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Abstract—Phase retrieval refers to reconstruct signal phase
information only from acquired intensity or amplitude
information. As the problem is underdetermined, its solution
space admits multiple solutions. Additionally, the non-smooth
absolute value term of the loss function may negatively impact
the numerical results of Amplitude Flow. To address this issue,
we propose a sparse perturbed based smooth loss function
and is termed the Sparse Perturbed Amplitude Flow (SPAF)
algorithm. The approach effectively constrains the signal
solution space, reduces the number of required measurements.
And mitigates the instability caused by near-zero of absolute
value term that can lead to abrupt gradient changes.
First, the initial value of the SPAF algorithm is obtained
by sparse orthogonal initialization, then the exact solution
is obtained after a series of hard thresholding iterations.
Finally, the global convergence of the SPAF algorithm is
also demonstrated. The SPAF algorithm does not require
any truncation and reweighting process. Therefore, it is
straightforward to achieve outstanding performance for both
real and complex signals. Substantial tests confirm that the
proposed algorithm significantly surpasses other state-of-the-art
methods in recovery efficiency and convergence speed.

Index Terms—Sparse phase retrieval, Perturbed amplitude
flow, Support recovery, Gradient descent, Linear convergence.

I. INTRODUCTION

IN various scientific and engineering disciplines,
reconstructing a signal from measurements without

phase information is a fundamental problem, known as
phase retrieval (PR). Since optical sensors record only the
intensity of light rather not its phase, PR plays a critical
role in related applications. It is widely used in X-ray
crystallography [1], optics [2], biological imaging [3], and
computational imaging [4]. Mathematically, PR is described
by the following equation model:

yi = |⟨ai,x⟩| , i = 1, · · · ,m, (1)

where x ∈ Rn is original signal, {yi}mi=1 are amplitude
measurements, |·| represent absolute value. And the sensing
vectors ai ∈ Rn follow ai ∼ N (0, In) for i = 1, . . . ,m.
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The classical methods for solving the PR problem rely on
alternating projection, such as the Gerchberg-Saxton (GS)
algorithm [5] and Hybrid Input-Output (HIO) algorithm
[6]. To address the high complexity associated with
dimensionality, Candès proposed the Wirtinger flow (WF)
algorithm [7]. This algorithm first obtains a relatively optimal
initial estimate with spectral method, and then is followed by
iterative refinement of the solution through intensity-based
models:

min
z

f(z) :=
1

4m

m∑
i=1

(∣∣aT
i z
∣∣2 − y2i

)2
. (2)

Based on the WF algorithm, the Truncated WF (TWF)
[8] and the Reweighted WF (RWF) algorithm [9] are
dicussed. Zhang [10] further demonstrated that performance
can be significantly improved by minimizing the following
amplitude-based models:

min
z

f(z) :=
1

2m

m∑
i=1

(∣∣aT
i z
∣∣− yi

)2
, (3)

where this method is summarized as Amplitude Flow (AF)
algorithm. The AF class of algorithms had been proven to
achieve more accurate recovery from O(n) measurements,
outperforming the WF class of algorithms [11]. To further
improve the effectiveness of AF, Wang proposed Truncated
AF (TAF) algorithm [12] and Reweighted AF (RAF)
algorithm [13]. These algorithms incorporate truncation and
reweighting operations in gradient step, respectively.

In practical applications, although problem (1) can
be efficiently solved if the measurement values are
overcompleted. However, a major difficulty remains to
accurately recover the signal using fewer measurement
values. The sparse phase retrieval algorithms extend the
corresponding methods of general phase retrieval problem
(1) to sparse phase retrieval problem (4).

The Stochastic Alternating Minimization (SAM) algorithm
[14] and Compressive Phase Retrieval with Alternating
Minimization (CoPRAM) [15] extended problem (1) by
applying alternating minimization under sparsity constraints.
A reweighted gradient descent approach is employed in the
Sparse Reweighted Threshold Wirtinger Flow (SRThWF)
algorithm [16] to progressively improve the initial estimate,
and demonstrated its effectiveness when the sparsity level is
unknown.

Most current sparse phase retrieval algorithms are
commonly first-order methods, so an second-order Hard
Threshold Tracking (HTP) algorithm [17] is proposed, which
can accelerate the recovery process by a factor of several
compared to conventional sparse phase retrieval algorithms.
Several other methods, including the Sparse Truncated
AF (SPARTA) algorithm [18], Compressed RAF (CRAF)
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algorithm [19], and Sparse WF (SWF) algorithm [20], also
incorporate a sparse prior to problem (1) for recovering
sparse signals.

From a theoretical perspective, to distinguish gradient
components that are either too large or too small during the
iteration process, the TWF, TAF, and SPARTA algorithms
employ truncation to eliminate components with excessive
influence. In contrast, the RWF and RAF algorithms regulate
these components by attenuating their weight at each update.
However, these methods often lead to inconsistent search
directions and increase computational complexity.

