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Abstract—This paper examines the dynamics of COVID-19
coronavirus transmissions using the SEIQRV model, taking
into account the delay period between susceptible individuals
contracting the infection. This study investigates the stability
of the suggested delayed SEIQRV model. It is found that the
endemic equilibrium point is stable when R0 > 1, and the
disease-free equilibrium point is locally stable when R0 < 1.
Numerical simulations demonstrate the stability results.

Index Terms—Delay, Steady-state solutions, Reproduction
Number, Local Stability, Global Stability.

I. INTRODUCTION

Human mortality has been primarily caused by infec-
tious diseases. Mathematical models have been significant
in comprehending the mechanism of spread and managing
infectious diseases. Ever since, mathematical modelling has
gained importance as a crucial instrument for proposing
public health measures to prevent the spread and transmis-
sion of infectious diseases. In modern mathematical epi-
demiology, the SIR model has been extremely important
[11]. Intervention strategies are essential for managing an
infectious disease that has emerged and spread throughout
a community or region. A new pandemic called COVID-
19 recently surfaced, affecting more nations and regions
globally. Various governments enforced a strict lockdown
in order to contain the spread of COVID-19. These tactics
have remarkably succeeded in many nations in reducing the
number of contacts between susceptible and infected people
in a given amount of time, which has decreased the incidence
rate.

Recent COVID-19 studies have improved our understand-
ing of the dynamics of transmission and the possible func-
tions of different intervention strategies ([3], [5], [7], [9],
[17], [18]). These strategies include providing relief and
hiding the situation to slow down the pandemic’s spread,
reducing access to the best medical care to protect the most
vulnerable individuals, bringing the number of infectious
cases down to a minimum, enforcing lockdowns in areas
where there are disproportionately high rates of infection,
containing suspected cases at home, and isolating families
living together. An Omicron variant model with a variable
population size was created by some authors ([6], [12], [13],
[14]).
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Many infectious diseases, like COVID-19, have delayed
dynamics because of incubation times and associated phe-
nomena. Consequently, DDE models not only provide advan-
tages in terms of computational time and modelling but also
enable a natural representation of the problem dynamics be-
cause they do away with the need for extra, hard-to-estimate
compartments to account for time delays. To prevent Covid-
19 infection in the host population, some authors developed
delay-type models ([2], [8], [10], [15], [19], [20]). This paper
proposes a mathematical model of delay for the system of
ordinary differential equations. A non-linear mathematical
model with a time delay is presented, which is based on
the conventional model of infectious diseases. The work is
interesting because it combines real-world COVID-19 data
from Tamil Nadu, India, with mathematical modelling.

This research examines the dynamics of the coronavirus
using mathematical modelling and analysis of the SEIQRV
model, taking into consideration the delay in the conversion
of susceptible individuals into infected ones. The given
work is very interesting to read because it contains the
mathematical modelling with real data of the COVID-19
from Chennai, Tamil Nadu, India.

The delayed SEIQRV model is presented in Section II.
The reproduction number and steady-state solutions can be
found in II-A. Section II-B discusses the stability analysis
of equilibrium points for the proposed model. Using the real
data collected from Tamil Nadu in Section III, computational
simulations are performed to validate and support our theo-
retical findings regarding COVID-19.

II. DELAYED SEIQRV MODEL FORMULATION

This section is focused on constructing the delay SEIQRV
model for our problem formulation. The delayed SEIQRV
model can be formulated from the integer-order model [1].
Based on the policy decisions made by the government, a
set of parameters has been obtained to forecast the pan-
demic trend. The suitable parameters are used to formulate
the Omicron-delayed SEIQRV model, in which values are
described in Table I from the articles [4] and [6].

