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Abstract—In this work, we examine the perturbation P = H +

V , where H = 1
2

(
− d2

dx2 + x2
)

is the harmonic oscillator in R
and V is a particular scalar potential. The eigenvalues of P
are given by λk = k + 1

2
+ µk. The main result of this paper

is to give an asymptotic expansion of µk and to connect its
coefficients to a specific transformation of V .

Index Terms—Pseudo-differential operator, Harmonic oscillator,
Perturbation theory, Spectral asymptotics, Averging method.

I. Introduction

THE purpose of this paper is to study the harmonic
oscillator H defined by:

H =
1

2

(
− d2

dx2
+ x2

)
(1)

It’s a self-adjoint differential operator with a compact
resolvent. Its spectrum is the sequence of simple eigenvalues{
λk = k + 1

2

}
k∈N. We are given an even scalar potential V

that satisfies the following estimate for all x ∈ R:∣∣∣V (k) (x)
∣∣∣ ≤ ck

(
1 + x2

)−s
2 , s ∈]0, 1[ (2)

The operator P = H + V is self-adjoint with a
compact resolvent [1]. Its spectrum consists of the sequence
{λk + µk}k. Our goal is to analyze the asymptotic behavior
of µk approaches infinity. Now, we present the main result
demonstrated in this paper.

Theorem 1. The asymptotic behavior of µk is:

µk =
2

π

∫ π
2

0

V (
√
2λk cos t)dt+O

(
λ
−(s−η)
k

)
, k → +∞

(3)
with η ∈

]
0, s

2

[
In [2] Gurarie studies the case of the harmonic oscillator
on IR perturbed by a scalar potential B which admits
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the following asymptotic behavior:

B(x) ∼ |x|α
∑
m

am cosωmx (4)

Where α > 0, am and bm are real numbers.
We can cite A. Pushnitski [13], who studied the same
perturbation but with a potential q with compact support:

− d2

dx2
+ x2 + q(x), q ∈ C∞

0 (R)

he proved that µk admits the following series development:

µk =
+∞∑
j=1

cjλ
− j

2

k , λk −→ +∞

such that cj are real coefficients, in particular we have:

c1 =
1

π

∫ +∞

−∞
q(x)dx, c2 = 0

Other authors have extended the study by treating the
following superquadratic oscillator:

A = − d2

dx2
+ x2p, p ∈ N∗

Among them, we can cite R. Imekraz [4], who studied the
following superquadratic oscillator:

A = − d2

dx2
+ x2p + η(x),

such that p is a natural integer ≥ 2 and η is a polynomial of
degree < 2, verifying:

inf
(
x2p + η(x)

)
≥ 0

We can also cite A. Voros [6], who dealt with the particular
case of the quartic oscillator:

A = − d2

dx2
+ x4

We first recall that the latter is very useful in thermodynamics
and chemistry to describe the interactions between molecules.
Our study argument is the averaging method used by A.
Weinstein [11]. It consists of replacing V in P = H + V
by the average:

V =
1

2π

∫ 2π

0

e−itHV eitHdt

It then turns out that the spectrum of P = H + V is
very close to that of P . More precisely P and P are
almost unitarily equivalent and

[
H,V

]
= 0. We first study
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the spectrum of P , then move on to that of P . For an
overview of this kind of problem, see [12]. The article
is organized as follows. In the next section, we recall
supplementary information regarding certain properties of
pseudo-differential operators. In section III, we study the
relation between the spectrum P and P . In the section IV,
we study the asymptotic behavior of µk and in Section V,
we present a concrete example to illustrate and clarify the
application of Theorem 1.

Notes and remarks
N.1 Γm

ρ (m ∈ R, ρ ∈ [0, 1]) designates the symbol
class associated with the weight tempered on R2:
(x, ξ) −→

(
1 + x2 + ξ2

)m
2 [14]. Gm

ρ is the corresponding
class of pseudodifferential operators (ΨDO) .
R.1 The integral of (3) can be viewed as an Ṽ transform of
V :

Ṽ (x) =
2

π

∫ x

0

V (u)√
x2 − u2

du

by a change of variable we can write:

Ṽ (x) =
1

π

∫ x2

0

V (
√
u)

√
u
√
x2 − u

du (5)

Ṽ is none other than the Abel transforma applied to x2 of
the function u → (u)−

1
2V (

√
u).

