
 

 
Abstract—Sarcasm, a linguistic phenomenon where negative 

feelings are expressed through positive literal meanings and vice 

versa, is often used as a coping mechanism or subtle 

commentary on hardships. While sarcasm is a common way to 

express negativity through seemingly positive statements, its 

detection in Indonesian social media, particularly regarding 

user irritation with slow internet connectivity, remains 

challenging. This paper tackles the challenge of detecting 

sarcasm in imbalanced datasets by the utilization of 

Bidirectional Long Short-Term Memory (BiLSTM) model with 

optimized hyperparameters and oversampling techniques. The 

dataset exhibited a significant class imbalance. Oversampling is 

necessary, with Random Over Sampling (ROS) being the most 

effective for handling sarcasm. Optimal hyperparameters for 

the BiLSTM model are determined, including 128 neurons in the 

BiLSTM layer, Adam optimizer, dropout rate of 0.3, batch size 

of 16, 32 neurons in the dense layer, and 0.0001 as the learning 

rate, resulting in excellent F1-score, accuracy, precision, and 

recall for sarcastic and non-sarcastic instances. The selected 

hyperparameter configuration achieves 97.40% accuracy, 

demonstrating its effectiveness in predicting both classes. This 

research improves the comprehension of sarcasm identification 

in Indonesian social media and presents potential for sentiment 

analysis in the digital space.  

 
Index Terms—BiLSTM, imbalanced data, sarcasm, text 

classification 

I. INTRODUCTION 

HE widespread internet adoption in Indonesia reached 

remarkable heights, with 215.63 million users recorded 

in 2022–2023, constituting approximately 78.19% of the total 

population [1]. However, despite this exponential growth, 

challenges persist in providing equitable and quality internet 

connectivity, as evidenced by Indonesia's rank of 120 out of 

180 countries in terms of internet download speeds [2]. The 

rise of digital environments has led to a greater prevalence of 

sarcasm on online networks, where individuals resort to 

expressing their frustration [3], [4], particularly in response 

to the challenges posed by low internet speeds in the country.  

Sarcasm, a form of nonliteral and figurative language, 

enables individuals to convey negative emotions through 

words that have positive literal meanings, and conversely [5]. 

This linguistic phenomenon often arises as a coping 

mechanism or a subtle expression in response to challenges 

[6], such as the frustration induced by slow internet speeds in 

Indonesia. While using sarcasm on social media may serve to 

navigate platform guidelines subtly, interpreting sarcasm 

remains a complex task due to its inherent nuances and 

context-dependent nature [7]. 

In the context of business in Indonesia, companies have 

been focusing on analyzing customer sentiment towards 

products. Recognizing that sarcasm can cause bias in 

sentiment analysis, it is crucial to analyze sarcasm detection 

carefully. This step is taken to obtain more accurate sentiment 

analysis results and provide deeper insights into customer 

perceptions of products. By doing so, companies can respond 

more appropriately to customer feedback, improve product 

quality, and strengthen consumer relationships. 

Researchers have conducted several studies using machine 

learning methods in text analysis. The methods include 

Support Vector Machine (SVM) [8], [9], Naïve Bayes 

method [8], [10], Decision Tree method [10], Random Forest 

method [11], and Bidirectional Long Short-Term (BiLSTM) 

method [5], [7], [12]. 

Previous research commonly employed various feature 

extractors, including TF–IDF, Word2Vec, and BoW, along 

with conventional machine learning algorithms for sentiment 

classification. Nevertheless, these models frequently 

encountered obstacles, including low accuracy as a result of 

imbalanced class distribution, inaccurate preprocessing 

techniques, and high-dimensional feature vectors [13]. 

BiLSTM, especially with attention mechanism, emerges as a 

prominent method for addressing the complexity of sarcasm 

in intricate sentence structures and ambiguous meanings [14]. 

In order to comprehend text representations, BiLSTM 

implements a bidirectional LSTM network. Considering 

forward and backward directions, the model's understanding 

of textual structures and meanings is improving [15], [16]. 