Considering the given aspects, the SEIQRV delay mathe-
matical model is derived as follows:

dS

dt
= P − ζ1S − ζ2S(t− τ)I(t− τ) + ζ3R+ ζ4V

dE

dt
= ζ2S(t− τ)I(t− τ)− (ζ1 + ζ5 + ζ6)E,

dI

dt
= ζ6E − (ζ1 + ζ7 + ζ8 + ζ9)I, (1)

dQ

dt
= ζ5E + ζ9I − (ζ10 + ζ11 + ζ1)Q,

dR

dt
= ζ8I + ζ10Q− (ζ1 + ζ3 + ζ12)R,
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TABLE I
PARAMETERS AND THEIR DESCRIPTIONS

Parameters Descriptions Values
P Rate at which humans are recruited

into the population 5
ζ1 The regular demise rate pertinent to

all compartments 0.09
ζ2 Powerful irresistible contact rate between

the susceptible and infected person 0.1679
ζ3 The rate at which the recovered compartment

loses its immunities to treatment 0.0333
ζ4 The rate at which the vaccinated compartment

loses its immunities to susceptible 0.0059
ζ5 Rate at which exposed people move to

isolated class 0.3169
ζ6 Rate at which a specific part of exposed people

move to infected class 0.1858
ζ7 The demise rate instigated by contaminations

of infected people 0.0002
ζ8 The regular recovery rates because of

different components 0.1981
ζ9 The treatment rate of the infected class 0.5864
ζ10 Contact rate between infected and recovered

classes 0.0505
ζ11 Rate at which a specific part of isolated

people gets vaccination 0.1695
ζ12 Rate at which a specific part of recovered

people receives vaccination 0.0197

dV

dt
= ζ11Q+ ζ12R− (ζ1 + ζ4)V

Subject to initial conditions: S(ψ) = S0, ψ ∈ [−τ, 0],
E(0) = E0, I(ψ) = I0, ψ ∈ [−τ, 0], Q(0) = Q0, R(0) =
R0

0, V (0) = V0.
The system of equations can be written as

dS

dt
= P − ζ1S − ζ2S(t− τ)I(t− τ) + ζ3R+ ζ4V

dE

dt
= ζ2S(t− τ)I(t− τ)− (ζ22)E,

dI

dt
= ζ6E − (ζ33)I,

dQ

dt
= kE + ζ9I − (ζ44)Q, (2)

dR

dt
= ζ8I + ζ10Q− (ζ55)R,

dV

dt
= ζ11Q+ ζ12R− (ζ66)V

where ζ22 = ζ1 + ζ5 + ζ6, ζ33 = ζ1 + ζ7 + ζ8 + ζ9, ζ44 =
ζ10+ζ11+ζ1, ξ4 = ζ1, ζ55 = ζ1+ζ3+ζ12 and ζ66 = ζ1+ζ4.

It is considered that the disease has an incubation time
of the virus τ > 0 transferred from a susceptible period to
an incubation period. The incubation period is the delay time
that passes between being susceptible and showing symptoms
of the virus.

A. Steady State Solutions of the delayed SEIQRV model

The system (2) is found static, i.e., the solutions that are
time-independent are obtained. The steady-state solutions in
the infection-free state, when I = 0, are given by

E0
q = (S0, E0, I0, Q0, R0, V 0) =

(P
ζ1
, 0, 0, 0, 0, 0

)
. (3)

Also, when infection is persistent, the steady-state solutions,
i.e., I ̸= 0, are given by

E∗
q = (S∗, E∗, I∗, Q∗, R∗, V ∗) (4)

where

E∗
q = (S∗, E∗, I∗, Q∗, R∗, V ∗) (5)

=
(ζ22ζ33
ζ2ζ6

,
ζ33(P − ζ1S

∗)

ζ6(ζ2S∗ − ζ3B − ζ4C)
,

P − ζ1S
∗

ζ2S∗ − ζ3B − ζ4C
,

ζ5ζ33 + ζ6ζ9
ζ6ζ44

(
P − ζ1S

∗

ζ2S∗ − ζ3B − ζ4C
),

(ζ8ζ22ζ44 + ζ2ζ5ζ10S
∗ + ζ9ζ22)(P − ζ1S

∗)

(ζ22ζ44ζ55)(ζ2S∗ − ζ3B − ζ4C)
,

ζ11A+ ζ12B

ζ66
(

P − ζ1S
∗

ζ2S∗ − ζ3B − ζ4C
)
)

(6)

where

A =
ζ5ζ33 + ζ6ζ9

ζ6ζ44

B =
ζ8ζ22ζ44 + ζ2ζ5ζ10S

∗ + ζ9ζ22
ζ22ζ44ζ55

C =
ζ11A+ ζ12B

ζ66

The basic reproduction number R0 is

R0 = (GV −1) =
Pζ2ζ6

ζ1(ζ1 + ζ5 + ζ6)(ζ1 + ζ7 + ζ8 + ζ9)
.

