G V E

and S cannot form a connected graph, then the minimum node
set  V V S   is introduced to ensure that S forms a

connected graph, then set C V S  forms the minimum
connected dominating set of graph G, and C is the
minimum number of connected dominating nodes in graphG.
As shown in Fig 1 (b),  2 7 9 10, , ,v v v v forms a dominant
relationship over all nodes and forms a connected subgraph.
The fundamental distinction between the Minimum

Connected Dominating Set (MCDS) and Minimum
Dominating Set (MDS) resides in the connectivity
requirement among dominating nodes. This implies that the
MCDS not only identifies node dominance but inherently
requires connected paths between these nodes. Specifically,
the MCDS constructs a connected subnetwork capable of
dominating all nodes in the original network through
immediate adjacency. Consequently, this subnetwork
achieves full network coverage without requiring multi-hop
propagation, ensuring structural stability with minimal node
deployment while maintaining continuous network
operability.
It should be noted that the MCDS is often applied to

unweighted networks, and this application of the MCDS is
not unique. As shown in Figure 1 (b), both the nodes set
 2 7 9 10, , ,v v v v and the nodes set  2 4 5 7, , ,v v v v can form the
MCDS of the network. However, the unweighted networks
only reflect the connection relationships between various
parts of the network, but cannot reflect the strength of the
connections. In the weighted networks, nodes or edges are
weighted through passenger flow, travel time, traffic capacity,
etc., which is closer to the real transportation network.
Therefore, Wang et al.[21]proposed the concept of the
MWCDS on the basis of the MCDS for the identification of
weighted network backbone structure.
Definition 3. The Minimum Weight Connected

Dominating Set (MWCDS)
For a given node weighted graph  , ,TG V E w where w

is a function :w V R , the MWCDS problem is to find a

MCDS with the minimum total weight    
i

T i
v C

W V w v


  .

As shown in Fig 1 (c), the total weight of nodes in the
 2 7 9 10, , ,v v v v is 5+7+6+3=21, and the total weight of nodes

in the  2 4 5 7, , ,v v v v is 5+5+4+3=17. Therefore,

 2 4 5 7, , ,v v v v is the MWCDS of graph GT. It can be inferred
that the MCDS of any graph may not be unique, but the
MWCDS is unique.

Fig. 1. Diagram of MDS, MCDS and MWCDS
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B. Two-layer network model of the HSRN
Transportation service quality is typically measured by

timeliness and convenience. Timeliness is represented by
travel time ,i jt , convenience is represented by train operating

frequency ,i jf . The edge weight in the service network is

mathematically defined as , , ,/i j i j i jw t f , indicating that

shorter travel durations and higher service frequencies
correspond to lower edge weights – a direct reflection of
enhanced service quality. Based on this, the HSRN service
network is modeled as a weighted network  , ,s sG V E W .
Regardless of the presence of multiple high-speed rail
stations within a city, only the city represents the network
nodes, V is the set of city nodes. If there are direct trains
between cities, there are service edges between them, sE is
the set of service edges, and W is the set of service edge
weights. The HSRN physical network is modeled as an
unweighted network  ,p pG V E , where V is the set of city

nodes and pE is the set of railway line edges. If there are

railway lines directly connected between adjacent cities,
there are edges between city nodes. The HSRN weighted
service-physical dual-layer network is shown in Fig 2.

Fig. 2. High-speed railway service-physical two-layer network.

III. ALGORITHM DESIGN
The essence of solving the MWCDS problem is to identify

a subset of nodes in the network that satisfies the
requirements of dominance and connectivity while
minimizing the total node weight. To avoid the impact of
urban location advantages and hub functions on MWCDS
identification results, this paper excludes node weights and
focuses solely on service edge weights. The MWCDS
problem is a typical NP-hard problem, and precise algorithms
struggle to obtain optimal solution in polynomial time. Due
to their low computational complexity and acceptable
computation time, heuristic algorithms have gradually
become the mainstream approach for large-scale complex
networks.
Considering the large scale and high complexity of the

HSRN, this paper adopts selection, destruction, repair, and
minimization as core mechanisms of population evolution,
incorporating an immune mechanism and a greedy repair
strategy to propose a IGH algorithm for MWCDS
identification.