R.2 It is possible to extend Theorem 1 to the case of the
operator

(−1)p
d2p

dx2p
+ x2q, p, q ∈ N∗.

We plan to detail this result in future work.

II. Pseudo-differential operators

Definition 2. (see [14]) Let ρ ∈ [0, 1], m ∈ R and n ∈ N∗.
A symbol is any function a ∈ C∞ (R2

)
verifying: ∀α, β ∈

N,∃ cα,β > 0 such that:

|∂α
x ∂

β
ξ a (x, ξ) | ≤ cα,β(1 + x2 + ξ2)

m−ρ(α+β)
2

We denote by S (R) the space of rapidly decreasing functions
on R.

Definition 3. (see [3]) We define a pseudo-differential
operator A as follows: for a ∈

∑m
ρ

(
R3
)

( where
∑m

ρ

denotes an amplitude space), m ∈ R, ρ ∈ [0, 1] and
u ∈ S (R)

Au(x) =
1

2π

∫ ∫
ei(x−y)ξa(x, y, ξ)u(y)dydξ

We will employ the standard Weyl quantization of symbols.
In particular, if a ∈ Γm

ρ , then for u ∈ S (R) the operator
associated is defined by:

opw (a)u (x)

= 1
(2π)2

∫
R×R

ei(x−y)ξa

(
x+ y

2
, ξ

)
u (y) dydξ

. (6)

Definition 4. Let aj ∈ Γ
pj
ρ , j ∈ N, we suppose that pj

is a decreasing sequence tending towards −∞. We say that
a ∈ C∞ (R× R) has an asymptotic expansion and we write:

a =
+∞∑
j=0

aj ,

if

a−
r−1∑
j=0

aj ∈ Γpr
ρ , ∀r ≥ 1.

Theorem 5. (Calderon-Vaillancourt Theorem)

If a ∈ Γ0
0 then the operator opw (a) is bounded on L2 (R).

Theorem 6. (Compactness) If a ∈ Γp
ρ, p < 0 and ρ ∈ [0, 1],

then the operator opω(a) is compact on L2(R).

III. Comparison of P and P

We use the averaging method. To do this, we first note that
the Hamiltonian flow associated with the symbol

σH(x, ξ) =
1

2
(x2 + ξ2)

of operator H is a one-parameter group whose elements are
square matrices of order 2:

χt =

(
cos t − sin t

sin t cos t

)
(7)

Observe that this flow is periodic with a period of 2π. To
initiate the averaging method, we introduce the following
operators:

W (t) = e−itHV eitH , (8)

V =
1

2π

∫ 2π

0

W (t)dt, (9)

V =
1

4πi

∫ 2π

0

∫ t

0

[W (t),W (r)]drdt. (10)

Since H commute with V , the spectrum of P is {λk + µk},
where µ̄k is the kth eigenvalue of V . To compare µk and µ̄k

we will need the following lemmas:

Lemma 7.
[
H,V

]
= 0

Proof: After we derive W (t), we obtain:

dW (t)

dt
=

1

i
[H,W (t)] (11)

Now, we have:[
H,V

]
=

i

2π

∫ 2π

0

dW (t)

dt
dt =

i

2π
(W (2π)−W (0)) (12)

Since e2πiH = −idL2(R), we get W (2π) = W (0)
Finally, we have

[
H,V

]
= 0.

Lemma 8.

i/V ∈ G−s
0 , ii/V ∈ G−2s+2η

0 (13)
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where η ∈
]
0, s

2

[
Proof: i/The Weyl symbol of the operator W (t) is

σW (t) = V oχt (14)

where χt is the flow described in (7).
This result arises because, on the one hand, eitH belongs
to the Metaplectic group, and on the other hand, Weyl’s
quantization is invariant under this group ([8],[9]). The
Weyl’s symbol of V is obtained by integrating the symbol of
W (t) uniformly with respect to t.

