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Abstract—Modern products are increasingly complex and

featuring numerous functions, which often results in multiple
degradation performance characteristics (PCs). This research
introduces a bivariate reliability model tailored for systems
with two PCs, and different PCs are modeled by heterogeneous
Wiener process. The interdependences between these PCs are
captured by using the Frank copula. Utilizing AIC and BIC
criteria, the best fitted marginal degradation process is obtained,
and the unknown parameters are obtained utilizing a
combination of MLE and MCMC methods. To validate the
utility and effectiveness of the proposed model and method, a
numerical example involving train wheel wear degradation data
is provided.

Index Terms—Copula function, Wiener process, MCMC
method, MLE method

I. INTRODUCTION
ITH advancements in science and technology, modern
products now exhibit longer lifetimes and greater

reliability. Traditional lifetime data theory (see Meeker and
Escobar [1], Nelson [2]) is insufficient for accurately
assessing their reliability. Compared to traditional lifetime
data, degradation data offers a more appealing approach for
reliability assessment.
Degradation is very common for most mechanical system,

and it can be described by a continuous performance process
in terms of time (see Zuo et al. [3]). Given the dynamic nature
of failure mechanisms and operational environments, many
studies employ stochastic processes to model degradation
paths, utilizing methods including Gamma processes,
Markov chain, and Wiener processes (the details see in Refs
[4-8]).
Most previous studies on degradation analysis focus on a

single performance characteristic (PC). However, modern
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products often have complex structures and multiple
functions, leading to multiple degradation failure
mechanisms. For instance, a train wheel system consists of a
wheel on the left axle and a wheel on the right axle, each
experiencing different wear patterns. This indicates that the
train wheels system has two PCs (left wheel and right wheel),
and these two PCs may be dependent each other because they
are subjected to the same stress (e.g. weight). Consequently,
accurately analyzing the reliability of such systems poses a
significant challenge.
Several papers have been studied the reliability based on

binary or multivariate degradation data, such as Crk [9] and
Bagdonavicius et al. [10]. Some studies assume
independence among multiple PCs or use a multivariate
normal distribution (see in Refs [11-12]). Sari [13-14]
developed a dependence system by using copula function.
Base on Sari’s work, Pan et al. [15-16] introduced a multiple
PC degradation model by the Wiene process and copula
function. Hao et al. [17] developed a multiple PC degradation
model using a nonlinear diffusion process and copula. Wang
et al. [18] devised bivariate gamma degradation model
utilizing copula function. Peng et al. [19] developed a
multiple PC degradation model via the copula and Inverse
Gaussian process.
The aforementioned studies all assume that bivariate

models share the same stochastic process governing both PCs.
However, those papers overlook the possibility that each PC
may exhibit different stochastic behaviors. As an example,
consider a system equipped with two PCs, where the first PC
follows one stochastic process, and the second PC may be
governed by another stochastic process.
This paper introduces a novel bivariate reliability model by

using the Frank copula function. Unknown parameters are
obtained by using MLE and MCMC methods. An illustrative
numerical example is included to demonstrate the proposed
model and methodology.

II. WIENER PROCESS MODELING

A. Marginal model based on Wiener process
Consider a system with two PCs, where degradation is

characterized using a Wiener process. In the degradation test
experiment, let n represent the unit number and m depict the
measurement number. Xik (tj) represents the ith unit of the kth
PC at the corresponding time tj, where i = 1, ... , n, j = 1, ... ,m,
and k = 1, 2. The degradation data can be expressed as
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In the next subsection, the heterogeneous Wiener
processes are used to represent the above degradation data,
including the random effect Wiener process and the Wiener
process with measurement error.