A. Encoding and population initialization
Encoding of the solution: The essence of the MWCDS

problem is the selection of N-dimensional vectors generated
through 0-1 encoding to form a feasible solution X, where

1ix  indicates that node i is selected as a dominant node.
Population initialization: Analysis of the HSRN reveals

that two types of nodes must be designated as dominating
nodes, namely the cut nodes and the neighboring nodes of
marginal nodes. Cut nodes play a critical role in maintaining
connectivity between subgraphs, while marginal nodes are
dominated by their neighbors. These two categories of nodes
are fixed as dominating nodes and can serve as immune
antibodies to initialize the population, thereby reducing the
algorithm's solution search space.
For the cut nodes, first provide a definition and a

proposition.
Definition : If *v is a cut node of an undirected connected

graph  ,G V E , then there are two nodes u and w that are

different from *v , so that *v is on each path of u and w .
Proposition : In undirected connected graph  ,G V E ,

the set C V constitutes the minimum connected dominant
set of graph G. If there is a cut node *v V in graph G, then
the cut node *v C .
Proof: Assuming that *-C v is a connected graph, there is at

least one path between u and w in *-C v , so there is a path
between u and w in C that does not pass through *v . This
contradicts definition 1, so *-C v is an unconnected graph,
which contradicts the hypothesis.
From the above proposition proof, it can be seen that the

cut node *v must be the dominant node.
There are two situations in the network for the neighboring

nodes of the marginal nodes:
1 as shown in Figure 3 (a), the marginal node 1v has only

one neighboring node 2v , and can only form a dominant
relationship with 1v through 2v . Therefore, 2v must be the
dominant node.

2 As shown in Figure 3 (b), marginal node 1v and its

neighboring nodes  2 3 4, ,v v v form a fully connected
subgraph, and can only form a dominant relationship with 1v

through one of the neighboring nodes  2 3 4, ,v v v . Therefore,

based on greedy thinking, 4v with the highest degree value is
selected as the dominant node.

Fig. 3. Two types of marginal nodes and their neighboring nodes.
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B. Selection and destruction
Selection: In the population, each individual encodes a

feasible solution. The fitness value of an individual is
inversely proportional to the size of the CDS derived from
decoding its representation(e.g., Fitness=1/ CDS ).
Specifically, a smaller CDS size results in a higher fitness
value. To select high-quality solutions, we apply tournament
selection, where individuals with higher fitness values are
chosen as parent candidates for the next generation.
Destruction: Guided by elite individuals, using XOR logic

operations to determine the consistency between parent
individual iX and elite individual *

jX in dimension k , and

calculating the similarity *( , )i jsim X X between iX and *
jX ,

finally obtaining the mutation parameter k of individual iX
in dimension k . If (0,1) krand  , a mutation operation is
performed on dimension k for the parent individual iX ,
traversing each dimension of individual iX to generate a new
offspring individual.
The similarity between individuals is calculated using the

following formula:
* 11

11 01 10
( , ) (1)i j

Nsim X X
N N N


 

In the formula, 11N represents the number of dimensions

where individuals iX and *
jX are the same in their

corresponding dimensions and both are 1. Both 01N and 10N
represent the number of dimensions that are different in the
corresponding dimension, namely the combination of 0, 1
and 1,0. When the similarity *( , ) 1i jsim X X  , the individual

is reinitialized to ensure the population diversity.
The mutation parameter of an individual on dimension k

is calculated using the following formula:
*

, ,( , ) ( ) (2)k i j i k j ksim X X x x   

In the formula, ,i kx and ,j kx are the values of individual

iX and elite individual *
jX on dimension k , namely 0 or 1,

respectively.