σV (x, ξ) =
1

2π

∫ 2π

0

V (x cos t+ ξ sin t)dt. (15)

By using (2), we get the following estimate, for α, β ∈ N
and x, ξ ∈ R:

∣∣∣∂α
x ∂

β
ξ σV (x, ξ)

∣∣∣
≤ Cα,β

∫ 2π

0

[
1 + (x cos t+ ξ sin t)

2
]−s

2

dt

≤ Cα,β

∫ 2π

0

[
1 + (x2 + ξ2)cos2t

]−s
2

dt

≤ Cα,β

(∫ π
2

0

(cos t)−sdt

)
×
(
1 + x2 + ξ2

)− s
2

≤ Cα,β

(
1 + x2 + ξ2

)− s
2

(16)

due to
∫ π

2

0

(cos t)−sdt < +∞, if s ∈ ]0, 1[.

ii/ According to the previous calculations, the operator

B(t) =

∫ t

0

W (r)dr belongs to G−s
0 , its Weyl’s symbole

σB(t) check:∣∣∣∂α
x ∂

β
ξ σB(t)(x, ξ)

∣∣∣ ≤ Cα,β(1 + x2 + ξ2)
−s
2 (17)

uniformly with respect to t.
Let us begin by clarifying the class of the operator∫ 2π

0

W (t)B(t)dt. At this point, we are focusing on the

operator W (t)B(t), its Weyl symbol ct is given in [14] by:

ct(x, ξ) = 1
π2

∫
e−2i(rρ−ωτ)σW (t)(x+ ω, ξ + ρ)

×σB(t)(x+ r, ξ + τ)dρdωdτdr.

(18)
We split the oscillator integral ct into two parts c(1)t and c

(2)
t ,

then we use the cutoff functions:

ω1,ε(x, ξ, ω, τ, r, ρ) = χ

[
ω2+ρ2+r2+τ2

ε(1+x2+ξ2)
η
2

]
and

ω2,ε = 1− ω1,ε

where χ ∈ C∞
0 (R), χ ≡ 1 in [−1, 1], χ ≡ 0 in R\ ]−2, 2[,

R = ω2+ρ2+ r2+ τ2, ε > 0 and η ∈
]
0, 1

2

[
. Let’s consider

dj(x, ξ, ω, τ, r, ρ) = ωj,ε(x, ξ, ω, τ, r, ρ)

×σW (t)(x+ ω, ξ + ρ)

×σB(t)(x+ r, ξ + τ)

(19)

c
(1)
t (resp c

(2)
t ) the integral obtained in (18) by replacing the

amplitude by d1 (resp d2 )
Study of c

(2)
t :

On the support of d2, we have R ≥ ε(1 + x2 + ξ2)
η
2 . We

make an integration by parts using the operator:

M = 1
2iR (−ρ∂r − r∂ρ + τ∂ω + ω∂τ )

We have for all k ∈ N

c
(2)
t =

1

π2

∫
e−2i(rρ−ωτ)(tM)

k
d2 dρ dω dτ dr

Then we get for all k > 0∣∣∣c(2)t

∣∣∣ ≤ Ck(1 + x2 + ξ2)
−ηk
4

uniformly with respect to t ∈ [0, 2π]

Study of c
(1)
t :

On the support of d1, we have

c
(1)
t (x, ξ) =

1

π2

∫
R≤2ε(1+x2+ξ2)

η
2

e−2i(rρ−ωτ)

× σW (t)(x+ ω, ξ + ρ)

× σB(t)(x+ r, ξ + τ)ω1,εdρdωdτdr (20)

∫ 2π

0

∣∣∣c(1)t

∣∣∣dt ≤ c

∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr

×
∫ 2π

0

∣∣σW (t)(x+ ω, ξ + ρ)
∣∣dt

×
∫ 2π

0

∣∣σB(t)(x+ r, ξ + τ)
∣∣dt. (21)

On the support of d1, for ε small enough and since η ∈
]
0, 1

2

[
,

there are positive constants c, c′, C, C ′ such that:
c(1 + x2 + ξ2)

