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Abstract—By using the concepts of Kronecker sum and
Kronecker product, the matrix form of decoupling method
is proposed to analyze the Turing instability of the equilibria
for a memristive cellular neural networks under the zero-flux
boundary conditions. It is shown that Turing instability can
never occur at the zero equilibrium nor at the non-zero equi-
librium for the self-diffusion case, while Turing instability may
occur at the non-zero equilibrium for the cross-diffusion case.
Furthermore, the local stability of the non-zero equilibrium
determined by system parameters is studied. Finally, several
numerical simulations are given. This matrix form of decoupling
method can be extended to study memristive cellular neural
networks with other boundary conditions.

Index Terms—cellular neural networks, Turing instability,
self-diffusion, cross-diffusion.

I. INTRODUCTION

CELLULAR neural networks (abbreviated as CNNs) are
arrays of some locally interconnected simple proces-

sors. Since CNNs were proposed by Chua and Yang in [2],
this model has achieved significant developments in both
theories and applications. In applications, CNNs have been
widely used in practical problems, such as image processing,
pattern recognition, and solving differential equations due to
their simplicity and high computational efficiency. Theoreti-
cally, the dynamics of CNNs are complex since this model
can be viewed as coupled ordinary differential equations.
These dynamics include Turing instability, Turing patterns,
Hopf bifurcation and chaos. We refer to the references [1]-
[6] for more details, wherein the concept of Turing instability
was proposed in Turing’s famous paper [1]. Turing instability
is also called “diffusion-driven instability”.

As a special kind of CNNs, memristive cellular neural
networks (abbreviated as MCNNs) incorporate memristors,
which are usually non-linear resistive components. The in-
troduction of memristors enhances the functionality and
adaptability of CNNs, allowing them to generate complicated
patterns and provide a novel paradigm for the design of
advanced computational systems. From a mathematical per-
spective, MCNNs can be conceptualized as reaction-diffusion
equations, characterized by a two-dimensional array of inter-
connected cells that consist of two essential components, i.e.,
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Fig. 1: Basic cell

a linear passive capacitor and a nonlinear active memristor.
We refer to the references [7]-[9] for more details.

As shown in reference [7], a detailed description of a cell
with a memristor was illustrated in Fig. 1.

The cell consists of two components in parallel: a linear
passive capacitor C and a memristor M . By applying the
Kirchhoff laws, the dynamical equations of the cell are

Cv̇ = −β(ϕ2 − 1)v,

ϕ̇ = v − αϕ− vϕ,

where v represents the voltage of the capacitor, ϕ denotes the
internal state function of the memristor with the memristance
function R = β(ϕ2 − 1) and α, β are constant parameters.
In the following, we always assume

(H1 ) : α > 0 , β > 0 ,

the same as in [8].
Let x = v, y = ϕ and γ = 1

C , then the above dynamical
equations become{

ẋ = −γβ(y2 − 1)x,

ẏ = x− αy − yx.
(1)

Based on Eq.(1), the dynamical equations of the M ×N
MCNNs are further established in [8]. The equations are

ẋi,j = −γβ(y2i,j − 1)xi,j

+D11(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j)
+D12(yi−1,j + yi+1,j + yi,j−1 + yi,j+1 − 4yi,j),
ẏi,j = xi,j − αyi,j − xi,jyi,j
+D21(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j)
+D22(yi−1,j + yi+1,j + yi,j−1 + yi,j+1 − 4yi,j),

(2)
where xi,j and yi,j with i ∈ {0, 1, 2, · · · ,M − 1} and
j ∈ {0, 1, 2, · · · , N − 1} represent the voltages of the
capacitor and the state functions of the cell in the i-row and j-
column, respectively. D11 and D22 denote the self-diffusion
coefficients, while D12 and D21 denote the cross-diffusion
coefficients, respectively. To ensure diffusion coupling is
dissipative as in [8], we further assume