C. Repair and minimization
Repair：The repair mechanism first checks whether the

offspring individuals meet the constraints of dominance and
connectivity. For offspring violating these constraints, three
greedy heuristic-based repair strategies are applied:
Strategy 1: Select the node with the smallest edge weight

ratio:

 ,

,
argmin ( ) ; , , (3)i j

j
j k

w
Gr v i S j k V S

w
     


Strategy 2: Select the node with the smallest edge weight:

   ,argmin ; , (4)j i jGw v w i S j V S     

Strategy 3: Select the node with the highest number of non
dominant nodes in the neighborhood:

 argmax ( ) ( ) ; (5)j jGn v v j V S   

Among the three strategies mentioned above, ,i jw is the

weight of edge ,i je , S is the set of dominant nodes,  V S

is the set of non dominant nodes, and    is the statistical
function of the number of non dominant nodes in the node's
neighborhood.
Minimization: After repair operations, a connected

dominating set containing redundant nodes is constructed. To
build the MCDS, we delete redundant nodes to minimize the
number of dominating nodes. Experiments show that MCDSs
in networks are not unique, exhibiting varying levels of
connectivity. Those MCDSs with better connectivity tend to
have more edges. However, when obtaining the MWCDS by
minimizing the sum of edge weights, MCDS candidates with
good connectivity may be excluded. To address this, we
propose calculating the network weight ratio for each MCDS
candidate. This ratio decreases with both a smaller sum of
edge weights and more connected edges, which ultimately
leads to higher transportation service levels and improved
connectivity in the selected MWCDS. The calculation
formula for the network weight ratio is as follows:

 

,

(6)
i j

i j C
w

Wr
C

 


In the formula, C is MCDS, ,i jw is the edge weight

between node i and node j , and    is the statistical
function of the number of edges in the MCDS.
The IGH algorithm process is shown in Fig 4.

IV. SIMULATION ANALYSIS

The simulation was conducted on a system equipped with
an AMD Ryzen 7 4800U processor (8-core, 1.8GHz base
clock) and 16GB RAM. The algorithm implementation was
executed in MATLAB R2016b (MathWorks, 2016).

A. Experiments on scale-free artificial networks
To verify the effectiveness of the MWCDS-based

identification method, we constructed an undirected
scale-free weighted network  1 1 1 1, ,G V E W using Pajek for
validation. The test network comprises 100 nodes and 427
edges, with edge weights uniformly randomized in [1,10]..
To ensure the accuracy of the solution, set the population size
pop=100, the maximum number of iterations Iter=300. The
program was executed 20 times independently, where nodes
and edges recurring across results were identified as key
elements, yielding one MWCDS set and two MCDS sets. The
experimental results are shown in Table I. The MWCDS is
shown in Fig 5.

TABLE I
EXPERIMENTAL RESULTS OF SCALE-FREE ARTIFICIAL NETWORKS

Type Node set of
backbone network

Number
of nodes

Number
of edges

Weight
ratioWr

MWCDS {1,2,4,7,8,11,14,17,
20,52,58} 11 18 0.7000

MCDS-1 {1,2,4,5,7,8,11,14,1
7,20,52} 11 18 1.0091

MCDS-2 {1,2,4,7,8,11,14,17,
20,40,52} 11 17 0.8364
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Fig. 4. IGH algorithm flow chart.

Fig. 5. The MWCDS of scale-free artificial networks.

Scale-free networks have become a fundamental paradigm
for modeling real-world complex systems. As shown in Table
I and Fig 5, three sets of MCDS were identified in a scale-free

artificial network consisting of 100 nodes and 427 edges,
among which the MCDS with a network weight ratio of 0.7
was named MWCDS. MWCDS only achieved dominance
over the other 89 nodes in the network through a backbone
network consisting of 11 nodes and 18 edges. It can be seen
that the MWCDS identification method can accurately
identify the backbone network of scale-free networks.

Fig. 6. Algorithm convergence curve.
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TABLE II
STATISTICAL RESULTS OF ALGORITHM EXPERIMENTS

Type Optimal Average
Average
deviation

/%

Maximum
deviation

/%

Average
calculation
time/s

BPSO 19 20.8 9.47 21.10 11.7

IBPSO 14 15.1 7.85 14.28 8

IGH 11 11.6 5.45 18.18 7.1

We compared the performance of the IGH algorithm with
the BPSO and IBPSO algorithms from reference 22, running
each 10 times. The convergence curve of the IGH algorithm
is shown in Fig 6, and the experimental statistical results are
presented in Table II. The average deviation is calculated as
(average solution−optimal solution)/optimal solution, while
the maximum deviation is defined as (worst solution−optimal
solution)/optimal solution. Due to its immune mechanism
and three greedy heuristic strategies, the IGH algorithm
converges after 182 iterations and obtains an MWCDS with a
size of 11 nodes, outperforming both the BPSO and IBPSO
algorithms in solution quality and convergence speed. The
IGH algorithm achieves superior performance in terms of the
optimal solution, average solution, average deviation, and
average computation time compared to the other two
algorithms, with only the maximum deviation being slightly
higher than that of the IBPSO algorithm. The proposed IGH
algorithm demonstrates high solution accuracy when applied
to large-scale networks.