(7)

B. Stability Analysis of the Delayed SEIQRV Model

The local stability of the SEIQRV system (2) for the
infection-free steady-state solution (3) is examined in the
next theorem applying Rouche’s theorem [16]. The repro-
duction number R0 determines the result.

Theorem 2.1: The infection-free consistent state E0 (3)
is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1 for the time delay τ = 0.

Proof: The characteristic equation of system 2, for the
equilibrium point E0, is given by

∆(λ) =
∣∣λId8×8 − J00 − J01e

−τλ
∣∣ (8)

where

J00 =


−ζ1 0 0 0 ζ3 ζ4
0 −ζ22 0 0 0 0
0 ζ6 ζ33 0 0 0
0 ζ5 ζ9 −ζ44 0 0
0 0 ζ8 ζ10 −ζ55 0
0 0 0 ζ11 ζ12 −ζ66

 ,

and

J01 =


−ζ2I 0 −ζ2S 0 0 0
ζ2I 0 ζ2S 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
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C(λ) = (λ+ ζ1)(λ+
1

2

(
ζ22 + ζ33

+
√
ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233

)
)

(λ+
1

2

(
ζ22 + ζ33

−
√
ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233

)
)

(λ+ ζ44)(λ+ ζ55)(λ+ ζ66). (9)

When τ = 0, the eigenvalues are
−ζ1, −ζ44, −ζ55, −ζ66, − 1

2

(
ζ22 + ζ33 +√

ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233
)
, − 1

2

(
ζ22 + ζ33 −√

ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233
)
.

The given system (2) is stable when
−ζ22 − ζ33 +

√
ζ222 + 4ζ2Sζ6 − 2ζ22ζ33 + ζ233 < 0

or
√
ζ222 + 4ζ2Sζ6 − 2ζ22ζ33 + ζ233 < (ζ22 + ζ33)

or ζ222 + 4ζ2Sζ6 − 2ζ22ζ33 + ζ233 < (ζ22 + ζ33)
2

or ζ2Pζ6 < ζ22ζ33 i.e., ζ2Pζ6
ζ1ζ22ζ33

< 1 That is R0 < 1.
Clearly infection free steady state E0 is locally asymptoti-
cally stable if R0 < 1 when τ = 0.

Theorem 2.2: The infection-free consistent state E0 (3)
is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1 for the time delay τ > 0.

Proof: Let τ > 0. In this case, we will use Rouche’s
theorem to prove that all roots of the characteristic equation
(8) cannot intersect the imaginary axis, i.e., the characteristic
equation cannot have pure imaginary roots.

Suppose for the opposite that there exists w ∈ R such that
λ = wi is a solution of (8).

Consider the term wi + 1
2

(
ζ22 + ζ33 −√

ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233
)
= 0

→ wi + 1
2

(
ζ22 + ζ33

)
=

1
2

√
ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233

→
(
wi + 1

2

(
ζ22 + ζ33

))2

= 1
4

(
ζ222 + 4ζ2ζ6Se

−τλ −
2ζ22ζ33 + ζ233

)
→ (wi)2+ 1

4 (ζ22+ζ33)
2+wi(ζ22+ζ33)− 1

4ζ
2
22+

1
2ζ22ζ33−

1
4ζ

2
33 = ζ2ζ6S(cos τw − i sin τw)
→ −w2 + wi(ζ22 + ζ33) + ζ22ζ33 = ζ2ζ6S(cos τw −

i sin τw)
By equating the real and imaginary part, we get
ζ22ζ33 − w2 = ζ2ζ6S cos τw, w(ζ22 + ζ33) =

−ζ2ζ6S sin τw
By squaring and adding these two we can get
w4 + w2(ζ222 + ζ233) = ζ22ζ

2
6S

2 − ζ222ζ
2
33

If R0 < 1, then w4 + w2(ζ222 + ζ233) < 0, which is a
contradiction.

Thus the infection free consistent state E0 is locally
asymptotically stable if R0 < 1 for τ > 0.

