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Abstract—Laplace transform has many applications in ap-
plied mathematics, science, engineering, and technology. Its
further study will play an important role in developing new
theories with applications. This paper deals with new results
on the Laplace-Complex EE (Emad-Elaf) integral transform
(LCEE) of two variables. Starting with definitions and standard
results, we obtained various properties, including the shifting
property and change of scale, etc. We developed new theorems
on the Laplace-Complex EE integral transform of partial
derivatives. Further, we applied our results to solve non-
homogeneous telegraph equations. Finally, we illustrate our
results with examples.

Index Terms—Laplace Transform, Multiple Integral Trans-
forms, Double Complex EE Integral Transform, Integral Trans-
forms of Special Functions, Partial Derivatives.

I. INTRODUCTION

INTEGRAL transforms, such as the Laplace transform
[1], modified transform, and complex EE (Emad-Elaf)

integral transforms [2], are useful tools for finding solutions
to initial and boundary value problems [3], [4], [5], [6]. These
transforms have extensive applications in mathematical sci-
ences and engineering, including physics, and mechanics [7],
[8], [9], [10], [11], [12]. They play an important role in
solving integral equations and partial differential equations,
which are useful in many physical phenomena [7], [8], [13],
population, epidemic spread, pharmaceutics in biology and
medicine [14], signal filtering in audio processing [8], control
system design for robotics [15], [16], options pricing in
finance [2], population growth modeling in ecology [17],
and image restoration in medical imaging [18], [19], [20].
Moreover, the double integral transforms have more impor-
tance due to their numerous applications in science and en-
gineering [21], [22], [23], [24], [25] and the double complex
EE integral transform. Our approach is to develop a new
theory of the Laplace-Complex EE (Emad-Elaf) transform
and apply it to solve various problems. In this paper, we
obtain the LCEE transform of first-order and second-order
partial derivatives and use it to solve the partial differential
equations with initial and boundary conditions.

II. DEFINITIONS AND NOTATIONS

1. Laplace Transform:

The modified Laplace transform of a function u(x) which is
piecewise continuous and of exponential order is given by,

LE1,e[u(x)] = u(p) =

∫ ∞

0

e−pxu(x)dx, R(p) > 0, (1)
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provided that the integral exists, and the corresponding
inverse transform is

LE−1
1,e [u(p)] =

1

2πi

∫ r+i∞

r−i∞
epx u(p, e) dx, (r ≥ 0),

[21], [22].

2. Complex EE (Emad-Elaf) Integral Transform:

The complex EE (Emad-Elaf) integral transform of a function
u(x) with x > 0 is given by [2],

LC1,c[u(x)] =

∫ ∞

0

e−iqnxu(x) dx, (2)

where q is a complex parameter, n ϵ Z, where Z is an integer,
i ϵ C, set of complex number and every Im(qn) < 0.
The corresponding inverse transform is

LC−1
1,c [u(x)] =

1

2πi

∫ r+i∞

r−i∞
eq

nx u(q, c) dx, (r ≥ 0).

3. Double Complex EE (Emad-Elaf) Integral Transform:

The double complex transform of a function u(x, y) is given
by [2],

LC2,c[u(x, y)] =

∫ ∞

0

∫ ∞

0

e−i(pmx+qny)u(x, y) dx dy,

(3)
where p and q are complex parameters, m,n ϵ Z, where Z
is an integer, i ϵ C and every Im(pm) < 0 and Im(qn) < 0.
Now we introduce the Laplace-Complex EE integral trans-
form.

4. Heaviside Unit Step Function:

The H(x, y) is Heaviside unit step function given by [20],

H(x− α, y − β) = 1, if x ≥ α, y ≥ β,

= 0, if x < α, y < β. (4)

5. Gamma Function:

Gamma function is Γ(α), and is defined as [26],

Γ(α) =

∫ ∞

0

e−sxα−1ds. (5)

and Γ(α+ 1) = αΓ(α), where α is constant.