B. Applications
Data sources
Taking China's high-speed railway network as a study case,

the study area is limited to the Chinese Mainland. In addition,
since the Lalin Railway in Xizang Autonomous Region is not
connected with the high-speed railway network, and the
Hainan Roundabout Railway operates independently of the
high-speed railway network, therefore the study scope only
includes 21 other provinces, 4 autonomous regions and 4
municipalities directly under the Central Government. We
select new railway lines with a design speed of 250km/h or
higher and upgraded railway lines with a design speed of 160
km/h or higher as network edges, along with 257 major cities
along these railways as network nodes, to construct the
physical structure of the HSRN. Based on this physical
network and the train classification codes from the October
23, 2022 timetable, we extracted operational data for trains
prefixed with G, D, and C to build a weighted HSR service
network. This resulted in a total of 7,551 service edge pairs.
All data were obtained from the China Railway Customer
Service Center (http://www.12306.cn/index/).

Fig. 7. Cumulative distributions of an HSR service network.

The scale-free property of the network indicates that the
failure of a few network components has a significant impact
on the overall performance of the network. The scale-free
characteristics of the physical and service networks of
high-speed railways were studied, and Fig 7 shows the
cumulative distribution of station degree and station strength.
Obviously, the degree distribution can be fitted with an
exponential function   0.0151.093 KP K e  , while the
strength distribution tends towards a power-law distribution
  0.2310.275 1.512P S S     . The above results indicate

that compared to physical networks, service networks
considering train flow have scale-free characteristics, and it is
necessary to pay attention to the supporting role of hub
stations and critical edges on the overall network. Therefore,
this study identifies key nodes and edges through the
proposed the MWCDS.

Result analysis
Using the proposed method to identify the backbone

network of the HSR service network, four sets of the MCDS
are obtained, including one set of the MWCDS. The results
are shown in Table III.

TABLE III
EXPERIMENTAL RESULTS OF CHINA'S HIGH SPEED RAILWAY NETWORK

Type Node set of backbone network Number
of nodes

Weight
ratioWr

MWCDS
{Beijing, Changsha, Hangzhou,
Xi’an, Chengdu, Zhengzhou,

Lanzhou}
7 2.5051

MCDS-1
{Beijing, Changsha, Hangzhou,
Xi’an, Chengdu, Zhengzhou,

Xining}
7 2.6807

MCDS-2
{Beijing, Changsha, Shenzhen,
Xi’an, Chengdu, Zhengzhou,

Xining}
7 3.4746

MCDS-3
{Beijing, Changsha, Hefei,
Xi’an, Chengdu, Zhengzhou,

Lanzhou}
7 2.6617

HSRN exhibit stronger scale-free characteristics than
artificially generated scale-free network. As demonstrated in
Table III, the backbone of the HSR service network can be
formed by merely 7 hub city nodes and their intercity train
flows. The 7 nodes form a dominant relationship with other
nodes in the network, playing a role in controlling the entire
network. The trains running between the 7 nodes achieve
inter-city accessibility and ensure the connectivity of the
backbone network.
Among the four MCDS, the MWCDS represents an

optimal backbone network with superior service quality.
Assuming that all nodes can only achieve accessibility
through the backbone network, the transportation efficiency
from each node to other nodes is calculated by

 
,

1
1i ij ij
j j i

TE v f t
N 


  , and the transportation efficiency

of the network is calculated by
,

1
( 1) ij ij

i j j i
TE f t

N N 


  .