B. Different Wiener processes model
If product degradation trajectory is conceptualized under a

fixed effect Wiener process model asM1, is
( ) ( )BX t t B t   (2)

Here, B(t) denotes the standard Brownian motion that
captures a time correlated structure, and μ and σ denote the
drift and diffusion parameters, respectively.
If the degradation path is characterized by processM1, and

when the degradation path reaches the threshold value , the
product’s lifetime T is defined as

inf{ | ( ) }T t X t   (3)
The lifetime T follows an inverse Gaussian distribution,

and its corresponding PDF and CDF can be given as
2

22 3

( )( | , ) exp
22

T B
BB

tf t
tt

   


 
  

 
(4)

and

22 2

2( | , ) expT B
BB B

t tF t
t t

     
 

                   
(5)

where ( )  is the CDF of the standard normal distribution.
In some degradation model applications, considering that

individual items may experience various sources of variation
throughout their operational life. To enhance the realism of a
degradation model, it becomes essential to incorporate unit to
unit variability into the modeling process. Random effect
model is used to depict differences across units. For the sake
of analytical tractability, assumed that the drift parameter μ is
random effect follows 2( , )N    and the diffusion
parameter σ is defined as fixed effect. Then, the conventional
random effect model can be derived as M2

 
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(6)

Utilizing the degradation model (6), we can characterize
the deterioration behavior and the unit to unit heterogeneity
of the product. Additionally, we can also capture the temporal
correlation structure inherent to the degradation process.
Under the degradation model (6), considering the

threshold value , the product’s lifetime Tr can be delineated
as

inf{ | ( ) }rT t X t   (7)
Considering the diffusion coefficient σ is a constant, but μ

is a random variable, utilizing the total law of probability, the
following equation is derived as follow
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Then, we can get
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C. Wiener process with measurement error
Perfect measurement is usually costly or impossible. On

the contrary, some measurement errors are inevitable during
the observation. For example, degradation processes are
often measured using imperfect instruments. Additionally,
random environmental factors can also affect the
measurements.
Let Y(t) denote the Wiener process with measurement error,

with ε representing the measurement error. Then, the
observed degradation process {Y(t)} is given as M3

( ) ( ) ( )BY t X t t B t        (10)
Here, X(t) represents the actual degradation, while ε

denotes the measurement error and 2~ (0, )N   .
Similarly, considering the threshold value ξ, the product’s

lifetime Te is defined as
inf{ | ( ) }eT t Y t   (11)

From Ref. [20], we can get the PDF of the lifetime Te as
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and the corresponding CDF is
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Similarly, the conventional random effect model with
measurement error can be derived as M4
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Then, considering the threshold value ξ, the product’s
lifetime Tre is defined as

inf{ | ( ) }reT t Y t   (15)

Lemma 1 If 2~ ( , )Z N   , and , ,A C D R , then
2[exp( )exp( ( ) 2 )]ZE A Z B Z C  

2 2

2 2 2
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The proof is detailed in Ref. [20].
Lemma 2 If 2~ ( , )Z N   , and ,C D R , then
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The proof is detailed in Ref. [20].
Lemma 3 If 2~ ( , )Z N   , and ,C D R , then
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Theorem 1 Suppose that the degradation process{Y(t)}is a
continuously differentiable function of time t, then the PDF
of the lifetime Tre can be obtained with an explicit form as
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and the corresponding CDF is
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where ( )  is the CDF of the standard normal distribution.
Proof
From Equations (12) and (16), it is known that the findings

in Equation (12) do not take into account the random effect of
μ. Let's suppose the random effect

2~ ( , )N    
By applying the law of total probability, the PDF of the

failure time Tre is obtained as
( | , ) ( | , , ) ( )

e eT B T Bf t f t p d       



 

[ ( | , , )]
eT BE f t   

where ( )p  is the PDF of μ and [ ]E  represents the
expectation with respect to μ. Equation (16) is derived using
Equation (12) and Lemma 1. Similarly, Equation (17) is
obtained using Equation (13) and Lemma 3.
It is note that if σβ=0, the degradation model M4 reduces to

the M3, and model M2 reduces to the M1. Likewise, if we let
σε=0, the model M4 reduces to the M2, and model M3 reduces
to the M1.
D. Model selection criteria [21]