Previous studies have highlighted the efficacy of BiLSTM 

in text classification tasks, particularly in handling large 

volumes of textual data. Notable research by [17] 

demonstrated that BiLSTM outperformed other deep learning 

algorithms, including LSTM, in textual data classification, 

achieving an accuracy of 92%. Similarly, the study by [18] 

comparing LSTM and BiLSTM for sarcasm detection found 

that BiLSTM exhibited superior performance with an 

accuracy of 82.55%, surpassing the 81.90% accuracy 

achieved by standard LSTM. Given the consistent support for 

the effectiveness of BiLSTM in text classification with higher 

accuracy, this study adopts the BiLSTM method for its 
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analysis. 

The acquired sarcasm data from Indonesian social media 

displays an unequal distribution of documents among the 

different labels. This imbalance introduces the risk of the 

BiLSTM model inadequately learning both the "sarcastic" 

and "non-sarcastic " labels. Therefore, this research aims to 

address the data imbalance to improve the performance of the 

BiLSTM framework. Three techniques, such as ROS 

(Random Over Sampling), ADASYN (Adaptive Synthetic 

Sampling), and SMOTE (Synthetic Minority Over-sampling 

Technique), are utilized to address the imbalance. 

Subsequently, a comparative analysis will be performed to 

ascertain the most effective balancing method.  

This study aims to enhance sarcasm detection by 

employing three oversampling techniques (SMOTE, 

ADASYN, and ROS) and tuning hyperparameters in the 

BiLSTM model. By improving the BiLSTM architecture, the 

research seeks to deepen the understanding of sarcasm in 

texts and its applications in communication and sentiment 

analysis. The goal is to overcome challenges related to literal 

and hidden meanings in the text, ultimately improving 

sentiment analysis accuracy in the Indonesian digital 

landscape. 

The organization of the paper is as follows: Section II 

outlines the materials and methods, Section III presents the 

experimental results and analysis, Section IV contains the 

discussion, and the final section concludes the paper. 

II. METHODOLOGY OF RESEARCH 

The methods and dataset utilized in this research are 

comprehensively detailed in this section.  As follows, the 

dataset, methods, and analytical workflow are all introduced.  

2.1. Data Collection 

The foundational dataset for this investigation originated 

from comments from customers regarding Indonesia's most 

prominent internet service providers on Twitter, including 

Indihome, MNC Play, First Media, Biznet, and MyRepublic. 

The observational timeframe spanned from July 1, 2023, to 

July 31, 2023, generating 17,768 comments, which 

constituted the primary focus of analysis in this study. This 

data collection was done with the help of a Ripple10 

dashboard that can only be accessed by certain companies. 

The data labeling process for classifying comments into 

“sarcasm” and “non-sarcasm” categories was executed 

manually. Comments exhibiting elements of sarcasm were 

designated with the label (1), while those devoid of sarcasm 

received the label (0). 

2.2. Text Preprocessing 

Text preprocessing was an essential initial stage to make 

textual data comprehensible and effectively processed by text 

mining systems. This process, as emphasized by [19], was 

instrumental in influencing the quality of analytical 

outcomes. The objective of preprocessing was to convert 

textual data that is unstructured into a more structured format, 

ensuring that the resulting text information was of high 

quality and ready for subsequent stages [20]. The process (see 

Fig. 1) included cleaning, which involved the removal of 

characters to reducing noise [21]. Case folding was 

subsequently utilized to transform characters into lowercase, 

thereby standardizing the writing and improving the accuracy 

of text classification [22]. Tokenizing divides the text into its 

smallest components, words, in order to ready the data for 

examination [23]. Spelling normalization entails the 

correction or substitution of words containing spelling errors 

or particular abbreviations within text data, whereas stopword 

removal involves the elimination of less significant words to 

emphasize more informative terms [24]. Stemming is a 

procedure that eliminates affixes and organizes phrases with 

a common base form, and increases the number of documents 

retrieved through search and indexing systems [25]. Text 

classification requires transforming unstructured natural 

language into numerical values [26]. The subsequent phase 

involved word embedding, in which words were represented 

as vectors to represent their semantic and syntactic meanings 

[27], given its exceptional performance in classifying text 

data, FastText was selected for this study. 