1
2 ≤ (1 + (x+ ω)2 + (ρ+ ξ)2)

1
2

(1 + (x+ ω)2 + (ρ+ ξ)2)
1
2 ≤ C(1 + x2 + ξ2)

1
2

c′(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ r)2 + (τ + ξ)2)

1
2

(1 + (x+ r)2 + (τ + ξ)2)
1
2 ≤ C ′(1 + x2 + ξ2)

1
2

Therefore∫ 2π

0

c
(1)
t dt ≤ C(1 + x2 + ξ2)−s

×
∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr
(22)

Finally ∫ 2π

0

c
(1)
t dt ≤ c(1 + x2 + ξ2)

−s+η (23)
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In the end, by denoting σ as the Weyl symbol of the operator∫ 2π

0

W (t)B(t)dt, we have:

|σ| ≤
∫ 2π

0

∣∣∣c(1)t

∣∣∣dt+ ∫ 2π

0

∣∣∣c(2)t

∣∣∣dt
≤ C

[
(1 + x2 + ξ2)

−ηk
4 + (1 + x2 + ξ2)

−s+η
]

≤ C(1 + x2 + ξ2)
−2s+2η

2

Finally, we deduce that V ∈ G−2s+2η
0 .

Lemma 9. There exists a skew-symmetric operator U ∈ G−s
0

such as the operator (eUPe−U − P)Hs−η is bounded.

The Proof of this Lemma is based on the following
proposition that presents an extension of the symbolic
calculus to boundary classes Gm

0 .

Proposition 10. (see [5] )
i) If A ∈ Gm1

1 and B ∈ Gm2
0 then the operator AB ∈

Gm1+m2
0 . Its Weyl symbol admits an asymptotic development:

c =

+∞∑
j=0

cj , cj ∈ Γm1+m2−j
0

where

cj =
1

2j

∑
α+β=j

(−1)|β|

α!β!
(∂α

ξ ∂
β
xa)(∂

α
x ∂

β
ξ b)

ii) The commutator [A,B] ∈ Gm1+m2−1
0

iii) If (Bi)i∈{1,··· ,n} is the family of operators such as
Bi ∈ Gmi

0 . Then the operator

B1B2 · · ·BnH
−m1+···+mn

2

is bounded.

In our work, we use the functional calculus of operators H ,
where the function f verifies the following estimates:
For r ∈ R, k ∈ N and ρ ∈ [ 12 , 1]

|f (k)(x)| ≤ Ck(1 + |x|)r−ρk

Proposition 11. f(H) is a (ΨDO) included in G2r
1−2(1−ρ)

and its weyl symbol admits the following development

σf(H) =
∑
j≥0

σf(H),2j

σf(H),2j =

3j∑
k=2

djk
k!

f (k)(σH), ∀j ≥ 1

where

dj,k ∈ Γ2k−4j
1 , σf(H),2j ∈ Γ

2r−j(6ρ−2)
1−2(1−ρ)

(24)

in particular
σf(H),0 = f(σH)

Proof: For studying f(H) we follow the same strategy
in [7], using the Mellin transformation, the latter consists of
the following steps:
(1) We prove by induction that (H − λ)−1,λ ∈ C, is a
(ΨDO) and its Weyl symbol admits the development bλ =
+∞∑
j=0

bj,λ where:


b0,λ = (σH − λ)−1,

b2j+1,λ = 0,

b2j,λ =

3j∑
k=2

(−1)kdj,k.b
k+1
0,λ , dj,k ∈ Γ2k−4j

1 .

(2) We study the operator Hs using the Cauchy’s integral
formula

Hs =
1

2πi

∫
∆

λs(H − λ)−1dλ

∆ is the same domain defined in the article [7]
Hs is a (ΨDO) and its Weyl symbol is

σs =
+∞∑
j=0

σs,2j where σs,0 = σs
H , and

σs,2j =

3j∑
k=2

dj,k.
s(s− 1) · · · (s− k + 1)

k!
σs−k
H

with
σs,2j ∈ Γ2s−4j

1

(3) We study f(H) using the representation formula:

f(H) =
1

2πi

∫ σ+i∞

σ−i∞
M [f ] (s)H−sds

σ ∈ [0,−r[, r < 0 and M [f ] is the Mellin transformation
of f .