The comparison results of transportation efficiency are
shown in Fig 8 and Fig 9.
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Fig. 8. Transportation efficiency of each station in the network (compare
three sets of the MCDS with the MWCDS).

Fig. 9. Network transportation efficiency (comparing three sets of the
MCDS with the MWCDS)

In MCDS-1 and MCDS-2, the number of originating and
terminating trains at Xining Station is relatively small, and
the travel time to other stations is longer. Moreover, Xining
only operates direct trains with Xi'an, resulting in lower
connectivity of the backbone network and lower network
transportation efficiency. As shown in Fig 8, compared with
the MWCDS, MCDS-2 has improved the transportation
efficiency of some stations closely connected to Shenzhen,
such as Guangzhou and Humen. MCDS-3 has improved the
transportation efficiency of some stations with Hefei as a
transit hub, such as Fuyang, Chaohu, Tongling, etc., but both
have led to a decrease in network transportation efficiency.
The backbone structure composed of the MWCDS is a
complete graph, with direct trains running between any two
nodes. The MWCDS meets the requirements of dominance
and connectivity while also taking into account the quality of
transport services between stations, thus achieving the
highest network transportation efficiency. As shown in Fig 9,
compared with the three groups of the MCDS, the network
transportation efficiency of the MWCDS increased by 10.1%,
6.8%, and 6.4%, respectively.
The MWCDS identifies HSR backbone networks based on

upper-level service networks and can determine key nodes
and edges from the perspective of transport service
functionality. These identification results are crucial for
ensuring the normal operation of the railway network. By
mapping the MWCDS of the upper service network to the
lower physical network, we can identify key railway lines
that support HSRN operations. The results are shown in Fig.
10. Key vertical passages include the Beijing-Shanghai

Passage, the Beijing-Hong Kong Passage
(Beijing-Guangzhou Section), and the Baotou-Haikou
Passage (Xi'an-Chengdu Section).Key horizontal passages
comprise the Land Bridge Passage (Zhengzhou-Lanzhou
Section), the Riverside Passage, and the Shanghai-Kunming
Passage.

Fig. 10. service-physical two-layer network mapping relationship

Fig. 11. The community of the second type of marginal nodes and their
neighboring nodes

Fig 11 illustrates the fully connected community structure
comprising the second type marginal nodes and their
neighboring nodes in the HSRN. Beijing connects the
nation's primary hub nodes, thereby achieving full coverage
in the Northeast and North China regions, while also linking
to the marginal node Zhangjiakou. Changsha functions as a
central-southern transit hub, connecting the two marginal
nodes, Yiyang and Changde. Chengdu achieves full coverage
of the southwest region through connections to three
marginal nodes: Bazhong, Dazhou, and Guang'an. As a
strategic node along the Silk Road, Lanzhou serves Gansu
and Qinghai provinces as well as the Xinjiang Uygur
Autonomous Region, and is linked to the marginal nodes
Urumqi and Turpan. The second type marginal nodes can
directly access nodes within their community but require
transfers via neighboring nodes to reach external nodes,
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leading to limited network-wide accessibility. Therefore,
identifying these nodes and establishing direct train services
between them and external hub nodes would significantly
improve their accessibility.

C. Effectiveness Analysis of MWCDS
To validate the effectiveness of the MWCDS identification

method, three classic indicators in social networks was
compared with the MWCDS, namely degree centrality,
betweenness centrality and closeness centrality. The
comparative results are shown in Table IV.
In Table IV, the key nodes identified by the MWCDS
exhibit partial overlap with those derived from other methods,
quantitatively validating the effectiveness of the MWCDS in
identifying critical nodes within HSRN. The results
demonstrate that the findings of the MWCDS and those from
betweenness centrality share a higher degree of overlap,
reaching 85%. This indicates that the MWCDS incorporates
both local and global importance to achieve network
dominance and controllability, thereby identifying key nodes
have richer connotations.