 

 
Fig. 1. Text Preprocessing Steps 

 

2.3. Imbalanced Classification 

Imbalanced class pertained to a dataset characterized by an 

uneven distribution of class frequencies, where the category 

with the highest occurrence was denoted as the majority, and 

the one with a comparatively lower occurrence was labeled 

as the minority [28]. This disparity in class proportions posed 

inherent challenges, as machine learning algorithms 

primarily acquire information from the majority class, 

potentially compromising their performance, especially in the 

context of minority classes [29]. The repercussions of such 

imbalances manifested in a decline in the model's 

effectiveness in precisely identifying and categorizing 

samples from the minority class [30]. Table I below illustrates 

the extent of the imbalance in the proportion of minority 

classes, according to Google for Developers [31]. 

 
TABLE I 

DEGREE OF IMBALANCE 

Degree of Imbalance Proportion of Minority Class 

Mild 20–40% of the data set 

Moderate 1–20% of the data set 

Extreme < 1% of the data set 

 

Consequently, addressing this issue became imperative for 

robust model development. These studies adopted a 

comprehensive approach to address the intricacies associated 

with imbalanced data by incorporating three distinct 

oversampling techniques: ROS, SMOTE, and ADASYN. 

2.3.1. Random Over Sampling (ROS) 

The approach of ROS involves iterating through specific 

cases and randomly introducing additional observations into 
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the minority class. However, a notable drawback of this 

method is its potential to induce overfitting by replicating 

minority instances without intelligent consideration [32]. In 

Fig. 2, the majority and minority classes are denoted by black 

and gray bars, respectively. Strategy is grounded in a simple 

application of the distribution hypothesis, assuming that 

semantically equivalent terms can be predicted to exist in 

related documents, such as texts from the minority class. 

 

 
Fig. 2. Illustration of Random Over-Sampling (modified from [33]) 

 

2.3.2. SMOTE (Synthetic Minority Over-sampling 

Technique) 

SMOTE is an oversampling method that generates 

synthetic observations between neighboring minority 

instances. A key advantage of SMOTE over the ROS method 

is its ability to address the overfitting issue in machine 

classification models. SMOTE achieves this by creating 

synthetic points along straight lines between locations, 

randomly determining feature vectors and their nearest 

neighbors in the minority class, and generating 

supplementary data points through the multiplication of 

random values within the range of 0 to 1.  The synthetic data 

is incorporated into the training set to improve model 

training. However, there are two significant limitations 

associated with this method: its inefficiency in managing 

high-dimensional data and tends to produce synthetic data 

without taking into account examples from other classes, 

potentially leading to more noisy data due to class overlap. 

Fig. 3 below illustrates the SMOTE method, where white 

circles represent the minority (positive) classes and gray 

circles depict the majority classes. SMOTE creates a 

synthetic positive sample within the minority class, 

represented by black circles between white circles. The 

combination of original and generated positive samples forms 

the minority group, bringing the majority and minority 

classes into closer proximity. 

 

 
Fig. 3. Illustration of SMOTE Oversampling (modified from [34]) 

 

2.3.3. ADASYN (Adaptive Synthetic Sampling) 

An alternative approach to synthetic data sampling is the 

ADASYN method. Its primary aim is to achieve a balanced 

distribution of data categories by dynamically creating 

samples within the minority class, guided by a specified level 

of balance in the distribution. The algorithm has two primary 

objectives: firstly, determining the necessary number of 

samples for every instance within the minority class, and 

secondly, prompting algorithms for machine learning to 

identify or understand difficult instances. The utilization of 

the ADASYN approach enhances classification performance 

by mitigating the bias introduced by the original imbalanced 

dataset, as depicted in Fig. 4. Furthermore, as ADASYN 

increases the level of balance, there is a noticeable trend 

toward reducing errors. 