Proof of Lemma 9

Proof: Consider the following antisymmetrical operator
U :

U = U1 + U2 (25)

where

U1 =
i

2π

∫ 2π

0

(2π − t)W (t)dt

U2 =
−1

4π

∫ 2π

0

(2π − t)

∫ t

0

[W (t),W (r)]drdt

Using the same calculations as those in Lemma 8, we obtain:
U1 ∈ G−s

0 and U2 ∈ G−2s+2η
0 , finally U ∈ G−s

0 .
Before beginning the proof, we will need the following
relations:

[U1, H] =
i

2π

∫ 2π

0

(2π − t)
dW (t)

dt
dt

= V − V
(26)
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and

[U2, H] =
−1

4π

∫ 2π

0

(2π − t)

∫ t

0

[[W (t),W (r)] , H]drdt

=
i

4π

∫ 2π

0

(2π − t)

×
∫ t

0

([
W (t),W

′
(r)
]
+
[
W

′
(t),W (r)

])
drdt

(27)
We set:

F (t) =
1

2π

∫ t

0

W (r)dr

On the one hand :

i

4π

∫ 2π

0

(2π − t)

∫ t

0

[
W (t),W

′
(r)
]
drdt

=
i

4π

∫ 2π

0

(2π − t)

[
W (t),

∫ t

0

W
′
(r)dr

]
dt

=
−i

4π

∫ 2π

0

(2π − t) [W (t), V ]dt

= −1
2 [U1, V ] .

.

on the other hand :

i

4π

∫ 2π

0

(2π − t)

∫ t

0

[
W

′
(t),W (r)

]
drdt

=
i

2

∫ 2π

0

(2π − t)
[
W

′
(t), F (t)

]
dt

=
i

2

∫ 2π

0

(2π − t)
d

dt
([W (t), F (t)])dt

=
i

2
([(2π − t) [W (t), F (t)]]

2π
0 +

∫ 2π

0

[W (t), F (t)]dt)

= −V

.

Finally, we have :

[U2, H] = −V − 1

2
[U1, V ] (28)

We notice AdU.P = [U,P]. The differential equation:{
dX
dt = [U,X]

X(0) = P (29)

has a unique solution

X(t) = etADU .P = etUPe−tU

We deduce, taking into account (26) and (28) that :

eUP e−U − P = −V + 1
2 [U2, V ]

+ 1
2

[
U, V

]
+ 1

4 [U, [U1, V ]]

+ 1
2 [U, [U2, V ]]− 1

2

[
U, V

]
+
∑
n≥0

(AdU)
n

(n+ 3)!
[U, [U, [U,P]]] .

(30)

We now apply Proposition 10, since V ∈ G0
0, V ∈ G−s

0 ,
U1, U ∈ G−s

0 and U2, V ∈ G−2s+2η
0 , we get :

∥∥∥V .Hs−η
∥∥∥ ≤ C

∥[U2, V ]Hs−η∥ ≤ C∥∥[U, V ]Hs
∥∥ ≤ C

∥[U, [U1, V ]]Hs∥ ≤ C∥∥∥[U, [U2, V ]]H
3s
2 −η

∥∥∥ ≤ C∥∥∥[U, V ]H 3s
2 −η

∥∥∥ ≤ C∥∥∥ (AdU)n

(n+3)! [U, [U, [U,P]]]H
3s
2 − 1

2

∥∥∥ ≤ C ∥U∥n

(31)

For the last inequality, we used the following identity

(AdU)
n
.W =

n∑
p=0

(−1)
n−p

Cp
nU

pWUn−p

From (30) and (31) we deduce that : (eUPe−U − P)Hs−η

is bounded.

We can now compare µk and µk. From lemma 9, we deduce
that there exists a constant c > 0 such that:

−cH−(s−η) ≤ eUPe−U − P ≤ cH−(s−η)

The min-max Theorem ( see [10]) implies that:

µk = µk +O(λ
−(s−η)
k ), (32)

where η ∈
]
0, s

2

[
.