TABLE IV
COMPARISON RESULTS

No. Degree
centrality

Betweenness
centrality

Closeness
centrality MWCDS

1 Shanghai
(0.767)

Zhengzhou
(0.085)

Zhengzhou
(0.811) Zhengzhou

2 Nanjing
(0.717)

Chengdu
(0.046)

Changsha
(0.779) Chengdu

3 Zhengzhou
(0.696)

Changsha
(0.041)

Nanjing
(0.767) Changsha

4 Hangzhou
(0.667)

Xi’an
(0.032)

Shanghai
(0.750) Xi’an

5 Wuhan
(0.642)

Beijing
(0.025)

Hangzhou
(0.736) Beijing

6 Changsha
(0.633)

Guangzhou
(0.023)

Beijing
(0.732) Hangzhou

7 Beijing
(0.604)

Lanzhou
(0.023)

Xi’an
(0.704) Lanzhou

Fig. 12. Comparison of key node distribution and coverage.

Fig. 13. Correlation analysis between connectivity dominance and three centrality metrics.
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TABLE Ⅴ
COMPARISON OF KEY EDGE IDENTIFICATION RESULTS

Method Key edges

Edge betweenness

Beijing-Lanzhou; Beijing-Chengdu; Beijing-Zhengzhou; Changsha-Lanzhou; Beijing-Changsha;
Guangzhou-Lanzhou; Shenyang-Chengdu; Changsha-Chengdu; Beijing-Chongqing;
Beijing-Guangzhou; Chongqing-Chengdu; Beijing-Guiyang; Chengdu-Lanzhou; Changsha-Xi’an;
Chengdu-Xining; Kunming-Xi’an; Chengdu-Xi’an; Zhengzhou-Changsha; Zhengzhou-Chengdu;
Beijing-Xi’an

Bridgeness index[24]

Beijing-Zhengzhou; Zhengzhou-Xi’an; Beijing-Lanzhou; Beijing-Chengdu; Changsha-Lanzhou;
Changsha-Xi’an; Beijing-Changsha; Guangzhou-Lanzhou; Zhengzhou-Guangzhou; Jinan-Nanjing;
Changsha-Chengdu; Nanjing-Changsha; Zhengzhou-Shijiazhuang; Chengdu-Lanzhou;
Chengdu-Xi’an; Zhengzhou-Lanzhou; Beijing-Xuzhou; Zhengzhou-Chengdu; Beijing-Xi’an;
Hangzhou-Xi’an

MWCDS

Beijing-Lanzhou; Beijing-Chengdu; Beijing-Zhengzhou; Changsha-Lanzhou; Beijing-Changsha;
Changsha-Chengdu; Chengdu-Lanzhou; Zhengzhou-Xi’an; Chengdu-Xi’an; Beijing-Xi’an;
Hangzhou-Xi’an; Changsha-Xi’an; Zhengzhou-Chengdu; Hangzhou-Lanzhou;
Zhengzhou-Changsha; Hangzhou-Chengdu; Xi’an-Lanzhou; Hangzhou-Zhengzhou;
Beijing-Hangzhou; Hangzhou-Changsha

Note: Bold indicates coincide edges.

From the spatial distribution of key nodes shown in Fig. 12,
those with high degree centrality and closeness centrality are
predominantly located in eastern and central regions, forming
vertical clusters along the Beijing-Shanghai and
Beijing-Guangzhou high-speed railways. In contrast, nodes
identified through betweenness centrality and the MWCDS
demonstrate more uniform network distribution, primarily
situated at hubs where major railway lines intersect.
Regarding network coverage, a comparison between the top 7
nodes identified by three centrality measures and those
selected by the MWCDS reveals significant differences. As
shown in Figures 12 (a), 12 (b), and 12 (c), the top 7 key
nodes with the highest degree centrality, closeness centrality,
and betweenness centrality achieve network coverage rates of
90%, 92.5%, and 98.3%, respectively, with corresponding
counts of unconnected nodes being 24, 18, and 4. Compared
with the above three indicators, the MWCDS takes
dominance and connectivity as the identification elements,
taking into account the local connectivity and global hub of
nodes during the identification process. As shown in Fig 12
(d), the 7 key nodes have a wide span and large coverage,
achieving the goal of controlling the entire HSRN with a few
key nodes.
To validate the scientific rigor of the MWCDS