(H2 ) : det(D) = D11D22 −D12D21 > 0 .
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By introducing the following notations{
∇2xi,j = xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j ,
∇2yi,j = yi−1,j + yi+1,j + yi,j−1 + yi,j+1 − 4yi,j ,

(3)
Eq.(2) can be rewritten as{

ẋi,j = f(xi,j , yi,j) +D11∇2xi,j +D12∇2yi,j ,

ẏi,j = g(xi,j , yi,j) +D21∇2xi,j +D22∇2yi,j ,
(4)

where f(x, y) = −γβ(y2 − 1)x, g(x, y) = x− αy − xy.
We further consider the zero-flux boundary conditions

x−1,j(t) = x0,j(t), xM,j(t) = xM−1,j(t),

xi,−1(t) = xi,0(t), xi,N (t) = xi,N−1(t),

y−1,j(t) = y0,j(t), yM,j(t) = yM−1,j(t),

yi,−1(t) = yi,0(t), yi,N (t) = yi,N−1(t).

(5)

The boundary conditions (5) correspond to the case when the
free ends of all coupling (grid) resistors are not connected
as illustrated in the reference [5].

Eq.(4) under the boundary conditions (5) has two constant
equilibria, i.e., the zero equilibrium

E0 = (0, 0, 0, 0, · · · , 0, 0) ∈ RM×N

and non-zero equilibrium

E1 = (−α

2
,−1,−α

2
,−1, · · · ,−α

2
,−1) ∈ RM×N .

In this paper, we introduce the matrix form of the decoupling
method by using Kronecker sum and Kronecker product.
There are many applications of Kronecker sum and Kro-
necker product. For example, they were used to study linear
error block codes in [10]. Here we use these concepts to
prove the matrix form of the decoupling method and further
to study the Turing instability of E0 and E1. To be precise,
in Section II, we show that Turing instability can never occur
at E0. Furthermore, we study the stability of E1 by using the
matrix form of the decoupling method. Then we show that
Turing instability can never occur at E1 for the self-diffusion
case, while it may occur at E1 for the cross-diffusion case.
In Section III, we give some numerical simulations to show
the derived theoretical results in Section II. Finally, we give
some conclusions and discussions.

II. TURING INSTABILITY ANALYSIS

Without loss of generality, we let γ = 1 and we have

Proposition 1. The equilibrium (0, 0) of Eq.(1) is unstable,
while the equilibrium (−α

2 ,−1) of Eq.(1) is locally asymp-
totically stable.

Proof: The Jacobi matrix of Eq.(1) at (0, 0) is

J0 =

(
β 0
1 −α

)
, (6)

hence the corresponding characteristic equation is

λ2 − T0λ+D0 = 0, (7)

where T0 = β−α, D0 = −αβ. By (H1), we have D0 < 0,
which suggests that one of roots of the characteristic equation
Eq.(7) is positive. Hence (0, 0) is unstable.

Meanwhile, the Jacobi matrix of Eq.(1) at (−α
2 ,−1) is

J0 =

(
0 −αβ
2 −α

2

)
, (8)

hence the corresponding characteristic equation is

λ2 − T1λ+D1 = 0, (9)

where T1 = −α
2 , D1 = 2αβ. By (H1), we have T1 < 0

and D1 > 0, which suggests that the real parts of both roots
of the characteristic equation Eq.(9) are negative. Hence the
equilibrium (−α

2 ,−1) is locally asymptotically stable.
By Proposition 1, it is seen that Turing instability can never

occur at E0. Hence for the rest of this section, we mainly
focus on the local stability of E1.

The linearized equations of Eq.(4) located at E1 are ẋi,j = −αβxi,j +D11∇2xi,j +D12∇2yi,j ,

ẏi,j = 2xi,j −
α

2
yi,j +D21∇2xi,j +D22∇2yi,j .