Now suppose that R0 > 1. From the characteristic polyno-
mial (9), it is enough to consider the term (λ+ 1

2

(
ζ22+ζ33−√

ζ222 + 4ζ2ζ6Se−τλ − 2ζ22ζ33 + ζ233
)
). It is easy to see that

C1(0) < 0. On the other hand, limλ→+∞ C1(λ) = +∞.
Therefore, by continuity of C1(λ), there is at least one
positive root of the characteristic equation (9). Hence, we
conclude that E0 is unstable when R0 > 1, for any τ > 0.

The local stability of the SEIQRV system (2) for the
infection’s persistent steady-state solution (4) is determined
using Rouché’s theorem and the Routh-Hurwitz technique in

the next theorem. The result is governed by the reproduction
number R0.

Theorem 2.3: If R0 > 1, then the endemic equilibrium
point E∗is locally asymptotically stable for τ = 0.

Proof: The characteristic equation of system 2, for the
equilibrium point E∗ 4 is given by

∆(λ) =
∣∣λId8×8 − J10 − J11e

−τλ
∣∣ . (10)

where the Jacobian matrices of the model at the infection
persistent steady-state solution are

J(10) =


−ζ1 0 0 0 ζ3 ζ4
0 −ζ22 0 0 0 0
0 ζ6 ζ33 0 0 0
0 ζ5 ζ9 −ζ44 0 0
0 0 ζ8 ζ10 −ζ55 0
0 0 0 ζ11 ζ12 −ζ66

 .

and

J(11) =


−ζ2I∗ 0 −ζ2S∗ 0 0 0
ζ2I

∗ 0 ζ2S
∗ 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The characteristic equation is c1λ6+c2λ5+c3λ4+c4λ3+
c5λ

2 + c6λ+ c7,
where
c1 = 1
c2 = ζ1 + ζ44 + ζ22 + ζ33 + ζ2I

∗e−λτ + ζ55 + ζ66
c3 = ζ1ζ44 + ζ1ζ22 + ζ44ζ22 + ζ1ζ33 + ζ44ζ33 + ζ22ζ33 +

ζ1ζ55 + ζ44ζ55 + ζ22ζ55 + ζ33ζ55 + ζ1ζ66 + ζ44ζ66 +
ζ22ζ66 + ζ33ζ66 + ζ55ζ66 + (ζ44ζ2 + ζ22ζ2 + ζ33ζ2 + ζ2ζ55 +
ζ2ζ66)I

∗e−λτ − ζ2ζ6S
∗e−λτ

c4 = ζ1ζ44ζ22 + ζ1ζ44ζ33 + ζ1ζ22ζ33 + ζ44ζ22ζ33 +
ζ1ζ44ζ55 + ζ1ζ22ζ55 + ζ44ζ22ζ55 + ζ1ζ33ζ55 + ζ44ζ33ζ55 +
ζ22ζ33ζ55 + ζ1ζ44ζ66 + ζ1ζ22ζ66 + ζ44ζ22ζ66 + ζ1ζ33ζ66 +
ζ44ζ33ζ66 + ζ22ζ33ζ66 + ζ1ζ55ζ66 + ζ44ζ55ζ66 + ζ22ζ55ζ66 +
ζ33ζ55ζ66 + (ζ44ζ22ζ2 + ζ44ζ33ζ2 + ζ22ζ33ζ2 + ζ44ζ2ζ55 +
ζ22ζ2ζ55 + ζ33ζ2ζ55 + ζ44ζ2ζ66 + ζ22ζ2ζ66 + ζ33ζ2ζ66 +
ζ2ζ55ζ66)I