 

 
Fig. 4. ADASYN algorithm for different β coefficients (modified from [35]) 

 

2.4. Bidirectional Long Short-Term Memory (BiLSTM) 

LSTM was developed to address the issue of vanishing 

gradients, utilizing forget gates, input gates, and output gates 

to regulate information retention and elimination. While 

LSTM involves complex calculations and high computation, 

this study explores an alternative method, BiLSTM, with 

simpler computation yet comparable performance. The 

architecture of LSTM is provided in Fig. 5. 

 

 
Fig. 5. LSTM Architecture  

 

The LSTM architecture connects the prior cell state (𝐶𝑡−1) 

to the current cell state (𝐶𝑡), establishing a pathway that 

facilitates the seamless transfer of information between 

consecutive time steps.  The cell state functions as a memory, 

capable of retaining information for extended durations. 

LSTM consists of three primary gates: the input gate, the 

output gate, and the forget gate [36]. Input gate controls the 

incorporation of new data into the cell state, while the output 

gate determines which data will be produced as output from 

the information that is not forgotten and the information from 
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the input gate in the cell state. Forget Gate controls whether 

the old information will be ignored or remain relevant for the 

following process. 

BiLSTM addresses a limitation in recurrent neural 

networks (RNN) and LSTM models. Unlike these models, 

where information flows only forward, a bidirectional LSTM 

(BiLSTM) is made up of two LSTMs: one that processes past 

data sequentially and another that processes future data in 

reverse order [37]. This bidirectional approach allows for 

storing text information in both directions and supports 

further training procedures, leading to improved 

performance. The outputs of both LSTM networks are 

integrated for every time sequence. 

 

 
Fig. 6. Deep Learning Layer using BiLSTM  

 

Fig. 6 outlines the structure of BiLSTM, demonstrating 

that the forward layer adheres to the conventional sequence 

of a standard LSTM network, whereas the backward layer 

processes in the opposite direction. The forward layer 

computes the sequence of 𝑡 −  1, 𝑡, and 𝑡 +  1. In contrast, 

with the backward layer, output and hidden layer go from 𝑡 +

 1 to 𝑡 then to 𝑡 −  1. (ℎ𝑡
⃗⃗  ⃗)  represent the forward layer and  

(ℎ𝑡
⃖⃗ ⃗⃗ ) represent backward layer. As per [38], The mechanisms 

underlying both the forward and backward LSTM networks 

can be formally articulated as follows. 

 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1)  (1) 

 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡+1)  (2) 

 

As described in Fig. 6, The hidden layer are connected 

through bidirectional pathways—moving forward and 

backward—culminating in the generation of an output.  The 

output value is calculated using the following equation.  

 

𝑦𝑡 = 𝑈𝑦ℎ𝑡
⃗⃗  ⃗ + 𝑊𝑦ℎ𝑡

⃖⃗ ⃗⃗ +  𝑏𝑦  (3) 

 

Let 𝑦𝑡 represent the final output value, with 𝑈𝑦  and 𝑊𝑦 

denoting the weight values for the output gate applied to ℎ𝑡
⃗⃗  ⃗ 

and ℎ𝑡
⃖⃗ ⃗⃗ , respectively.  

2.5. Evaluation 

Assessing the performance of the developed model was 

essential to ensure its quality. In this study, evaluation was 

conducted using the Confusion Matrix method, a widely 

adopted approach to assess how well binary classification 

models perform [39]. A Confusion Matrix serves as a tabular 

tool for assessing how a classification model performs in 

binary classification tasks by comparing predicted outcomes 

with actual labels [40]. This approach offers important 

information regarding the model’s performance metrics, 

including precision, recall, accuracy, and the F1-score, 

helping to determine its overall effectiveness. 

 
TABLE II 

CONFUSION MATRIX 

 
Predicted Label 

Sarcastic (1) Non-Sarcastic (0) 

True 

Label 

Sarcastic (1) 𝑇𝑃 𝐹𝑁 

Non-Sarcastic (0)  𝐹𝑃 𝑇𝑁 

 

Referring to Table II above, the classification outcomes 

produced by the model are assessed against the actual labels 

using a confusion matrix, which consists of four components: 

True Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN). Through this matrix, various 

performance indicators—including precision, recall, 

accuracy, and F1-score—can be calculated to provide a 

thorough evaluation of how well the model performs [41]. 