To address these theoretical deficiencies and limitations.
Pinilla et al. introduced Phase Retrieval Smoothing
Conjugate Gradient (PR-SCG) algorithm [21]. This approach
substitutes the original loss function of phase retrieval model
with a specially designed smooth function, and employs the
projected gradient method to tackle the recovery problem.
Additionally, Stochastic Smoothing Phase Retrieval (SSPR)
algorithm is presented. This cumulative method entails an
equation for each iteration, which is a fast method for large
dimensions signal. In the Smoothed Amplitude Flow (SAF)
algorithm [22], smooth function is introduced by Luo et al.
to handle the non-smooth nature of the loss function.

In addition, Gao et al. also putted forward a Perturbed
Amplitude Flow (PAF) algorithm [23], which introduces
a parameter to mitigate the influence of undesirable
observations. Meanwhile maintaining the smooth loss
function and serving a similar role of truncation or
reweighting. Xiao et al. utilized the smooth approximation
of the absolute value function in smoothed amplitude
flow-based phase retrieval (SAFPR) algorithm [24], which
reduces the computational complexity. And J. Bacca et al.
applied smooth phase retrieval algorithm to super-resolution
imaging [25], enabling high-resolution images to be
recovered from low-resolution in any diffraction regions.

To overcome the non-smooth characteristics of the
objective function and use fewer measurement values.
A Sparse Perturbated Amplitude Flow (SPAF) algorithm
is presented to recover sparse signals from phaseless
measurements. By controls the magnitude of the gradient
component with a smoothing parameter to maintain
the smoothness of the objective function. The principal
contributions of this paper are categorized into the following
three aspects.

(1). In contrast to previous phase retrieval methods,
the SPAF algorithm incorporates sparse prior and
smoothing strategy to minimize sampling and computational
complexity effectively, while significantly improving
recovery performance.

(2). The convergence of the SPAF algorithm is rigorously
validated through mathematical analysis, providing
theoretical assurance of its reliability under certain
assumptions.

(3). The high recovery accuracy and robustness of the
SPAF algorithm are validated by experiments on both
real-valued and complex-valued signals.

II. RELATED WORK

A. Sparse phase retrieval problem
For large-scale problems, the enormous measurement and

computational costs make it impractical to satisfy m > n.

Therefore, it is a standard assumed that x exhibits sparsity
or nearly sparsity. We consider the minimization of the
composite function f = S ◦ L, where S : Rn → R is a
convex function and L : Rd → Rm is a nonlinear mapping.
Then the variable sequence xt is iteratively updated by

xt+1 ∈ arg min
x∈Rn

S (L(xt) + L′(xt)(x− xt)) , (4)

where L′(xt) denotes the derivative of L with respect to x
in t iterations. Due to the local approximation of L at xt

in (4), xt+1 is obtained a local optimum solution. Then in
sparse phase retrieval problem

S(z) = ∥z∥0,

and since AF is better than WF in terms of recovery
performance, so we have

L(z) =
(∣∣⟨aT

i ,x⟩
∣∣− yi

)2
, i = 1, . . . ,m,

so, the amplitude-based sparse phase retrieval algorithm can
be expressed as:

min
∥z∥0=k

f(z) :=
1

2m

m∑
i=1

(∣∣aT
i z
∣∣− yi

)2
, (5)

where k denotes the sparsity level and ∥ · ∥0 denotes a
zero-paradigm operator, representing the count of non-zero
elements. The update rule in (4) can be described as:

xt+1 ∈ arg min
x∈Rn

m∑
i=1

(⟨ai,x⟩ − sign(⟨ai,x)⟩ · yi)2 . (6)

Assume that the sparsity level is known and satisfied
k ≪ n. It is also shown that the solution to
problem (6) is uniquely identifiable with real general
measurements if the measurement value m = 2k is satisfied.
Moreover, by Incorporating sparsity prior can constrain
the underdetermined phase retrieval problem. It effectively
narrows the solution space while mitigating noise-induced
artifacts.

B. Smooth phase retrieval problem

The Eq.(5) is a nonconvex and nonsmooth function,
which the nonsmooth absolute value term may degrade the
numerical performance of the AF. During the optimization
process, the absolute value term |aT

i z| in the loss function
is not differentiable at z = 0. Specifically, when the value of
aT
i z approaches 0, the gradient exhibits abrupt variations.

This sharp transition increases computational complexity
with inconsistency in search directions. In other words, when
trapped at an undesirable stationary point z, a sign difference
between aT

i z and aT
i x may arise, that is aT

i z ̸= aT
i x.

To avoid this situation, a mathematical model for smooth
phase retrieval has been offered:

min
z

fϵ(z) := min
z

1

m

m∑
i=1

(√
|a∗

i z|2 + ϵ2i −
√
b2i + ϵ2i

)2

,

(7)
where ϵi is a perturbated term and the gradient size can be
controlled with a suitable choice of ϵi. This is essential for
preventing the extremely large gradient components.
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III. PROPOSED METHOD

In this paper, a model of Sparse Perturbed
Amplitude-Flow(SPAF) algorithm is proposed through
the following formula:

min
∥z∥0=k

fθ(z) :=
1

2m

m∑
i=1

(√∣∣aT
i z
∣∣2 + θ2i −

√
y2i + θ2i

)2

,

(8)
where θ = (θ1, · · · , θm) are prescribed values and the
smoothness of the loss function depends on the different
values of θi. When θi = 0, the model is abbreviated to
the classical amplitude-based formula (5). If S(z) ̸= ∥z∥0,
formula (8) represents phase retrieval without incorporating
the sparse prior, thereby simplifying to formula (7). Clearly,
the loss function in (8) is transformed into a nonconvex and
smooth loss function, and the next step is to derive the exact
solution.