∗e−λτ − (ζ1ζ2ζ6 + ζ2ζ44ζ6 + ζ2ζ6ζ55 +
ζ2ζ6ζ66)S

∗e−λτ

c5 = ζ1ζ44ζ22ζ33 + ζ1ζ44ζ22ζ55 + ζ1ζ44ζ33ζ55 +
ζ1ζ22ζ33ζ55 + ζ44ζ22ζ33ζ55 + ζ1ζ44ζ22ζ66 + ζ1ζ44ζ33ζ66 +
ζ1ζ22ζ33ζ66 + ζ44ζ22ζ33ζ66 + ζ1ζ44ζ55ζ66 + ζ1ζ22ζ55ζ66 +
ζ44ζ22ζ55ζ66 + ζ1ζ33ζ55ζ66 + ζ44ζ33ζ55ζ66 + ζ22ζ33ζ55ζ66 +
(ζ44ζ22ζ33ζ2 − ζ3ζ2ζ6ζ8 − ζ3ζ5ζ2ζ10 + ζ44ζ22ζ2ζ55 +
ζ44ζ33ζ2ζ55 + ζ22ζ33ζ2ζ55 − ζ4ζ5ζ2ζ11 + ζ44ζ22ζ2ζ66 +
ζ44ζ33ζ2ζ66 + ζ22ζ33ζ2ζ66 + ζ44ζ2ζ55ζ66 + ζ22ζ2ζ55ζ66 +
ζ33ζ2ζ55ζ66)I

∗e−λτ −(ζ1ζ2ζ44ζ6+ζ1ζ2ζ6ζ55+ζ2ζ44ζ6ζ55+
ζ1ζ2ζ6ζ66 + ζ2ζ44ζ6ζ66 + ζ2ζ6ζ55ζ66)S

∗e−λτ

c6 = ζ1ζ44ζ22ζ33ζ55 + ζ1ζ44ζ22ζ33ζ66 +
ζ1ζ44ζ22ζ55ζ66 + ζ1ζ44ζ33ζ55ζ66 + ζ1ζ22ζ33ζ55ζ66 +
ζ44ζ22ζ33ζ55ζ66 + (ζ44ζ22ζ33ζ2ζ55 + ζ44ζ22ζ33ζ2ζ66 +
ζ44ζ22ζ2ζ55ζ66 + ζ44ζ33ζ2ζ55ζ66 + ζ22ζ33ζ2ζ55ζ66 −
ζ44ζ3ζ2ζ6ζ8 − ζ3ζ33ζ5ζ2ζ10 − ζ3ζ2ζ9ζ6ζ10
- ζ4ζ33ζ5ζ2ζ11−ζ4ζ2ζ9ζ6ζ11−ζ4ζ5ζ2ζ55ζ11−ζ4ζ2ζ6ζ8ζ12−
ζ4ζ5ζ2ζ10ζ12 − ζ3ζ2ζ6ζ8ζ66
- ζ3ζ5ζ2ζ10ζ66)I

∗e−λτ − (ζ1ζ2ζ44ζ6ζ55 + ζ1ζ2ζ44ζ6ζ66 +
ζ1ζ2ζ6ζ55ζ66 + ζ2ζ44ζ6ζ55ζ66) S

∗e−λτ
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c7 = ζ1ζ44ζ22ζ33ζ55ζ66 + (ζ44ζ22ζ33ζ2ζ55ζ66 −
ζ4ζ33ζ5ζ2ζ55ζ11 − ζ4ζ2ζ9ζ6ζ55ζ11 − ζ44ζ4ζ2ζ6ζ8ζ12 −
ζ4ζ33ζ5ζ2ζ10ζ12 − ζ4ζ2ζ9ζ6ζ10ζ12 − ζ44ζ3ζ2ζ6ζ8ζ66 −
ζ3ζ33ζ5ζ2ζ10ζ66 − ζ3ζ2ζ9ζ6ζ10ζ66)I

∗e−λτ −
ζ1ζ2ζ44ζ6ζ55ζ66S

∗e−λτ

To check about the stability, consider the above character-
istic equation

λ6 + (e−λτI∗D1 + C1)λ
5 + ([I∗D2 − S∗E2]e

−λτ

+ C2)λ
4 + ([I∗D3 − S∗E3]e

−λτ + C3)λ
3

+ ([I∗D4 − S∗E4]e
−λτ + C4)λ

2

+ ([I∗D5 − S∗E5]e
−λτ + C5)λ

+ ([I∗D6 − S∗E6]e
−λτ + C6) = 0 (11)

where
D1 = ζ2,
C1 = ζ1 + ζ44 + ζ22 + ζ33 + ζ55 + ζ66,
D2 = ζ44ζ2 + ζ22ζ2 + ζ33ζ2 + ζ2ζ55 + ζ2ζ66,
E2 = ζ2ζ6,
C2 = ζ1ζ44 + ζ1ζ22 + ζ44ζ22 + ζ1ζ33 + ζ44ζ33 + ζ22ζ33 +