Accuracy measured how accurately the model classified 

the entire dataset. Recall measures how many of the actual 

positive instances were correctly identified, calculated as the 

ratio of true positives to the total number of actual positives. 

Precision, on the other hand, assesses the accuracy of positive 

predictions by computing the ratio of true positives to the 

total predicted positives. The F1-Score represents a harmonic 

mean that balances both precision and recall [42]. The 

standard equations used to compute accuracy, recall, 

precision, and F1-Score, all derived from the confusion 

matrix, are provided below. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
  (4)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁 
   (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
   (6) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

III. RESULTS  

3.1. Text Preprocessing 

Preprocessing is crucial for allowing textual information to 

be understood and handled effectively by text analysis 

systems. Table III below presents the text preprocessing steps 

undertaken. 
TABLE III 

TEXT PREPROCESSING 

Process Result 

Input 
Sumpah dah indihome knp sih? udh 3 hari ini 

lelet bgt jaringannya        

Cleaning 
Sumpah dah indihome knp sih udh hari ini lelet 

bgt jaringannya 

Case Folding 
sumpah dah indihome knp sih udh hari ini lelet 

bgt jaringannya 

Tokenizing 
['sumpah', 'dah', 'indihome', 'knp', 'sih', 'udh', 

'hari', 'ini', 'lelet', 'bgt', 'jaringannya'] 

Spelling 

Normalization 

['sumpah', sudah, 'indihome', kenapa, 'sih', 

sudah, 'hari', 'ini', lambat, sekali, 'jaringannya'] 

Stopword Removal ['indihome', 'lambat', 'jaringannya'] 

Stemming ['indihome', 'lambat', 'jaring'] 
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Following Table III, text preprocessing is done by 

including several steps, such as data cleaning involves 

eliminating elements like hashtags, web links, user mentions, 

and special characters to generate raw content. Subsequently, 

case folding involves converting every character in the text 

into lowercase letters, boosting the precision of text 

categorization and maintaining uniformity across the dataset. 

Tokenizing, which breaks text into words based on space 

delimiters, serves to prepare the data for easy computer 

reading, while spelling normalization involves correcting or 

replacing words with spelling errors or abbreviations. 

Stopword removal eliminates words that lack significant 

contribution to analysis through the NLTK library, whereas 

stemming removes affixes to yield base words utilizing the 

Sastrawi library.  The steps outlined are designed to 

streamline the data, enhance its quality, and ready the textual 

information for subsequent analysis. 

3.2. Imbalanced Data 

Imbalanced data denotes a data set characterized by an 

unequal distribution of its classes. The majority is the class 

with the greatest number, while the class with a lower number 

is called the minority.  

This situation can be problematic as data imbalance can 

result in the model tending to learn more about the majority 

data, which can have an impact on the model's efficacy, 

particularly when applying it to minority classes. The impact 

of this imbalance is a decrease in model performance in 

recognizing and classifying minority data. 

 

 
Fig. 7. Class Distribution 

 

In the present investigation, a salient observation emerged 

from the data distribution depicted in Fig. 7, where the 

minority class was represented by a mere 1,256 instances, 

forming approximately 7.07% of the entire dataset. This stark 

class imbalance underscored the necessity for deliberate and 

effective strategies to rectify the unbalanced distribution. 

Three oversampling techniques were employed 

systematically to augment minority-class instances. 

Subsequently, they were combined within the framework of 

the BiLSTM model.  

Subsequently, these oversampling techniques were 

systematically integrated with a set of fundamental 

hyperparameters within the framework of the BiLSTM 

model. These hyperparameters, encompassing a dropout rate 

of 0.1, an optimizer set to Adam, 32 neurons in the dense 

layer, 32 neurons in the BiLSTM layer, a batch size of 16, 

and a learning rate of 0.01, were then randomized and 

combined during the BiLSTM Testing with Hyperparameter 

Tuning phase. However, it is essential to clarify that this step 

was exclusively focused on determining the most effective 

oversampling technique for the model without engaging in 

the comprehensive hyperparameter tuning process at this 

stage. This approach ensured that the impact of each 

oversampling technique could be assessed independently, 

providing a clearer understanding of its contribution to model 

performance. The subsequent phases of experimentation 

would further refine hyperparameter configurations to 

optimize the overall effectiveness of the BiLSTM model. 