The SPAF algorithm consists of two main parts. In
the initialization process, the signal’s support set is
inferred and assess a estimated value of signal by
sparse orthogonality-promoting initialization method. Then, a
gradient descent approach with Hard Thresholding is applied
in the iterative phase. The following sections describe this
two parts respectively.

A. Sparse Orthogonality-promoting Initialization

Correct initialization is essential in non-convex
optimization to prevent convergence to unfavorable
stationary points. It is pointed out in the TAF algorithm
that random vectors are typically close to being orthogonal
to each other in high dimensions. The normalized inner
product of squares is then given by:

cos2 βi :=
|⟨ai,x⟩|2

∥ai∥22 ∥x∥
2
2

=
y2i

∥ai∥22 ∥x∥
2
2

,

where βi is the angle between vectors ai and x, and cos2 βi

is used as a measure of the orthogonality between them,
and the smaller the value, the more orthogonal they are.
Thus, the key idea adopted for the initialization focuses
on approximating vector x with a different vector namely
maximally orthogonal to a subset {ai}i∈I0 of the carefully
chosen sampling vectors, where [m] := {1, 2, · · · ,m}, and
I0 ⊆ [m] denotes the set of indexes of the sampling vectors
ai chosen for the initialization of the computation involved.

To reduce computational complexity, the largest
eigenvector can serve as an approximation to the smallest
eigenvector. So, I0 represents the complement of I0 within
[m]. Hence, x can be estimated by a vector with index I0
as ai, then:

ẑ0 := argmax
∥z∥2=1

1∣∣I0∣∣
∑
i∈I0

∣∣aT
i z
∣∣2

= argmax
∥z∥2=1

zT

 1∣∣I0∣∣
∑
i∈I0

aia
T
i

∥ai∥22

 z.

(9)

Since the signal x to be recovered is k-sparse and k ≪ n,
the objective of this paper is to recover the sparse signals.
In order to obtain informations from fewer measurements,

using ℓ0 regularization to represent the sparsity prior, the
above initialization changes to:

ẑ0 := argmax
∥z∥2=1

zTY z s.t. ∥z∥0 = k, (10)

where

Y =

 1∣∣I0∣∣
∑
i∈I0

aia
T
i

∥ai∥22

 .

The question is generally NP-hard problem due to
the combinatorial constraint. So, This paper applies a
orthogonality-promoting strategy to obtain a sparse initial
estimate with constrained measurements. This method is
divided into two primary components. And, the subsequent
sections provide a detailed explanation of each part.

1) Accurate Support Recovery: For sparse signals, the
available data samples are considerably fewer than the signal
dimension n. Hence, it is essential to determine the support
domain of the original signal, which relies on appropriate
rules. Once this domain is approximated, an initial estimate
of the sparsity can be meaningfully inferred from finite
measurements.

Beginning with the recovery process of support domain,
we assume under general premises that x exists within the
support of S ⊆ [n] := {1, · · · , n}, where the size of the
support set |S| = k. Introduce following random variables:

Wi,j = a2i,jy
2
i , (11)

where j = 1, · · · , n. E
[
a4i,j
]
= 3 and E

[
a2i,j
]
= 1 are

applied to normalized Gaussian variables and owing to the
rotational invariance property of the Gaussian distribution, it
is clear that:

E [Wi,j ] = 2x2
j + ∥x∥22 , (12)

where x/j ,ai,/j are acquired by excluding the j-the element
from x,aT

i . For j ∈ S and j /∈ S, there exists a separation
of at least 2x2

j for the expected value of Wi,j . When the
interval values are large enough, the set of indices associated
with the k largest values of E [Wi,j ] is enough to recover
the support domain S of x. But, {E [Wi,j ]} is not available
in practice. The ensemble average can be approximated by
the sample mean under the strong law of large numbers,
so, the average W i,j defined as 1

m

∑m
i=1 Wi,j converges to

the expected value E [Wi,j ] as m increases. So the sample
mean W i,j is used as an estimate of the expectation value
E [Wi,j ]. Therefore, it is necessary to collect the indices
corresponding to the top-k values in E [Wi,j ], which form
the support domain of the estimate:

Ŝ :=
{
j ∈ [n] | indices of top-k elements in

{
W i,j

}n
j=1

}
.

(13)
It ensures that the elements belonging to the support set

have sufficient separation from those not in the support set,
and recovers Ŝ exactly with high probability.