ζ1ζ55+ ζ44ζ55+ ζ22ζ55+ ζ33ζ55+ ζ1ζ66+ ζ44ζ66+ ζ22ζ66+
ζ33ζ66 + ζ55ζ66,
D3 = ζ44ζ22ζ2 + ζ44ζ33ζ2 + ζ22ζ33ζ2 + ζ44ζ2ζ55 +

ζ22ζ2ζ55 + ζ33ζ2ζ55 + ζ44ζ2ζ66 + ζ22ζ2ζ66 + ζ33ζ2ζ66 +
ζ2ζ55ζ66,
E3 = ζ1ζ2ζ6 + ζ2ζ44ζ6 + ζ2ζ6ζ55 + ζ2ζ6ζ66,
C3 = ζ1ζ44ζ22 + ζ1ζ44ζ33 + ζ1ζ22ζ33 + ζ44ζ22ζ33 +

ζ1ζ44ζ55 + ζ1ζ22ζ55 + ζ44ζ22ζ55 + ζ1ζ33ζ55 + ζ44ζ33ζ55 +
ζ22ζ33ζ55 + ζ1ζ44ζ66 + ζ1ζ22ζ66 + ζ44ζ22ζ66 + ζ1ζ33ζ66 +
ζ44ζ33ζ66 + ζ22ζ33ζ66 + ζ1ζ55ζ66 + ζ44ζ55ζ66 + ζ22ζ55ζ66 +
ζ33ζ55ζ66,
D4 = ζ44ζ22ζ33ζ2−ζ3ζ2ζ6ζ8−ζ3ζ5ζ2ζ10+ζ44ζ22ζ2ζ55+

ζ44ζ33ζ2ζ55 + ζ22ζ33ζ2ζ55 − ζ4ζ5ζ2ζ11 + ζ44ζ22ζ2ζ66 +
ζ44ζ33ζ2ζ66 + ζ22ζ33ζ2ζ66 + ζ44ζ2ζ55ζ66 + ζ22ζ2ζ55ζ66 +
ζ33ζ2ζ55ζ66,
E4 = ζ1ζ2ζ44ζ6 + ζ1ζ2ζ6ζ55 + ζ2ζ44ζ6ζ55 + ζ1ζ2ζ6ζ66 +

ζ2ζ44ζ6ζ66 + ζ2ζ6ζ55ζ66,
C4 = ζ1ζ44ζ22ζ33 + ζ1ζ44ζ22ζ55 + ζ1ζ44ζ33ζ55 +

ζ1ζ22ζ33ζ55 + ζ44ζ22ζ33ζ55 + ζ1ζ44ζ22ζ66 + ζ1ζ44ζ33ζ66 +
ζ1ζ22ζ33ζ66 + ζ44ζ22ζ33ζ66 + ζ1ζ44ζ55ζ66 + ζ1ζ22ζ55ζ66 +
ζ44ζ22ζ55ζ66 + ζ1ζ33ζ55ζ66 + ζ44ζ33ζ55ζ66 + ζ22ζ33ζ55ζ66,
D5 = ζ44ζ22ζ33ζ2ζ55+ζ44ζ22ζ33ζ2ζ66+ζ44ζ22ζ2ζ55ζ66+

ζ44ζ33ζ2ζ55ζ66 + ζ22ζ33ζ2ζ55ζ66 − ζ44ζ3ζ2ζ6ζ8 −
ζ3ζ33ζ5ζ2ζ10 − ζ3ζ2ζ9ζ6ζ10 − ζ4ζ33ζ5ζ2ζ11 − ζ4ζ2ζ9ζ6ζ11 −
ζ4ζ5ζ2ζ55ζ11 − ζ4ζ2ζ6ζ8ζ12 − ζ4ζ5ζ2ζ10ζ12 − ζ3ζ2ζ6ζ8ζ66 −
ζ3ζ5ζ2ζ10ζ66,
E5 = ζ1ζ2ζ44ζ6ζ55 + ζ1ζ2ζ44ζ6ζ66 + ζ1ζ2ζ6ζ55ζ66 +