(10)
Then we introduce the matrix form of decoupling method.
For this purpose, we denote

X = (x0,0, y0,0, x0,1, y0,1, · · · , x0,N−1, y0,N−1,

x1,0, y1,0, x1,1, y1,1, · · · , x1,N−1, y1,N−1,

· · · · · · · · · ,
xM−1,0, yM−1,0, xM−1,1, yM−1,1,

· · · , xM−1,N−1, yM−1,N−1)
T ,

(11)

Then Eq.(10) can be rewritten as the matrix form

Ẋ = LX, (12)

Under the boundary conditions (5), it is seen that

L = (∆M ⊕∆N )⊗D + IMN ⊗ F,

according to the reference [11]. Herein

D =

(
D11 D12

D21 D22

)
,F =

(
0 −αβ
2 −α

2

)
,

∆M =


−1 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 1 −1


M×M

,

∆N =


−1 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 1 −1


N×N

,

and the notations ⊕ and ⊗ denote Kronecker sum and
Kronecker product, respectively, while IMN represents the
MN -order identity matrix. Then we have

Theorem 1. Matrix L is similar to the following block
diagonal matrix

Ld =



L0,0
L0,1

· · ·
L0,N−1

L1,0
L1,1

· · ·
L1,N−1

.
.
.
LM−1,N−1

 ,
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where
Lm,n =

(
−D11k

2
mn −D12k2

mn − αβ

−D21k2
mn + 2 −D22k2

mn − α
2

)
and

−k2mn = −k2m − k2n = −4(sin2 mπ

2M
+ sin2 nπ

2N
)

with m ∈ {0, 1, 2, · · · ,M−1} and n ∈ {0, 1, 2, · · · , N−1}.

Proof:
Define the matrices

ΦN =


ϕN (0, 0) ϕN (0, 1) ϕN (0, 2) . . . ϕN (0, N − 1)
ϕN (1, 0) ϕN (1, 1) ϕN (1, 2) . . . ϕN (1, N − 1)
ϕN (2, 0) ϕN (2, 1) ϕN (2, 2) . . . ϕN (2, N − 1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.
ϕN (N − 1, 0) ϕN (N − 1, 1) ϕN (N − 1, 2) . . . ϕN (N − 1, N − 1)

 ,

and

ΦM =


ϕM (0, 0) ϕM (0, 1) ϕM (0, 2) . . . ϕM (0,M − 1)
ϕM (1, 0) ϕM (1, 1) ϕM (1, 2) . . . ϕM (1,M − 1)
ϕM (2, 0) ϕM (2, 1) ϕM (2, 2) . . . ϕM (2,M − 1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.
ϕM (M − 1, 0) ϕM (M − 1, 1) ϕM (M − 1, 2) . . . ϕM (M − 1,M − 1)

 ,

where

ϕN (m,n) = cos
(2n+ 1)mπ

2N
,ϕM (m,n) = cos

(2n+ 1)mπ

2M
.

Denote ϕ(m,n) as either ϕN (m,n) or ϕM (m,n). Accord-
ing to [12], we have

ϕ(m,n− 1) + ϕ(m,n+ 1)− 2ϕ(m,n) = −k2mϕ(m,n),

and the following orthogonal conditions

⟨ϕ(m1, n), ϕ(m2, n)⟩

{
= 0,m1 ̸= m2,

̸= 0,m1 = m2,
(13)

where m1,m2 ∈ {0, 1, 2, · · · ,M − 1}. Let

Φ = ΦM ⊗ ΦN ⊗ I2. (14)

Then
Φ−1 = Φ−1

M ⊗ Φ−1
N ⊗ I2,

where V −1 denotes the inverse matrix of the matrix V and
I2 denotes the 2× 2-order identity matrix.