2) Orthogonality-Promoting Intialization: When the
support in formula (13) is accurate, the initial value is
estimated based on Ŝ and the measurement yi can be
rewritten as:

yi =
∣∣∣aT

i,Ŝ
xŜ

∣∣∣ , (14)
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where ai,Ŝ and xŜ include the elements ai,j and x of
index j belonging to Ŝ, respectively. The initialization
step for promoting orthogonality is utilized for the
reduced-dimensional data

{(
ai,Ŝ , yi

)}m

i=1
, namely:

ẑ0,Ŝ = argmax
∥zŜ∥2

=1

1∣∣I0∣∣zT
Ŝ

(∑
i∈I0

ai,Ŝa
T
i,Ŝ∥∥∥ai,Ŝ

∥∥∥2
2

)
zŜ . (15)

A k-sparse n dimensional initialization ẑ0 is reconstructed
by padding ẑ0,S with zeros at entries with indices not
included in Ŝ. When ∥x∥2 ̸= 1, the norm estimate of x is
used to rescale ẑ0 to obtain the final k-sparse initial estimate:

z0 =

√√√√ 1

m

m∑
i=1

yiẑ0. (16)

B. Hard thresholding based gradient descent

To find globally optimal solution, a hard-thresholding
gradient descent algorithm is utilized, with z0 serving as
the initialization. From the Wirtinger derivative, the gradient
∇fθ(zt) of the loss function fθ(zt) connection with z is:

∇fθ(zt) :=
1
m

m∑
i=1

(√
|aT

i zt|2 + θ2i −
√
y2i + θ2i√

|aT
i zt|2 + θ2i

)
(aT

i zt)ai

(17)
Following the acquisition of the initial estimate z0 in

Sparse Orthogonality-promoting Initialization, this paper
refines z0 via multiple gradient updates. The k-sparse hard
thresholding operation is applied in these iterations, that is:

zt+1 := Γk(zt − λ∇fθ(zt)), (18)

where t denotes iteration count, λ is the step size. Γk(·) is
the k-sparse hard-thresholding operator, keeping the top-k
entries while replacing others with zero.

It can be clearly concluded, in order to prevent abrupt
changes in the gradient when the value of |aT

i z| approaches
0, which could lead the iteration in an undesirable
direction, the smoothing mechanism adopted by the loss
function mitigates the influence of most bad gradient
components associated with incorrectly estimated signs.
This significantly reduces the computational complexity
arising from inconsistencies in the search direction. The key
procedures of the proposed algorithm are summarized in
Algorithm 1.

IV. CONVERGENCE PROOF

Under the Gaussian model, this section establishes the
global convergence of Algorithm 1. The geometric rate of
convergence for the SPAF algorithm is formally stated in
the following theorem.

Lemma 1. [18] Let x ∈ Rn is a k-sparse signal in support
Ŝ and minimum non-zero entries xmin := minj∈Ŝ |xj |,
which is on the order of

(
1√
k

)
∥x∥2. If {ai}mi=1 are i.i.d

standard Gaussian, support Ŝ with a probability at least
1− 6

m given that m ≥ C0k
2 log(mn), where C0 is a positive

constant.
Lemma 2. [18] Under the conditions of Lemma 1,

for z0 =
√∑m

i=1 y
2
i /mẑ0, where ẑ0 obtained through

Algorithm 1 SPAF: Sparse Perturbed Amplitude Flow
algorithm

1: Input
2: {ai}mi=1; {yi}mi=1; the iteration upper bound T ; sparsity

level k; step length λ; perturbed parameter θ
3: Exact Support Recovery
4: In

(
1
m

∑m
i=1 y

2
i a

2
i,j

)
, set support Ŝ

5: Ŝ :=
{
j ∈ [n] | indices of top-k elements in

{
W i,j

}n
j=1

}
6: Initialization Evaluation
7: Calculate sparse initial estimates

8: ẑ0,Ŝ = argmax
∥zŜ∥2

=1

1

|I0|z
T
Ŝ

(∑
i∈I0

ai,ŜaT
i,Ŝ

∥ai,Ŝ∥2

2

)
zŜ

9: Initialize z0 =
√

1
m

∑m
i=1 yiẑ0, where ẑ0 is determined

through augmenting ẑ0,Ŝ with 0 at entries with their
indices not in Ŝ

10: Hard Thresholding Based Gradient Descent
11: For ∥zt+1 − zt∥2 ≥ ϵ to t ≤ T

12: zt+1 = Γk

(
zt − λ

m

m∑
i=1

(√
|aT

i zt|2 + θ2i −
√

y2i + θ2i√
|aT

i zt|2 + θ2i

)
(aT

i zt)ai

)
13: t = t+ 1
14: Output
15: The final estimated value zT

the sparse orthogonality-promoting initialization, then with
probability at least 1 − (m + 6)e(−k/2) − 7

m , the following
holds

dist(z0,x) ≤ (1/10)∥x∥2

under the condition that m ≥ C ′
0k, where C ′

0 > 0 is a
absolute constant.

To proceed with the discussion in this section, we revisit
the principle of the Restricted Isometry Property (RIP),
which serves as a fundamental condition in compressive
sensing theory.