 
TABLE IV 

RESULTS OF BILSTM TESTING WITH OVERSAMPLING TECHNIQUES 

Over-

sampling 

Technique 

Label Precision Recall 
F1-

Score 
Accuracy 

SMOTE 

Non-

Sarcastic 
87.4% 82.3% 84.8% 

85.2% 

Sarcastic 83.3% 88.2% 85.6% 

ADASYN 

Non-

Sarcastic 
84.6% 83.5% 84.0% 

84.0% 

Sarcastic 83.5% 84.6% 84.0% 

ROS 

Non-

Sarcastic 
99.2% 90.1% 94.5% 

94.7% 

Sarcastic 90.9% 99.3% 94.9% 

 

The efficacy metrics of BiLSTM testing with various 

oversampling techniques are delineated in Table IV, focusing 

on recall, precision, and F1-score for sarcastic and non-

sarcastic labels. Among the oversampling methods 

employed, ROS stood out with notably superior results, 

particularly in addressing the classification of sarcastic 

instances. For sarcastic instances, ROS achieved a recall of 

99.3%, a precision of 90.9%, and a F1-score of 94.9%. 

Comparatively, SMOTE and ADASYN exhibited slightly 

lower performance metrics for the sarcastic class. The overall 

accuracy score further reinforced the efficacy of ROS, as it 

attained the highest accuracy (94.7%) among the 

oversampling techniques evaluated. Consequently, based on 

these comprehensive evaluation results, the researcher opted 

for ROS as the preferred oversampling method for its 

exceptional performance in handling sarcastic instances 

within the BiLSTM model.  

3.3. Results of the BiLSTM Model 

After the preprocessing phase, the dataset underwent a 

meticulous division into three distinct subsets: 80% of the 

data is designated for training, 10% for validation, and the 

remaining 10% is for testing. Following this preparatory 

phase, the BiLSTM was subjected to rigorous evaluation. The 

crux of this evaluation rested on exploring various 

hyperparameter combinations within the BiLSTM model, 

aiming to identify the optimal set that yielded the most 

favorable performance metrics. 

 
TABLE V 

BILSTM PARAMETER 

Parameter Value 

BiLSTM Layer Neurons 32, 64, 128 

Dense Layer Neurons 32, 64, 128 

Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5 

Optimizer Adam 

Learning Rate 0.01, 0.001, 0.0001 

Batch Size 16, 32, 64, 128 

Epochs 100 
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Notably, the predetermined values for these 

hyperparameters, as specified in Table V, played a crucial 

role in guiding the extensive testing regimen. The training 

process will undergo the EarlyStopping function, striking a 

balance between model convergence and the prevention of 

overtraining. This methodological framework facilitated a 

comprehensive exploration of the BiLSTM model's 

hyperparameter landscape, ultimately guiding the selection of 

the most optimal parameter combination through evaluation. 

 
TABLE VI 

BEST 10 RESULTS OF BILSTM TESTING WITH HYPERPARAMETER TUNING 

Hyperparameter Precision Recall F1-Score Accuracy 

HP-01 95.12% 99.93% 97.47% 97.40% 

HP-02 94.80% 99.72% 97.20% 97.13% 

HP-03 94.73% 99.52% 97.06% 96.99% 

HP-04 94.90% 99.31% 97.06% 96.99% 

HP-05 94.90% 99.31% 97.06% 96.99% 

HP-06 94.19% 100.00% 97.01% 96.92% 

HP-07 94.31% 99.86% 97.01% 96.92% 

HP-08 94.31% 99.79% 96.97% 96.88% 

HP-09 94.07% 100.00% 96.95% 96.85% 

HP-10 95.13% 98.82% 96.94% 96.88% 

 

Table VI presents the top 10 BiLSTM results based on 

hyperparameter tuning, identified by unique configuration 

IDs. Table VII provides a comprehensive reference for each 

configuration, detailing the specific hyperparameter values 

used in the experiments. 