To compare the proposed different degradation models,
some criteria should be given. For degradation models M1,
M2,M3, andM4, some model selection criteria, sucn as log-LF
criterion, AIC, and BIC, are adopted for model selection.
The AIC and BIC are calculated as follows

2(max ) 2AIC l p   (18)
and

2(max ) ln( )BIC l p n   (19)
Herein, l represents the value of the log-likelihood function,

p depicts the number of parameters in the degradation model,
and n denotes the number of samples.
When using the log-LF criterion, the upper log-LF value is

preferred. Conversely, when using the AIC or BIC criterias,
and lower AIC or BIC values are preferred.
F. Copulas and their properties
Copulas offer a highly convenient methodology for

constructing and quantifying the interdependencies among
multiple PCs. They describe the dependence structure that
links the marginal distributions of each PC to their collective
multivariate joint distribution.
Sklar's theorem (1959) offers a probabilistic approach to

define the copula (detailed in Nelson [25]).
Theorem (Sklar, 1959) Let X and Y be random variables

with continuous distribution F(x) and G(y), respectively, and
H(x, y) be the two dimensional cumulative distribution
function. Hence, there exists a two dimensional
copula ( , )C   such that for all x, y ( , )   ,

   , ( ), ( )H x y C F x G y (20)
In this investigation, the Frank copula is utilized to

represent the dependence among multiple PCs as follows
1 [exp( ) 1][exp( ) 1]( , ) ln 1

exp( ) 1
u vC u v  

 
    

   
  

(21)

Here, α is the Frank copula parameter and 0  .

III. HETEROGENEOUS DEGRADATION MODEL

Consider a product characterized by two PCs  1 2( ), ( )X t X t ,
and its corresponding failure threshold, denoted as ξ = (ξ1, ξ2).
Note that the degradation path is a decreasing function.
Considering that the failure threshold ξk of the kth PC, the
marginal reliability at time t can be presented as

 ( ) 1 ( ) Pr ( )k k k kR t F t X t     (22)
Then, the product reliability can be obtained as

 1 1 2 2( ) Pr ( ) , ( )R t X t X t    (23)
If the two PCs are independent, the Equation (23) can be

obtained as
 1 1 2 2( ) Pr ( ) , ( )R t X t X t   

 1 1 2 2Pr ( ) ) Pr( ( )X t X t    

1 2( ) ( )R t R t  (24)
However, when the two PCs exhibit interdependence, an

accurate reliability assessment cannot be achieved. In this
case, the copula approach is used to construct the dependent
framework between those two PCs. Similarly to the approach
of Sari et al. [13] and Pan et al. [15], the system reliability in
Equation (23) can be obtained as

 1 2( ) ( ), ( )R t C R t R t (25)

where ( , )C   is a Copula function which offer a highly
convenient methodology for constructing and quantifying the
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dependence among multiple PCs. They describe the
dependence structure that links the marginal distributions of
each PC to their collective multivariate joint distribution.
Copula model method is widely used to model bivariate

degradation data in many papers, see in Sari [13-14], pan et al.
[15-16], Hao [17] and wang et al. [18].
If we describe the interdependence of the two PCs via

bivariate Frank copula as
1 [exp( ) 1][exp( ) 1]( , ) ln 1

exp( ) 1
u vC u v  

 
    

   
  

(26)

Then, we can get
 1 2( ), ( )C R t R t

   1 2exp ( ) 1 exp ( ) 11 ln 1
exp( ) 1

R t R t 
 

              
   

(27)

where ( ) 1 ( )k kR t F t  .