IV. The asymptotic behavior of µk

We begin by studying the asymptotic behavior of µk, as a
result of using (32 ), we deduce that of µk. Let us first recall
that µk is the kth eingenvalue of V . In polar coordinates
the identity (15) that presents the symbol of Weyl of V is
written:

σV (r, θ) =
1

2π

∫ 2π

0

V (r (cos(t− θ)) dt

From the parity of V we get:

σV =
2

π

∫ π
2

0

V (r cos(t)) dt = f(
√
σH)

where

f(x) =
2

π

∫ π
2

0

V
(√

2x cos t
)
dt

,
A direct calculation shows that:

|f(x)| ≤ c(1 + |x|)− s
2

and ∣∣∣f (k)(x)
∣∣∣ ≤ ck(1 + |x|)− s

2−
k
2

so f is in the class of Hörmander S
−s
2

1
2

. By applying the
Proposition 11, we have

f(H) ∈ G−s
0
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and
V − f(H) ∈ G−s−1

0 (33)

By combining the equation (33) and the Proposition 10-iii),
we deduce that

(V − f(H))H
s+1
2

is bounded.
Come back to the Proof of Theorem 1. Therefore, there exists
a constant c > 0 such that

−cH− s+1
2 ≤ V − f(H) ≤ cH− s+1

2

According to the min-max Theorem [10], we get:

µk = f(λk) +O
(
λ
−( s+1

2 )

k

)
(34)

By combining the equation (34) and (32) we deduce:

µk = f(λk) +O(λ
−(s−η)
k ),

Finaly, we have:

µk =
2

π

∫ π
2

0

V
(√

2λk cos t
)
dt+O(λ

−(s−η)
k ),

where η ∈
]
0, s

2

[
.

V. Example
In some cases of V , we can further improve
the estimate given by (3) by determining
sup {p ∈ R+

∗ /λ
p
kµk → 0; λk → +∞}. To do this, it

is sufficient to study the asymptotic behavior of the integral
of (3). As an example, we consider the potential.

V (x) =
1

(1 + x)
s e

−wx2

with s ∈]0, 1[ and w > 0.
Since the function x → P (x)e−wx2

tends to 0 as x tends to
infinity for any polynomial P we have:

∫ π
2

0

V
(√

2λk cos t
)
dt

=

∫ ε

0

(
1 +

√
2λk sin t

)−s

e−w(2λk) sin
2 tdt+O(λ−∞

k )

.

(35)

where ε > 0 is near zero.
By Taylor’s formula, we can write:∫ ε

0

(
1 +

√
2λk sin t

)−s

e−w(2λk) sin
2 tdt

= (2λk)
− s

2

∫ ε

0

(sin t)−se−w(2λk) sin
2 tdt+O(λ

− s
2−

1
2

k )
.

(36)
Using Laplace’s method [15], we have:∫ ε

0

(sin t)
−s

e−w(2λk) sin
2 tdt

= 1

2w
1−s
2 (2λk)

1−s
2

Γ
(
1−s
2

)
+O

(
λ
− s+1

2

k

) . (37)

Finally ∫ π
2

0

V
(√

2λk cos t
)
dt

= 1

2w
1−s
2 (2λk)

1
2

Γ
(
1−s
2

)
+O

(
λ
− s+1

2

k

) (38)

and for s ∈] 12 , 1[ we have:

µk =
1

πw
1
2 (2λk)

1
2

Γ

(
1− s

2

)
+O

(
λ
−(s−η)
k

)
We can also study the case where the potential admits the
asymptotic behavior given by (4), we can even suppose that
the frequency wm depends on x.

VI. Conclusion
The perturbed harmonic oscillator is a prominent problem in
spectral theory, largely due to its wide-ranging applications
in physics. While several techniques are available to handle
such problems, we chose to apply the averaging method,
given the periodic nature of the harmonic oscillator’s flow.
Our approach allowed us to describe the asymptotic behavior
of its spectrum. Moving forward, we plan to explore the
application of this method to anharmonic oscillators.
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