 
TABLE VII 

HYPERPARAMETER REFERENCE FOR TOP 10 BILSTM CONFIGURATIONS 

ID 
Batch 

Size 

BiLSTM 

Neurons 

Dropout 

Rate 
LR 

Dense 

Neurons 
Optimizer 

HP-01 16 128 0.3 0.0001 32 Adam 

HP-02 32 128 0.1 0.0001 128 Adam 

HP-03 16 64 0.2 0.0001 64 Adam 

HP-04 16 128 0.1 0.001 32 Adam 

HP-05 16 128 0.3 0.0001 64 Adam 

HP-06 32 64 0.1 0.0001 64 Adam 

HP-07 16 64 0.4 0.001 128 Adam 

HP-08 64 128 0.4 0.0001 32 Adam 

HP-09 32 128 0.1 0.01 64 Adam 

HP-10 16 128 0.2 0.01 32 Adam 

 

As shown in Table VII, the configuration labeled HP-01, 

which utilizes 128 BiLSTM neurons, a batch size of 16, a 

dropout rate of 0.3, a learning rate of 0.0001, 32 dense 

neurons, and the Adam optimizer, was identified as the most 

optimal setting. This model exhibited an impressive accuracy 

of 97.40%. The recall, precision, and F1-score for each class 

further underscore its effectiveness. The F1-score was 

97.47%, the recall was 99.93%, and the precision was 95.12% 

for the sarcastic class. The overall accuracy reinforces the 

robustness of the selected hyperparameter configuration, 

showcasing its ability to provide accurate predictions across 

both classes. 

 

 
(a) Accuracy Metrics 

 
(b) Loss Metrics 

Fig. 8. Metrics of the Optimal BiLSTM Model 

 

Fig. 8 illustrates the graphical representation of the 

accuracy and loss metrics for the best-performing BiLSTM 

model. The accuracy graph consistently showed an upward 

trend, indicating a continuous improvement in the model's 

ability to make correct predictions. This upward trajectory 

signified the effectiveness of the selected hyperparameter 

configuration, showcasing its capacity to improve the 

model’s overall efficacy. Conversely, the loss graph exhibited 

a steady decline, indicating a consistent decrease in the 

model's error. The chosen hyperparameters' ability to 

minimize prediction errors was supported by the decreasing 

trend in loss. The stability observed in both accuracy and loss 

graphs suggested that the model, configured with a BiLSTM 

layer with 128 neurons, a dropout rate of 0.3, a dense layer 

with 32 neurons, an Adam optimizer, a batch size of 16 with 

a learning rate of 0.0001 consistently maintained high 

accuracy while effectively minimizing loss. This reinforced 

the reliability and efficiency of the identified hyperparameter 

combination for optimal model performance. 

IV. DISCUSSION 

This study identified a prominent issue of class imbalance, 

with the minority class constituting only 7.07% of the dataset 

(Fig. 7). This substantial disparity might result in biased 

model predictions, since the model may preferentially favor 

the dominant class. Resolving this problem is essential for 

enhancing the model's efficacy, especially in identifying 

minority-class cases, which are sarcastic comments in this 

context. 

Three methods were systematically integrated into the 

BiLSTM model, and their effectiveness was evaluated. The 

results in Table IV reveal that ROS outperformed SMOTE 

and ADASYN across all performance metrics. ROS achieved 

higher recall, precision, and F1-score and yielded the best 

overall accuracy. Precision of 90.9% with ROS indicates a 

higher rate of correctly predicted sarcastic comments 

compared to studies where SMOTE and ADASYN were 

employed. The recall of 99.3% demonstrates ROS's 

effectiveness in identifying nearly all existing sarcastic 

comments, a notable improvement over the results typically 

reported with SMOTE and ADASYN. Furthermore, the F1-

score of 94.9% and overall accuracy of 94.7% highlight 

ROS's robustness in maintaining a balance between recall and 

precision, thereby ensuring more reliable performance. 