IV. STATISTICAL INFERENTIAL METHODS

A. Parameters estimation of marginal distribution
Let t=(t1, t2, … , tm)T, Yki=( Yki(t1), Yki(t2), … , Yki(tm))T, and

Yk=( Yk1T, Yk2T, … , YknT)T, where “T” denotes transposition.
Assuming that the degradation progression of a product is
defined by model M4, it can be deduced that Yki follows a
multivariate normal distribution with a specific mean and
variance as

( )ki kE Y t

and
2( ) T

ki k k kCov Y tt    (28)
where
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, and Im is

an identity matrix of order m.
Then, let ( , , , )k k k kB k       , the log-likelihood

function can be obtained as
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To simplify the terms in the log-likelihood, we use the
results
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Taking partial derivatives to the Equation (29), then we
can get
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Thus, for specified values of ( , )kB k  , we can get
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Substituting Equations (34) and (35) into Equation (29),
the following equation is derived
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(36)

Then, by using a two dimensional search in Equation (36),
the MLE of ( , )kB k  can be obtained as ˆ ˆ( , )kB k  .

B. Parameters estimation of joint distribution
In this subsection, the parameter estimation methods in

Equation (27) are discussed. The unknown parameters are
1 1 1 1 2 2 2 2( , , , , , , , , )B B              

Considering that the model has nine parameters, the Gibbs
techniques to estimate model parameters, and WinBUGS[23]
is utilized to implement the Gibbs sampling process.
The Gibbs sampling algorithm is

Step 1: Initialize (0) (0) (0) (0)
1 2( , , , )n    L .

Step 2: Set ( 1)t   , and generate ( )t .
Generate ( )

1
t from * ( 1) ( 1) ( 1)

1 1 2 3( | , , , , ),t t t
n Y      L

L
Generate ( )t

n from * ( 1) ( 1) ( 1)
1 2 1( | , , , , )t t t

n n n Y      
L ;

Step 3: Set 1t t  , and repeat step 2, 11,2, ,t N L .
Step 4: Estimate desired features based on the simulate
sample 1( )( ) ( 1), , , Nm m   L , where m is the burn-in number.

V. NUMERICAL EXAMPLE

The actual train wheel wear degradation data were
acquired by assessing the work of Freitas et al. [24]. The
wheel’s diameter is a critical performance metric, with failure
defined by exceeding a threshold. A new wheel has a
diameter of 966 mm, and replacement occurs when it
diminishes to 889 mm. Data from 14 samples were compiled,
with mileage at 50,000 km. To represent the bivariate
degradation model, 8 samples were selected, with half
representing the first PC (PC1, left wheels) and the other half
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representing the second (PC2, right wheels).
The analysis utilized data up to 600,000 km or wheel

failure, whichever occurred first. Figures 1-2 illustrate the
cumulative degradation for both wheels, represented by the
decrease from the initial diameter at time t. Wheel failure is
designated at a degradation threshold of 77 mm.

A. Estimation of marginal distribution parameters
To demonstrate the proposed model and method, some

wheel wear degradation data sets are applied. First, different
Wiener process models are used to fit the data for PC1 and
PC2. Utilizing the approach outlined in Section 3, the
estimated parameters for the left wheel are detailed in Table I.
For model comparison, the AIC and BIC criteria are

adopted for model selection. The calculated criterion values
for various degradation models are presented in Table II.

Based on the AIC and BIC values in Table II, model M1,
which has the lowest values, is identified as the most optimal
fit among the considered Wiener process models.

Similarly, parameter estimation outcomes for the right
wheel are provided in Table III and Table IV. Among the
different Wiener process models, model M2, which has the
lowest value, demonstrates the best-fitting performance.

B. Parameter estimation of joint distribution
To account for the interdependence between the two PCs,

the MCMC approach is used to generate 50,000 samples, and
the initial 10,000 samples is applied to ensure convergence.