Definition 1. [26] Let s = 1, 2, . . . , k are any integer. For
every k-sparse vectors u, the isometry constant 0 < ωs < 1
of a matrix A is defined as the smallest value ensuring the
following holds:

(1− ωk)∥u∥22 ≤ ∥Au∥22 ≤ (1 + ωk)∥u∥22
where A is a matrix with Gaussian-distributed entries
that are i.i.d. standard normal variables, the matrix

√
1
mA

satisfies the RIP condition with isometry constant ω3k ≤ ε
with probability at least 1 − e−C′

1m, gived that m ≥
C ′

2ε
−2(3k) log( n

3k ), where C ′
1, C

′
2 > 0 are universal

constants.
Additionally, if κ is a set of {1, 2, . . . , n} containing no

more than 3k indices, then the following properties of A
satisfied:

P1: For any vector u that is at most 3k-sparse, the
inequality holds

(1− ω3k)m∥u∥2 ≤ ∥AT
κAκu∥2 ≤ (1 + ω3k)m∥u∥2

P2: The inequality holds∥∥AT
α∪βAα∪β − I

∥∥
2
≤ ω3k

where α and β are disjoint sets with combined cardinality
that does not exceed 3k.
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Theorem 1. Under the conditions of Lemma 1 and Lemma
2, for any k-sparse vectors x and a suitable step size λ is
chosen, the following inequality always holds in t+1 and t
iterations:

∥zt+1 − x∥2 ≤ ρ∥zt − x∥2

where ρ is a constant and ρ ∈ (0, 1).
Proof: To begin, we introduce some notations that will

be employed exclusively within this section. For any t ≥ 0,
define:

ut+1 = zt − λ
m

m∑
i=1

(√
|aT

i zt|2 + θ2i −
√
y2i + θ2i√

|aT
i zt|2 + θ2i

)
(aT

i zt)ai

where represents the preliminary estimate before the hard
thresholding operation is applied in equation (18). The
support sets of x and zt are represented by Sx and Ŝt,
respectively. Consequently, the reconstruction error zt+1−x
lies within the support set Ψt+1 := Sx ∪ Ŝt+1, while
the error zt − x is supported on Ψt := Sx ∪ Ŝt. In
addition, the set difference is specified that Ψt/Ψt+1 as
containing elements present in Ψt but not in Ψt+1. Due
to the thresholding performed in every iteration, that is,
|Sx| = |Ŝt| = k ≥ |Ŝt+1|. So for all t ≥ 0, |Ψt+1| =
|Sx ∪ Ŝt+1| ≤ 2k and |Ψt+1 ∪Ψt| ≤ 3k.

Let ht = zt − x, thus:

∥ht+1∥2 = ∥zt+1 − x∥2 ≤
∥∥∥zΨt+1

t+1 − xΨt+1

∥∥∥
2

≤
∥∥∥zΨt

t − u
Ψt+1

t+1

∥∥∥
2
+
∥∥∥xΨt+1 − u

Ψt+1

t+1

∥∥∥
2
, (19)

where u
Ψt+1

t+1 := z
Ψt+1

t − λ
m∇f

Ψt+1

θ (zt). Since z
Ψt+1

t+1

represents the k-best approximation of u
Ψt+1

t+1 obtained
through hard thresholding, and given that |Ψt+1| ≤ 2k, it
follows that:∥∥∥xΨt+1 − u

Ψt+1

t+1

∥∥∥
2
≥
∥∥∥zΨt+1

t+1 − u
Ψt+1

t+1

∥∥∥
2
.

Therefore, (18) can be reformulated as follows:

∥ht+1∥2 ≤ 2
∥∥∥xΨt+1 − u

Ψt+1

t+1

∥∥∥
2
. (20)

Substituting u
Ψt+1

t+1 := z
Ψt+1

t − λ
m∇f

Ψt+1

θ (zt) into (19),
it follows that:

∥ht+1∥2 ≤ 2

∥∥∥∥zΨt+1

t − λ

m
∇f

Ψt+1

θ (zt)− xΨt+1

∥∥∥∥
2

= 2

∥∥∥∥hΨt+1

t − λ

m
∇f

Ψt+1

θ (zt)

∥∥∥∥
2

. (21)

Due to

∇f
Ψt+1

θ (zt) =
m∑
i=1

(√
|aT

i zt|2 + θ2i −
√

y2i + θ2i√
|aT

i zt|2 + θ2i

)
(aT

i zt)ai,

and let

L =

√
|aT

i zt|2 + θ2i −
√
y2i + θ2i√

|aT
i zt|2 + θ2i

.

Next, we will abbreviate L. When the difference between
the two values |aT

i zt|2 and y2i becomes small after adding
the bias term θ2i , the nonlinear effects of the square root
function will diminish. Therefore, assume two proximate
values p = |aT

i zt|2 + θ2i and q = y2i + θ2i . Given that p

and q are close to each other, we can simplify the expression
by performing a Taylor expansion of f(x) =

√
x. In other

words, within the term L, we can approximate the function
f(x) =

√
x expanded at p = |aT

i zt|2 + θ2i to evaluate it at
q = y2i + θ2i .