ζ2ζ44ζ6ζ55ζ66,
C5 = ζ1ζ44ζ22ζ33ζ55+ ζ1ζ44ζ22ζ33ζ66+ ζ1ζ44ζ22ζ55ζ66+

ζ1ζ44ζ33ζ55ζ66 + ζ1ζ22ζ33ζ55ζ66 + ζ44ζ22ζ33ζ55ζ66,
D6 = ζ44ζ22ζ33ζ2ζ55ζ66 − ζ4ζ33ζ5ζ2ζ55ζ11 −

ζ4ζ2ζ9ζ6ζ55ζ11 − ζ44ζ4ζ2ζ6ζ8ζ12 − ζ4ζ33ζ5ζ2ζ10ζ12 −
ζ4ζ2ζ9ζ6ζ10ζ12 − ζ44ζ3ζ2ζ6ζ8ζ66 − ζ3ζ33ζ5ζ2ζ10ζ66 −
ζ3ζ2ζ9ζ6ζ10ζ66,
E6 = ζ1ζ2ζ44ζ6ζ55ζ66,
C6 = ζ1ζ44ζ22ζ33ζ55ζ66.
If τ = 0, then by using the rule of Descartes of sign and

Routh-Hurwitz stability criterion, the real parts of the com-
plex roots are negative if ζ2I∗ > 0, R0−1 > 0, R0 > 1. Then
the infection persistent steady state (S∗, E∗, I∗, Q∗, R∗, V ∗)
is locally stable when R0 > 1.

Theorem 2.4: If R0 > 1, then the endemic equilibrium
point E∗is locally asymptotically stable for τ > 0.

Proof: If τ > 0, then by using Rouche’s theorem, we
have to prove that all roots of the characteristic equation (11)
cannot have pure imaginary roots. Suppose that there exists
w ∈ R such that λ = wi is a solution of (11). Now equation
(11) becomes

w6 + i(e−λτI∗D1 + C1)w
5 − ([I∗D2 − S∗E2]e

−λτ

+ C2)w
4i([I∗D3 − S∗E3]e

−λτ + C3)w
3

+ ([I∗D4 − S∗E4]e
−λτ + C4)w

2

− i([I∗D5 − S∗E5]e
−λτ

+ C5)w − ([I∗D6 − S∗E6]e
−λτ + C6) = 0 (12)

Then,

w6 + iG1w
5 −G2w

4 + iG3w
3 +G4w

2 − iG5w +G6

= (−iG∗
1w

5 +G∗
2w

4 − iG∗
3w

3 −G∗
4w

2 + iG∗
5w −G∗

6)

(cos τw − i sin τw) (13)

where Gi = Ci, i = 1, 2, 3, 4, 5, 6; G∗
1 = I∗D1, G∗

j = S∗E∗
j ,

j = 2, 3, 4, 5, 6.
Equating the real and imaginary parts of (13) we get

w6 − G2w
4 +G4w

2 +G6

= (G∗
2w

4 −G∗
4w

2 −G∗
6) cos τw

+(−G∗
1w

5 −G∗
3w

3 +G∗
5w) sin τw (14)

G1w
5 + G3w

3 −G5w

= (−G∗
1w

5 −G∗
3w

3 +G∗
5w) cos τw (15)

−(G∗
2w

4 −G∗
4w

2 −G∗
6) sin τw.

Squaring both equations (15), (16) and adding we get,

w12 + (G2
1 − 2G2 −G∗2

1 )w10 + (G2
2 + 2G4 + 2G1G3

+ 2G∗
1G

∗
3 −G∗2

2 )w8 + (G2
3 + 2G6 − 2G2G4

− 2G1G5 − 2G∗
1G

∗
5 −G∗2

3 )w6 + (G2
4 − 2G2G6

− 2G3G5 + 2G∗
3G

∗
5 −G∗2

4 )w4 + (G2
5 + 2G4G6

− G∗2

5 )w2 + (G2
6 −G∗2

6 ) = 0. (16)