6. Laplace-Complex EE (Emad-Elaf) Integral
Transform:

The Laplace-Complex EE transform of a function u(x, y) of
two variable x > 0 and y > 0 is given by

LCEE[u(x, y)] =

∫ ∞

0

∫ ∞

0

e−(px+iqny) u(x, y) dx dy,

(6)
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where p and q are complex parameters, m,n ϵ Z, i ϵZ C
and every Re(p) > 0 and Im(qn) < 0.
The corresponding inverse transform is

L−1
EC [u(p, q)] =

1

2πi

∫ r+i∞

r−i∞
epx dp

1

2πi

∫ l+i∞

l−i∞
eiq

ny u(p, q) dq.

7. Function of Exponential Order:

[6], function u(x, y) is said to be of exponential order if there
exists positive constant M , for all x > X , y > Y such that

|u(x, y)| ≤ Merx+ly,

and we write

u(x, y) < O erx+ly as x → ∞, y → ∞.

Or,

lim
x→∞, y→∞

e−(rx+ly)|u(x, y)|

≤ M lim
x→∞, y→∞

e−(p−r)xe−(iqn−l)y

= 0, p > r, qn > l.

Now we use the following notations

(i)u(p, q) = LCEE[u(x, y)]
(ii) u1(q) = LC1,c[u(0, y)]
(iii) u2(p) = LE1,e[u(x, 0)]
(iv) u3(q) = LC1,c[ux(0, y)]
(v) u4(p) = LE1,e[uy(x, 0)]

(vi) LE1,e[ux(x, 0)] = p L1,e[u(x, 0)]− u(0, 0).

III. THEOREMS OF LAPLACE-COMPLEX EE
(EMAD-ELAF) INTEGRAL TRANSFORM

In this paper, we assume that we u(x, y) satisfied all
conditions required for the existence of the Laplace-Complex
EE integral transform.
It is obvious that LCEE is a linear transformation; that is

LCEE[αu1(x, y) + βu2(x, y)]

= α LCEE[u1(x, y)] + β LCEE[u2(x, y)] (7)

where α and β are constants.

Theorem 1. (Existence Theorem):
The Laplace-Complex EE (Emad-Elaf) transform of u(x, y)
exists for all p and q, where Re (p) > r and Re (q) > l and
u(x, y) is a piece-wise continuous and of exponential order
defined in finite intervals (0, X) and (0, Y ).

Theorem 2. (Shifting Property):
If u(x, y) is of exponential order and piece-wise continuous,
then

LCEE[eαx+βy u(x, y)] = LCEE[p− α, iqn − β]. (8)

By definition 6, we have

LCEE[eαx+βy u(x, y)]

=

∫ ∞

0

∫ ∞

0

e−(px+iqn) eαx+βy u(x, y) dx dy

=

∫ ∞

0

∫ ∞

0

e−[(p−α)x+(iqn−β)y] u(x, y) dx dy

= LCEE[p− α, iqn − β].

Theorem 3. (Change of Scale Property):

LCEE[u(αx, βy)] =
1

αβ
LCEE

[
u

(
p

α
,
iqn

β

)]
. (9)

By definition 6, we have

LCEE[eαx+βy u(αx, βy)]

=

∫ ∞

0

∫ ∞

0

e−(αpx+iβqny) u(αx, βy) dx dy

Put αx = r, βy = s
dx = 1

αdr, dy = 1
βds

We can also write it as

LCEE[u(αx, βy)]

=
1

αβ

∫ ∞

0

∫ ∞

0

e−[( p
α )x+( iqn

β )y] u

(
x

α
,
y

β

)
dx dy

=
1

αβ
LCEE

[
u

(
p

α
,
iqn

β

)]
.

Theorem 4. (Unit Step Function):

LCEE[H(x− α, y − β)] = − i

p qn
e−(pα+iqnβ), (10)

where H(x, y) is defined by equation (5) and p qn > 0.
By definition 6, we have

LCEE[H(x− α, y − β)]

=

∫ ∞

α

∫ ∞

β

e−(px+iqny)H(x− α, y − β) dx dy.