identification method, we applied this approach for
hierarchical analysis of all stations in the HSRN, obtaining
their connectivity dominance metrics. Pearson correlation
coefficient is used to analyze the correlation between
connectivity dominance and degree centrality, betweenness
centrality, and closeness centrality. From Fig 13, it can be
seen that the Pearson correlation coefficients between
connectivity dominance and the three centrality evaluation
indicators are all over 0.6, with a Pearson correlation
coefficient of 0.6575 between connectivity dominance and
betweenness centrality. It can be seen that connectivity
dominance has a good correlation with all three centrality
indicators, reflecting that the MWCDS considers both local
and global importance of nodes while ensuring complete
control of the network, thereby serving as a comprehensive
evaluation method that considers multiple factors.
The 7 key nodes identified by the MWCDS constitute a

total of 20 service edges. These were systematically
compared with the top-ranked edges derived from edge
betweenness centrality and the Bridgeness index. As shown

in Table Ⅴ, among the top 20 key edges obtained by the three
methods, the results obtained by the MWCDS and edge
betweenness coincide with 12 edges, with a coincidence
degree of 60%. The results obtained by the MWCDS and
Bridgeness index coincide with 14 edges, with a coincidence
degree of 70%. Notably, the top five highest-ranked edges
exhibit complete overlap across all three methods, verifying
the effectiveness of the MWCDS in identifying key edges.
Based on the four evaluation methods of the MWCDS,

degree centrality, betweenness centrality, and closeness
centrality, the key nodes identification results are analyzed
from the perspective of the impact of node failure on the
performance of high-speed rail networks. The node failure
methods of random and deliberate attacks were adopted, and
the network topology efficiency and network service
efficiency were used as the network performance
measurement methods. The comparison results are shown in
Fig 14.

Fig. 14. The relationship between two types of network efficiency and the
number of attacked nodes.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 1980-1990

 
______________________________________________________________________________________ 



Fig. 15. The relationship between network coverage and the number of
added nodes.

Based on four different attack strategies: degree centrality,
betweenness centrality, closeness centrality, and the
MWCDS, deliberate attacks are carried out on nodes in the
network. As shown in Fig 14, the decreasing trend of network
efficiency under the four attack strategies remains basically
consistent. As the proportion of attacked nodes increases, the
network efficiency decreases more significantly when
attacked by the MWCDS. It can be seen that the MWCDS not
only achieves network controllability but also plays a role in
supporting network structure and maintaining normal
network operation. In addition, due to the consideration of
transportation service quality between nodes in network
service efficiency, whether it is random or deliberate attacks,
network service efficiency is more sensitive to key node
failures. In addition, compare the coverage of key nodes
identified by different evaluation methods on the high-speed
railway network. As shown in Fig 15, 82 nodes with high
degree centrality, 14 nodes with high betweenness centrality,
and 74 nodes with high closeness centrality are required to
achieve complete coverage of the network. Only 7 key nodes
identified by the MWCDS are needed to achieve the same
coverage effect on the network, achieving the goal of
controlling the entire network with minimal resource cost.

V. CONCLUSION
This paper introduces the MWCDS theory into the

identification of key nodes and edges in the HSRN. The
identification process comprehensively considers the
dominance, connectivity, and transportation service
efficiency between nodes, resulting in a backbone network
with a wide span, large coverage, and a more reasonable
structure. By establishing multilayer mappings between
service networks (train flow) and physical infrastructure (rail
lines), our approach enables precise identification of
operationally vital railway segments. The research results
have important reference significance for railway operation
and maintenance.
The proposed IGH algorithm combines the immune

mechanisms and three greedy heuristic strategies, enabling
efficient identification of network backbone structures within
polynomial time complexity. In addition, there is a special
type of marginal node in China's high-speed rail
network ,which only constitutes a complete subgraph with its
neighboring nodes. We propose establishing direct

inter-community train services between these nodes and
external hubs to enhance network accessibility.
MWCDS was compared with three key node identification

indicators and two key edge identification algorithms. The
results showed that MWCDS can effectively identify key
nodes and edges, not only achieving network controllability
with the minimum number of nodes, but also playing an
important role in supporting the HSRN structure and
maintaining normal operation of the network.
This study did not consider the heterogeneity of train flow

at different time periods, and establishing a dynamic network
to study the high-speed railway networks will be a future
research direction.
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