Then we have

ΦLΦ−1 = (ΦM ⊗ ΦN ⊗ I2)((∆M ⊕∆N )⊗D
+IMN ⊗ F )(Φ−1

M ⊗ Φ−1
N ⊗ I2)

= (ΦM ⊗ ΦN ⊗ I2)((∆M ⊕∆N )⊗D)(Φ−1
M ⊗ Φ−1

N ⊗ I2)
+(ΦM ⊗ ΦN ⊗ I2)(IMN ⊗ F )(Φ−1

M ⊗ Φ−1
N ⊗ I2).

(15)
For the first part of the sums in (15), we have

(ΦM ⊗ ΦN ⊗ I2)((∆M ⊕∆N )⊗D)(Φ−1
M ⊗ Φ−1

N ⊗ I2)
= (ΦM ⊗ ΦN )((∆M ⊕∆N ))(Φ−1

M ⊗ Φ−1
N )⊗D

=
[
(ΦM ⊗ ΦN )(∆M ⊗ IN )(Φ−1

M ⊗ Φ−1
N )+

(ΦM ⊗ ΦN )(IM ⊗∆N )(Φ−1
M ⊗ Φ−1

N )
]
⊗D

=
[
(ΦM∆MΦ−1

M )⊗ (ΦNINΦ−1
N )+

(ΦMIMΦ−1
M )⊗ (ΦN∆NΦ−1

N )
]
⊗D

=
[
(ΦM∆MΦ−1

M )⊗ IN + IM ⊗ (ΦN∆NΦ−1
N )

]
⊗D

= [∆Md ⊕∆Nd]⊗D,

where

∆Md = ΦM∆MΦ−1
M =


−k2

0

−k2
1

. . .
−k2

M−1

 ,

and

∆Nd = ΦN∆NΦ−1
N =


−k2

0

−k2
1

. . .
−k2

N−1

 .

For the second part of the sums in (15), we have

(ΦM ⊗ ΦN ⊗ I2)(IMN ⊗ F )(Φ−1
M ⊗ Φ−1

N ⊗ I2)
= (ΦM ⊗ ΦN )IMN (Φ−1

M ⊗ Φ−1
N )⊗ F

= IMN ⊗ F.

Hence we have

ΦLΦ−1 = [∆Md ⊕∆Nd]⊗D + IMN ⊗ F = Ld.

We define the following linear transformation

X = Φ−1Y, (16)

where
Y = (x̂0,0, ŷ0,0, x̂0,1, ŷ0,1, · · · , x̂0,N−1, ŷ0,N−1,

x̂1,0, ŷ1,0, x̂1,1, ŷ1,1, · · · , x̂1,N−1, ŷ1,N−1,

· · · · · · · · · ,
x̂M−1,0, ŷM−1,0, x̂M−1,1, ŷM−1,1, · · · ,
x̂M−1,N−1, ŷM−1,N−1)

T .

(17)

By Theorem 1 and the transformation (16), Eq.(12) becomes

Ẏ = ΦẊ = ΦLΦ−1Y = LdY. (18)

Hence the local stability of E1 depends on the eigenvalues
of matrix Ld. The eigenvalues of Ld are the roots of the
following quadratic equation with one unknown

λ2 − Tmnλ+Dmn = 0, (19)

where m,n ∈ {0, 1, 2, · · · , (M − 1)(N − 1)} and
Tmn = −(D11 +D22)k

2
mn − α

2 ,

Dmn = (D11D22 −D12D21)k
4
mn+

(α2D11 + 2D12 − αβD21)k
2
mn + 2αβ.

(20)

By (H1), we have Tmn < 0 while the signs of Dmn

are uncertain. By (H2), we further have Dmn > 0 when
α
2D11+2D12−αβD21 ≥ 0. Then all of the roots of Eq.(19)
have negative real parts. Hence we have

Theorem 2. Assuming α
2D11 + 2D12 − αβD21 ≥ 0, the

equilibrium E1 is locally asymptotically stable.