Thus, by substituting into the first-order Taylor expansion,
we have:

√
q ≈ √

p+
1

2
√
p
(q − p).

Then, integrating equations p = |aT
i zt|2+θ2i , q = y2i +θ2i

and ai ∈ Rn, hence:

√
(aT

i zt)2 + θ2i −
√
y2i + θ2i =

((aT
i zt)

2+θ2
i−(y2

i+θ2
i ))

2
√

(aT
i zt)2+θ2

i

.

Because
√
(aT

i zt)2 + θ2i > 0, divide both sides by:

√
(aT

i zt)2+θ2
i−

√
y2
i+θ2

i√
(aT

i zt)2+θ2
i

= 1
2
(aT

i zt)
2+θ2

i−(y2
i+θ2

i )

(aT
i zt)2+θ2

i
.

In summary, it follows that:

L =

√
(aT

i zt)2 + θ2i −
√
y2i + θ2i√

(aT
i zt)2 + θ2i

≈ (aT
i zt)

2 + θ2i − (y2i + θ2i )

(aT
i zt)2 + θ2i

.

From inequality a2 + b2 ≥ 2ab, then (aT
i zt)

2 + θ2i can
be simplified to (aT

i zt)
2 + θ2i ≥ 2(aT

i zt)θi. Similarly, we
have:

L ≥ 2(aT
i zt)θi − 2yiθi
2(aT

i zt)θi
=

(aT
i zt)− yi
(aT

i zt)
.

Also because ht = zt − x, as a result:

L =
aT
i ht

aT
i ht + aT

i x
. (22)

Substitute (22) into ∇f
Ψt+1

θ (zt):

∇f
Ψt+1

θ (zt) =
m∑
i=1

(
aT
i ht

aT
i ht + aT

i x

)
aT
i (ht + x)a

Ψt+1

i

=
m∑
i=1

(
aT
i ht

aT
i ht + aT

i x

)(
aT
i ht + aT

i x
)
a
Ψt+1

i

=
m∑
i=1

aT
i hta

Ψt+1

i . (23)

The expression in (21) can be rewritten as:

∥ht+1∥2 ≤ 2

∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

aT
i hta

Ψt+1

i

∥∥∥∥∥
2

. (24)

We can split aT
i hta

Ψt+1

i into two parts:

aT
i hta

Ψt+1

i = a
T,Ψt+1

i h
Ψt+1

t a
Ψt+1

i

− a
T,Ψt/Ψt+1

i h
Ψt/Ψt+1

t a
Ψt+1

i . (19)
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As a result:

∥ht+1∥2 ≤ 2

∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

aT
i hta

Ψt+1

i

∥∥∥∥∥
2

= 2

∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

a
T,Ψt+1

i h
Ψt+1

t a
Ψt+1

i

− λ

m

m∑
i=1

a
T,Ψt/Ψt+1

i h
Ψt/Ψt+1

t a
Ψt+1

i

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

a
T,Ψt+1

i h
Ψt+1

t a
Ψt+1

i

∥∥∥∥∥
2

+ 2
λ

m

∥∥∥∥∥
m∑
i=1

a
T,Ψt/Ψt+1

i h
Ψt/Ψt+1

t a
Ψt+1

i

∥∥∥∥∥
2

. (25)

As for the first term of (25), it is simple to confirm that:∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

a
T,Ψt+1

i h
Ψt+1

t a
Ψt+1

i

∥∥∥∥∥
2

=

∥∥∥∥∥
(
I − λ

m

m∑
i=1

a
T,Ψt+1

i a
Ψt+1

i

)
h
Ψt+1

t

∥∥∥∥∥
2

≤

∥∥∥∥∥I − λ

m

m∑
i=1

a
T,Ψt+1

i a
Ψt+1

i

∥∥∥∥∥
2

∥hΨt+1

t ∥2

≤ max{1− λτ, λτ − 1}∥hΨt+1

t ∥2, (26)

where τ and τ are the largest eigenvalue and smallest
eigenvalue of 1

m

∑m
i=1 a

Ψt+1

i a
T,Ψt+1

i respectively.
Next, we estimate eigenvalues τ and τ respectively.

Because |Ψt+1| ≤ 2k, from P1 of the RIP, it is clear that:

τ = τmax

(
1

m

m∑
i=1

a
Ψt+1

i a
T,Ψt+1

i

)
≤ 1 + ω2k (27)

τ = τmin

(
1

m

m∑
i=1

a
Ψt+1

i a
T,Ψt+1

i

)
≥ 1− ω2k (28)

Applying the results of (27) and (28) to (26):∥∥∥∥∥hΨt+1

t − λ

m

m∑
i=1

a
T,Ψt+1

i a
Ψt+1

i h
Ψt+1

t

∥∥∥∥∥
2

≤ max{1− λ(1− ω2k), λ(1 + ω2k)− 1}∥hΨt+1

t ∥2. (29)