The exceptional efficacy of ROS is due to its capacity to 

produce synthetic samples that more accurately resemble the 

minority class, hence improving the model's learning and 

generalization from these examples. This finding aligns with 

other studies highlighting ROS's effectiveness in handling 
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class imbalances in various domains [43]. 

In contrast, SMOTE and ADASYN, while effective in 

balancing the classes, did not perform as well as ROS. 

SMOTE achieved an F1-score of 85.6% for the sarcastic 

class, whereas ADASYN reached 84.0%. This discrepancy 

may be due to the inherent differences in how these 

techniques generate synthetic samples. SMOTE generates 

synthetic examples by interpolating between minority class 

instances along the line segments connecting them, which can 

sometimes lead to less diverse samples. ADASYN adjusts the 

number of synthetic instances in accordance with the 

distribution density of the minority class samples; however, 

it may produce samples that are less diverse or representative 

compared to those generated by ROS. Our findings challenge 

the prevailing assumption that more sophisticated 

oversampling techniques like SMOTE and ADASYN are 

universally superior, suggesting that the selection of an 

oversampling method must be meticulously evaluated in 

relation to the characteristics of the dataset and the 

classification objective involved. 

Table VI presents the results of BiLSTM testing with 

various hyperparameter combinations. The optimal 

configuration included a batch size of 16, 32 neurons in the 

dense layer, 128 neurons in the BiLSTM layer, an Adam 

optimizer, dropout rate of 0.3, and a learning rate of 0.0001, 

resulting in an accuracy of 97.40%. The metrics of recall, 

precision, and F1-score for this configuration were notably 

high, underscoring the significance of careful hyperparameter 

tuning. The selected hyperparameters effectively balanced 

the model's complexity and its capacity to learn from the 

training data, which is consistent with findings from other 

studies on the importance of hyperparameter tuning in deep 

learning models [44]. 

Moreover, while the chosen hyperparameter configuration 

yielded high performance, it is important to recognize that 

hyperparameter tuning is a computationally intensive 

process. Future studies might benefit from automated 

hyperparameter optimization techniques to streamline this 

process and potentially discover even better configurations. 

The significance of optimizing hyperparameters and 

resolving class imbalances in machine learning models is 

underscored by the findings of this study. The superior 

performance of ROS and the identified optimal 

hyperparameter configuration underscore the potential for 

these strategies to enhance model accuracy and robustness. 

These results have substantial implications for the 

applicability of BiLSTM models in a variety of fields, 

particularly those that involve imbalanced datasets, including 

sentiment analysis, medical diagnosis,  and fraud detection. 

V. CONCLUSION 

This study provides a comprehensive approach to sarcasm 

detection in Indonesian social media through the integration 

of advanced techniques such as BiLSTM, oversampling 

methods, and hyperparameter tuning. Oversampling was 

necessary as a result of the dataset's substantial class 

imbalance. ROS handled sarcasm best; however, the 

application of ROS in text analysis should be approached 

cautiously due to the possibility of sample repetition, which 

may result in identical training and testing datasets, which can 

compromise the effectiveness of the training processes and 

undermine the reliability of predictive outcomes.  

Furthermore, the study identified an optimal 

hyperparameter set for the BiLSTM model, which resulted in 

excellent accuracy, recall, precision, and F1-score for both 

sarcastic and non-sarcastic instances. The selected 

hyperparameter configuration showed resilience in predicting 

both classes, with 97.40% accuracy, 95.12% precision, 

99.93% recall, and F1-score of 97.47% for the sarcastic class.  

Besides improving our understanding of sarcasm in text, 

this research opens opportunities for more effective 

communication analysis in the field of Internet services and 

beyond. Future directions should focus on exploring 

innovative techniques to even better detect sarcasm and 

improve sentiment analysis, especially in different linguistic 

and cultural contexts. In addition, valuable insights for 

enhancing the user experience and service quality could be 

obtained by investigating the practical implementation of 

these findings in real-world scenarios, such as analyzing 

consumer feedback at ISPs. 
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