If α
2D11 + 2D12 − αβD21 < 0, then the analysis on the

eigenvalues of Ld becomes complicated. For this, define

J(ξ) =(D11D22 −D12D21)ξ
2+

(
α

2
D11 + 2D12 − αβD21)ξ + 2αβ, ξ ≥ 0.

Then it is seen that J(k2mn) = Dmn and the discriminant of
J(ξ) = 0 is

∆1 =(
1

2
D11 − βD21)

2α2+

(D11D12 + 2βD12D21 − 4βD11D22)2α+ 4D2
12.

Hence J(ξ) = 0 has a unique root

ξ0 =
2αβD21 − 4D12 − αD11

4(D11D22 −D12D21)
,
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if ∆1 = 0, while J(ξ) = 0 has two roots

ξ1,2 =
2αβD21 − 4D12 − αD11 ∓ 2

√
∆1

4(D11D22 −D12D21)
,

if ∆1 > 0.
It is seen further that ∆1 is a quadratic function of α,

which can be denoted by the following quadratic function

K(z) =(
1

2
D11 − βD21)

2z2+

(2D11D12 + 4βD12D21 − 8βD11D22)z + 4D2
12.

The discriminant of K(z) = 0 is

∆2 = 32βD11(D11D22 −D12D21)(2βD22 −D12).

It is easy to see that
(i) ∆2 > 0 if D12

D22
< 2β;

(ii) ∆2 = 0 if D12

D22
= 2β; and

(iii) ∆2 < 0 if D12

D22
> 2β.

We note that the case (iii) contradicts the conditions (H1)
and (H2). In fact, we have

Lemma 1. If α
2D11 + 2D12 − αβD21 < 0, then D12

D22
≤ 2β.

Proof: By contradiction, we assume D12

D22
> 2β. Then by

the inequality α
2D11 + 2D12 − αβD21 < 0, we have 2β >

D11

D21
+ 4

α
D12

D21
. By (H2), we have D11

D21
> D12

D22
. Hence D12

D22
>

2β > D11

D21
+ 4

α
D12

D21
> D12

D21
+ 4

α
D12

D21
. It is a contradiction.

Hence we only need to consider the cases (i) and (ii).
For both cases, K(z) = 0 has two roots, which are multiple
when D12

D22
= 2β. In the following, we denote the two roots

of K(z) = 0 to be

z1,2 =
4βD11D22 − 2βD12D21 −D11D12 ∓ 1

2

√
∆2

( 12D11 − βD21)2
.

Then we have the following three lemmas.

Lemma 2. Assuming D12

D22
≤ 2β, α ∈ (z1, z2), E1 is locally

asymptotically stable.

Lemma 3. Assuming D12

D22
≤ 2β, α = z1 or z2,

1) E1 is locally asymptotically stable when k2mn ̸=
ξ0,∀m,n; or

2) E1 is the critical case when there exist m∗, n∗such that
k2m∗n∗ = ξ0.

Lemma 4. Assuming D12

D22
≤ 2β, α /∈ [z1, z2],

1) E1 is locally asymptotically stable when k2mn /∈
[ξ1, ξ2],∀m; or

2) E1 is unstable when there exist m∗, n∗ such that
k2m∗n∗ ∈ (ξ1, ξ2); or

3) E1 is the critical case when there exist m∗, n∗ such
that k2m∗n∗ = ξ1 or ξ2.

Based on the above lemmas, we derive

Theorem 3. Assuming α
2D11 + 2D12 − αβD21 < 0, the

stability of E1 can be determined by the following Table I,
where the symbol “L.A.S.” represents E1 is locally asymp-
totically stable.

By Theorems 2 and 3, it is seen that Turing instability
can never occur at E1 for the self-diffusion case, i.e., D12 =
D21 = 0, while Turing instability may occur at E1 for the
cross-diffusion case, i.e., D12 ̸= 0 or D21 ̸= 0.