Concerning the last term of (25), given that |Ψt+1 ∪Ψt| ≤
3k and from P2 of the RIP, then:∥∥∥∥∥ 1

m

m∑
i=1

a
T,Ψt/Ψt+1

i a
Ψt+1

i h
Ψt/Ψt+1

t

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

m

m∑
i=1

a
Ψt+1

i a
T,Ψt/Ψt+1

i

∥∥∥∥∥
2

∥∥∥hΨt/Ψt+1

t

∥∥∥
2

≤

∥∥∥∥∥I − 1

m

m∑
i=1

a
Ψt∪Ψt+1

i a
T,Ψt∪Ψt+1

i

∥∥∥∥∥
2

∥∥∥hΨt/Ψt+1

t

∥∥∥
2

≤ ω3k

∥∥∥hΨt/Ψt+1

t

∥∥∥
2
. (30)

By substituting (25) with (29) and (30) can be obtain:

∥ht+1∥2 ≤2max {1− λ(1− ω2k), λ(1 + ω2k)− 1}

∥hΨt+1

t ∥2 + 2λω3k∥hΨt/Ψt+1

t ∥2,

Fig. 1. Comparison of the convergence rate for different algorithms in
real-valued case.

because Ψt+1 ∩ (Ψt/Ψt+1) = ∅, then:

∥hΨt+1

t ∥2 + ∥hΨt/Ψt+1

t ∥2 ≤
√
2∥ht∥2.

So, we have

∥ht+1∥2 (20)
≤2max{1− λ(1− ω2k), λ(1 + ω2k)− 1}

∥hΨt+1

t ∥2 + 2λω3k∥hΨt/Ψt+1

t ∥2
≤2

√
2max {max{1− λ(1− ω2k), λ(1 + ω2k)− 1}, λω3k}

∥ht∥2
=α∥ht∥2, (31)

where α < 1.
For sufficiently small ω3k > 0, we have ρ = 1 − α and

ρ ∈ (0, 1), thus establishes the result of linear convergence.
□

V. NUMERICAL RESULTS

This section systematically tests the accuracy of theoretical
derivation through multiple sets of numerical simulations.
The comparison between the SPAF algorithm and other
state-of-the-art gradient descent methods, containing SWF,
SRThWF, SPARTA, PAF, SAF, and TAF algorithms. All
experiments are completed in a 64-bit Windows 10 operating
system environment equipped with an Intel Corei5-8250U
processor and 8GB of memory, and MATLAB R2022a.
Both real-valued and complex-valued Gaussian models
are evaluated. To ensure fair comparison, the algorithmic
parameters for all methods are assigned to the recommended
values. Initialization for each method is achieved through
100 power iterations, followed by refinement with T = 1000
gradient descent iterations.

Regarding common notations used in this paper. Vectors
are denoted using boldface lowercase letters, and matrices
are represented by bold uppercase letters, with T standing
for the transpose of a vector or matrix. ∥ · ∥ is the Euclidean
norm. We define the distance between two vectors:

dist(x,z) = min
ϕ∈[0,2π)

∥z − xeiϕ∥.
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Fig. 2. Comparison of convergence rate for different algorithms in
complex-valued case.

TABLE I
THE RUNNING TIMES OF DIFFERENT ALGORITHMS.

Algorithms Real case Complex case

PAF 3.87 -
SPARTA 0.39 1.63
TAF 4.21 -
SRThWF 2.16 16.17
SWF 2.62 16.82
SAF 2.10 -
SPAF 0.28 0.95

A. convergence experiment

To verify the convergence of the algorithm, the relative
error of both real-valued and complex-valued signals
are plotted against the iteration counts under noiseless
conditions. The signal length in this experiment is set to
n = 1000, with sparsity k = 10 and a sampling rate
of m/n = 3, and a total of 1000 trials are performed.
For real-valued signals (see Fig. 1), the SPAF algorithm
achieves an accuracy of 10−15 after 17 iterations, while the
SPARTA algorithm requires 21 iterations. To achieve the
same accuracy, other algorithms need to undergo more than
80 iterations.

In the context of complex-valued signals, we compare
SPAF algorithm with other methods (see Fig. 2). With a
fixed iteration count of T = 1000, the SAF, PAF and TAF
algorithms fail to achieve 10−15 accuracy, showing their
limitations in dealing with complex-valued signals. As shown
in Fig. 2, the proposed algorithm reaches convergence with
the fewest iterations in the complex-valued case.

Table I presents the time required by each algorithm to
reach a relative error of 10−15, with the optimal values
highlighted in bold. The results demonstrate that the SPAF
algorithm achieves convergence more rapidly, achieving the
target accuracy with less computational cost.

B. Empirical success rate of sparsity

To investigate SPAF algorithm for recover signals with
varying levels of sparsity under a fixed number of
measurements. Specifically, the sparsity k is varied between
from 10 to 100 in real-valued case. And from 10 to 60
in complex-valued case, as some algorithms fail at higher
sparsity levels. The length of signal is fixed at n = 1000
and the measurement ratio is m/n = 1.5. The proposed

Fig. 3. Comparison of different sparsity selections k on signal recovery
success rates in real-valued case.

algorithm is compared with several advanced sparse phase
retrieval algorithms.