Let z = w2 in (16)

z6 + (G2
1 − 2G2 −G∗2

1 )z5 + (G2
2 + 2G4 + 2G1G3

+ 2G∗
1G

∗
3 −G∗2

2 )z4 + (G2
3 + 2G6 − 2G2G4

− 2G1G5 − 2G∗
1G

∗
5 −G∗2

3 )z3 + (G2
4 − 2G2G6

− 2G3G5 + 2G∗
3G

∗
5 −G∗2

4 )z2 + (G2
5 + 2G4G6

− G∗2

5 )z + (G2
6 −G∗2

6 ) = 0. (17)

If R0 < 1, then from equation (17) we can see that G2
6 −

G∗2

6 is strictly negative. Thus, we can get at least one positive
real root. Hence, if R0 > 1, all the real parts of the roots of
(11) are negative. Thus, the equilibrium position E∗ is stable
when R0 > 1 for τ > 0.

III. NUMERICAL ANALYSIS

We provide a theoretical validation for this COVID-19
pandemic data from Tamil Nadu, India. By [4], the data’s
source is identified. The district of Coimbatore in Tamil Nadu
provided the data for this investigation. After about 30 days,
the coronavirus infection seems to have stabilized, according
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Fig. 1. Susceptible people S(t) with various τ for SEIQRV against time t

to the data and our mathematical models. The table contains
a list of the values for the parameters and variables I.

The Susceptible individual curves for the system SEIQRV
is depicted with different values of τ = 0.021, 0.032, 0.043
in Figure 1.

As seen in Figure 2, a decrease in the exposed population
results in a corresponding decrease in the population of
other compartments; conversely, an increase in the exposed
population causes a rise in the population of all related
compartments.

The coronavirus infection rate may be reduced, as shown
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Fig. 2. Exposed people E(t) with various τ for SEIQRV against time t

in Figures 3. Figure 3 illustrates how quickly the coronavirus
spread after it was identified and how the government’s
widespread vaccination campaigns and quarantines stopped
the variant’s spread to a safe level. The SEIQRV model
is able to moderately control the rate of increase in the
number of infected individuals by incorporating additional
compartments from earlier models. Those who received the
COVID-19 vaccination were able to prevent the spread of the
SARS-CoV-2 coronavirus. The infection rate is demonstrated
in this figure with various values of τ (= 0.021, 0.032, 0.043).
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Fig. 3. Infected people I(t) with various τ for SEIQRV against time t

Figure 4 shows the individual level that is quarantined
at time t. The outbreak of the disease was stopped when the
government imposed a strict quarantine on the state of Tamil
Nadu, allowing things to return to normal.

Figure 5 shows the increase in recovered rates for both
systems in Tamil Nadu. The SEIQRV system reaches stability
by matching standard rates to both recovered and infected
rates.

Figure 6 shows how the number of vaccinations is rapidly
increasing. The system’s infection rate consequently dropped
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Fig. 4. Quarantined people Q(t) with various τ for SEIQRV against time
t

dramatically, and it stabilized. These figures illustrate the
importance of vaccination for the Omicron virus control
strategy.

Figure 7 shows the effect of delayed SEIQRV model
construction as a decline in reservoir individuals over time
t. The stability of the SEIQRV mathematical model for the
state of Tamil Nadu at different delay values is displayed
in Figure 7. As Figure 7 illustrates, the infection rate for
the SEIQRV system declines after a quick spread over an
extended period of time. Within a few days, these systems
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Fig. 5. Recovered people R(t) with various τ for SEIQRV against time t

contain the infection and prevent it from spreading.

IV. CONCLUSIONS

This paper developed a new delayed mathematical
model for the coronavirus COVID-19. The stability of the
SEIQRV model has been investigated and confirmed. It was
discovered that the equilibrium points devoid of disease are
unstable and will never stabilize when R0 > 1, while they
are locally asymptotically stable when R0 < 1. Furthermore,
we have discovered that stable endemic equilibrium points
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Fig. 6. Vaccinated people V(t) with various τ for SEIQRV against time t

occur when R0 > 1. Based on the known information, we
may conclude that if more persons are separated, recovered,
and vaccinated against the coronavirus, the host community
will be safe. Scientists working in the medical field will find
this study useful. Additional work can be done to generalize
this with other fractional derivative models.
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