III. NUMERICAL SIMULATIONS

In this section, we present several numerical simulations
using MATLAB to illustrate the theoretical results from
Theorems 2 and 3. To this end, we define eight groups
of system parameters and analyze the stability of E1 based
on the framework in Section II. To be precise, the stability
results for Groups 1-2 (Table II) are derived from Theorem
2, while those for Groups 3-8 (Table III) are derived from
Theorem 3.

Based on these system parameters in Tables II and III,
the following figures, i.e., Fig.2-Fig.9, present the numerical
simulations, wherein interpolation is used in order to get
better visual effects. In each figure, the first row displays
the distribution of xi,j , while the second row shows the
distribution of yi,j . To be precise, the first one in each row
shows the distribution at inital time, the second one in each
row shows the distribution at the final time, and the third one
in each row shows the thermodynamic distribution at the final
time. In addition, we choose randomized initial conditions for
all numerical simulations.

From these figures, it can be observed that the results on
the stability of E1 coincide with the theoretical analyses.
That is, for the system parameters in Groups 1-5, E1 is
locally asymptotically stable, while for the system param-
eters in Groups 6-8 , E1 is unstable. Moreover, for those
parameters in Groups 6-8, different Turing patterns arise. In
fact, strip patterns are obtained for Group 6, mixed states
of strip and spot patterns are obtained for Group 7 and spot
patterns are obtained for Group 8. We refer to [13] for more
details.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we develop the matrix form of the decoupling
method to study the Turing instability of MCNNs under
zero-flux boundary conditions. However, more should be
considered.

1. The zero-flux boundary conditions are assumed in the
present paper. However, there are other kinds of boundary
conditions. For example, the periodic boundary conditions
are discussed in [12]. We suggest that this method should
also be valid for these boundary conditions.

2. Turing patterns are presented through numerical sim-
ulations in the present paper, without theoretical analysis.
We suggest that these Turing patterns might be caused by
other dynamical behaviors, such as steady-state bifurcation,
Hopf bifurcation, traveling waves and spiral waves. We refer
to [13], [14] for examples. We will consider the theoretical
analysis of these Turing patterns and their relation to other
dynamical behaviors in the future.
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TABLE I: Stability of E1

Stability Range of parameters
L.A.S. D12

D22
≤ 2β and α ∈ (z1, z2); or

D12
D22

≤ 2β and α = z1 or z2 and k2mn ̸= ξ0, ∀m,n; or
D12
D22

≤ 2β and α /∈ [z1, z2] and k2mn /∈ [ξ1, ξ2], ∀m,n.

unstable D12
D22

≤ 2β and α /∈ [z1, z2] and exist m∗, n∗ such that k2m∗n∗ ∈ (ξ1, ξ2).

critical D12
D22

≤ 2β and α = z1 or z2 and exist m∗, n∗such that k2m∗n∗ = ξ0; or

case D12
D22

≤ 2β and α /∈ [z1, z2] and exist m∗, n∗ such that k2m∗n∗ = ξ1 or ξ2.

TABLE II: System parameters and stability results for E1 based on Theorem 2.

Group Parameters Discriminant Conditions Results
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Fig. 2: Numerical Simulation for Group 1 in Table II with Randomized Initial Conditions.

Fig. 3: Numerical Simulation for Group 2 in Table II with Randomized Initial Conditions.
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Fig. 4: Numerical Simulation for Group 3 in Table III with Randomized Initial Conditions.

Fig. 5: Numerical Simulation for Group 4 in Table III with Randomized Initial Conditions.
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Fig. 6: Numerical Simulation for Group 5 in Table III with Randomized Initial Conditions.

Fig. 7: Numerical Simulation for Group 6 in Table III with Randomized Initial Conditions.
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Fig. 8: Numerical Simulation for Group 7 in Table III with Randomized Initial Conditions.

Fig. 9: Numerical Simulation for Group 8 in Table III with Randomized Initial Conditions.
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