For real-valued case in Fig.3, all algorithms exhibit
that the success rate of algorithms gradually decreases as
sparsity k increases, reflecting that recovery becomes more
difficult. However, even when k approaches 100, the SPAF
algorithm maintains a success rate of approximately 65%,
while the success rate of other algorithms falls below
this threshold. This demonstrates that the SPAF algorithm
effectively addresses signal recovery even in high sparsity
scenarios.

For the complex-valued case, the experimental results
are shown in Fig.4. Due to the complexity of recovering
complex-valued signals, the success rate of the algorithms is
lower compared to their performance on real-valued signals.
At lower sparsity levels, all algorithms achieve relatively
high success rates. However, when k ≥ 30, the success rate
of the SPTHWF algorithm decreases rapidly and eventually
approaches zero. In contrast, the SPAF algorithm consistently
outperforms others under various sparsity conditions. These
results further demonstrate the significant advantages of the
SPAF algorithm in complex-valued signal recovery case.

C. Comparison of empirical success rate

To validate the recovery success rate of the SPAF
algorithm for various m/n values, the empirical success
rate is compared with those algorithms from noiseless
Gaussian models. Each success rate is determined from 100
independent Monte Carlo experiments, where the NMSE
value is used as the criterion:

NMSE :=
∥zT − x∥

∥x∥
.

When the NMSE is below 10−5, a trial is considered
successful. The signal dimension is specified as n = 1000,
sparsity level is k = 10, the value of m/n is increased from 0
to 3 in real case and from 0 to 4 in complex case. As shown in
Fig. 5, while the SPAF algorithm does not achieve the highest
success rate for real-valued signals, it can also recover the
signal more accurately under fewer measurement values.
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Fig. 4. Comparison of different sparsity selections k on signal recovery
success rates in complex-valued case.

Fig. 5. The recovery success rates for various algorithms in real-valued
case.

In contrast, as depicted in Fig. 6, the proposed algorithm
demonstrates superior performance compared to the other
algorithms in the complex case. When m/n = 0.6, the SPAF
algorithm achieves the empirical success rate of over 95%,
while the sub-optimal SPARTA algorithm reaches only 87%.
This also shows the effectiveness of the proposed algorithm
in complex-valued case.

Compared with SPARAF or SRThWF algorithms, these
algorithms adopt truncation/reweighting to avoid too large or
too small gradient component in iterative process. However,
these analyses heavily depend on on each element having
a sign equal to 1 or -1, making it difficult to scale to
complex cases. So, the SPAF algorithm directly addresses
the non-smooth nature of the loss function and effectively
avoids corrupted search directions. As a result, the proposed
algorithm shows excellent performance in complex-valued
case.

Fig. 6. The recovery success rates for various algorithms in complex-valued
case.

Fig. 7. NMSE vs SNR for SPAF in real-valued case.

D. Noise robustness evaluation

To evaluate the robustness of the SPAF algorithm under
additive noise, the NMSE is plotted as a function of the
signal-to-noise ratio (SNR) for different values of m/n. The
Gaussian noise is defined as:

yi =
∣∣⟨ai,x⟩

∣∣+ ηi,

where ηi is given by the following formula, that is:

SNR = 10 log10

m∑
i=1

|⟨ai,x⟩|2

mσ2
.

The SNR ranges from 0 dB to 50 dB. From Fig. 7, it
can be observed that when m = n, m = 2n and m = 3n
in the real-valued Gaussian model, the curves exhibit a
monotonically decreasing trend. This indicates that as SNR
increases, the NMSE value decreases, leading to reduced
signal recovery error. Therefore, the SPAF algorithm’s
resilience to additive noise is demonstrated. A similar trend
is observed in Fig. 8 for complex-valued Gaussian model,
where the NMSE consistently decreases with increasing SNR
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Fig. 8. NMSE vs SNR for SPAF in complex-valued case.

for m = 3n, m = 4n, and m = 5n. All of these results
confirm the noise robustness of the SPAF algorithm.

VI. CONCLUSION

This paper proposes the Sparse Perturbed Amplitude Flow
(SPAF) algorithm for phase retrieval of sparse signals. This
algorithm incorporates smoothing parameters into the loss
function to avoid excessively large or small components
in gradient iterations, thus reducing complexity caused by
inconsistent search directions. It first constructs a sparse
support domain, then initializes value is obtained through
sparse orthogonal initialization, and finally achieves the exact
solution via hard thresholding iterations. Theorem 1 proves
global convergence of SPAF algorithm. The SPAF algorithm
requires no truncation or reweighting processes, making it
is simple to implement and effective for both real and
complex signals. Multiple experimentals prove that the SPAF
algorithm surpasses the existing mainstream methods in both
reconstruction accuracy and computational efficiency.

Future work can extend sparse phase retrieval to
two-dimensional or multi-dimensional cases and incorporate
deep learning, particularly convolutional neural networks,
may enhance recovery performance of signal and image.
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