Subsequently, an additional 40,000 samples are drawn
using the Gibbs sampling technique to estimate the
parameters. Table V provides a comprehensive summary of
the posterior distributions, including the posterior means,
standard errors, and 95% HPD intervals for the parameters.
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TABLE I
ESTIMATION OF THE UNKNOWN PARAMETERS OF RIGHT WHEEL

unknown parameters
M1 μ1= 8.097146 σ1B=1.481565
M2 μ1= 8.096993 σ1= 0.2051773 σ1B=1.474465
M3 μ1=8.096877 σ1B=1.481512 σ1ε = 6.209586E-05
M4 μ1= 8.096993 σ1=0.2051773 σ1B=1.474465 σ1ε= 3.830997E-05

TABLE II
ESTIMATION OF THE UNKNOWN PARAMETERS OF RIGHT WHEEL

Model M1 M2 M3 M4

Log-likelihood

AIC

-70.34228

144.6846

-70.33086

146.6617

-70.34228

146.6846

-70.33086

148.6617

BIC

Rang

143.4571

1

144.8206

2

144.8434

3

146.2026

4

TABLE III
ESTIMATION OF THE UNKNOWN PARAMETERS OF LEFT WHEEL

unknown parameters
M1 μ2= 5.008808 σ2B =1.0113956

M2 μ2=5.008810 σ2= 1.294029 σ2B =0.4308234

M3 μ2=5.008707 σ2B=1.0113262 σ2ε= 4.049608E-05

M4 μ2=5.00810 σ2= 1.2940029 σ2B=0.4308234 σ2ε=6.423012E-07

TABLE IV
ESTIMATION OF THE UNKNOWN PARAMETERS OF LEFT WHEEL

Model M1 M2 M3 M4

Log-likelihood

AIC

BIC

Rang

-52.01741

108.0348

106.8047

3

-19.07401

44.1480

42.3069

1

-52.01741

110.0348

108.1937

4

-19.07401

46.1480

43.6932

2

TABLE V
PARAMETER ESTIMATION CONSIDERING THE DEPENDENCY

Parameter Mean Standard error MC error 95% HPD Interval

μ1 8.105 0.411 0.0086 (7.267, 8.889)

σ1B 1.669 0.215 0.0041 (1.319, 2.149)

μ2 4.983 1.225 0.01356 (2.64, 7.207)

σ2 1.946 1.362 0.02805 (1.613, 5.162)

σ2B 0.4682 0.056 0.00103 (0.4634, 0.5906)

α -0.5937 3.391 0.1248 (-6.73, 4.935)
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Fig. 3. The reliability curves of the right wheel under different cases
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C. Reliability assessment
According to the estimated parameters in Table I and Table

III, the marginal reliability curves for the right and left wheels
are given in Figures 3 and 4 under the dependent case and
independent case.
Figures 3-4 clearly demonstrate that both the left and right

wheels exhibit different reliability under the independent and
dependent cases. In other words, incorrect assumptions
regarding dependence can lead to inaccuracies in reliability
assessment.
Using the estimated parameters and Frank copula, the

system reliability curves for both independent and dependent
scenarios are depicted in Figure 5. Figure 5 reveals noticeable
differences between the reliability predictions for the
dependent and independent cases. Specifically, neglecting
the interdependence between the left and right wheels can
lead to divergent system reliability conclusions.
Consequently, it is imperative to consider the potential

dependency of failure mechanisms and conduct the
dependent reliability analysis to obtain more accurate and
reliable results.

VI. CONCLUSION
This investigation attempted to devise a reliability model

for a wheel system comprising two PCs. A random effect
Wiener process represents one PC, whereas the other PC
employs a fixed effect Wiener process to represent. The
dependency between these PCs is characterized by a copula
function. To obtain the unknown parameters, a hybrid
approach combining MLE with MCMC methods is used.
The example in Section V elaborates the significance of

the dependency. Neglecting it may yield divergent
conclusions in reliability assessment.
The current research centers on scenarios where products

have two marginal distributions, with each distribution
governed by a heterogeneous Wiener process. In future, this
framework could be extended to include other stochastic
processes like the heterogeneous Gamma process or
Geometric Brownian motion. Moreover, from a practical
perspective, forthcoming studies should explore the effective
implementation of the proposed estimation outcomes to make
maintenance decisions for products with two PCs.
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