By definition 5, we have

=

∫ ∞

α

∫ ∞

β

e−(px+iqny) (1) dx dy

=

(∫ ∞

α

e−px dx

)(∫ ∞

β

e−iqny dy

)
= − i

p qn
e−(pα+iqnβ).

We will discuss Convolution theorem for two functions
u(x, y) and v(x, y).
Convolution is defined as

(v∗∗u)(x, y) =
∫ x

0

∫ y

0

v(x−µ, y−λ)u(µ, λ) dλ dµ. (11)

Theorem 5. (Convolution Theorem):
If LCEE[v(x, y)] = v(p, q) and LCEE[u(x, y)] = u(p, q),
then

LCEE[(v ∗ ∗u)(x, y)] = v(p, q) u(p, q). (12)

By definition 6, we have

LCEE[(v ∗ ∗u)(x, y)]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny)(v ∗ ∗u)(x, y) dx dy

=

∫ ∞

0

∫ ∞

0

e−(px+iqny)

[ ∫ x

0

∫ y

0

v(x− µ, y − λ)u(µ, λ)

dλ dµ

]
dx dy
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Using Heaviside unit step function by definition 5 is,

=

∫ ∞

0

∫ ∞

0

u(µ, λ)e−(px+iqny)v(p, q) dλ dµ

= v(p, q)

∫ ∞

0

∫ ∞

0

e−(px+iqny)u(µ, λ) dλ dµ

= v(p, q) u(p, q).

IV. LCEE INTEGRAL TRANSFORM OF STANDARD
FUNCTIONS

We consider some standard functions and obtain their
Laplace-Complex EE (Emad-Elaf) transforms.

1.

LCEE[1] = −1

p

i

qn
. (13)

2. k is constant, then

LCEE[k] = −k

p

i

qn
. (14)

3.

LCEE[eax+by] = − 1

p− a

b+ iqn

b2 + q2n
. (15)

4.

LCEE[xrys] =
r!

pr+1

s!

(iq)(s+1)n
. (16)

5.

LCEE[ei(ax+by)] =
a− ip

(p2 + a2)(qn − b)
. (17)

Consequently,

LCEE[cos(ax+ by)] =
a

(p2 + a2)(qn − b)
. (18)

and

LCEE[sin(ax+ by)] = − p

(p2 + a2)(qn − b)
. (19)

6.

LCEE[cosh(ax+ by)] = − ab+ ipqn

(p2 − a2)(q2n + b2)
. (20)

7.

LCEE[sinh(ax+ by)] = − pb+ iaqn

(p2 − a2)(q2n + b2)
. (21)

8.

LCEE[e2x+y ∗ ∗x3y2] = − 12(qn + i)

p4q3(p− 2)(q2n − 1)
. (22)

V. LCEE INTEGRAL TRANSFORMS OF PARTIAL
DERIVATIVES

We derive Laplace-Complex EE (Emad-Elaf) transform
results for partial derivatives of u(x, y), assuming piece-wise
continuity and exponential order.

Theorem 6.

LCEE[ux] = p u(p, q)− LC1,c[u(0, y)]. (23)

By definition 6, we have

LCEE[ux]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny) ux(x, y) dx dy

=

∫ ∞

0

[
e−(px+iqny) u(x, y)

]∞
0

dy

− (−p)

∫ ∞

0

∫ ∞

0

e−(px+iqny) u(x, y) dx dy

= p u(p, q)− u1(q),

where u1(q) = LC1,c[u(0, y)].

Theorem 7.

LCEE[uy] = iqn u(p, q)− LE1,e[u(x, 0)]. (24)

By definition 6, we have

LCEE[uy]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny) uy(x, y) dx dy

=

∫ ∞

0

[
e−(px+iqny) u(x, y)

]∞
0

dx

− (−iqn)

∫ ∞

0

∫ ∞

0

e−(px+iqny) u(x, y) dx dy

= iqn u(p, q)− u2(p),

where u2(p) = LE1,e[u(x, 0)].

Theorem 8.

LCEE[uxx] = p2 u(p, q)− p LC1,c[u(0, y)] (25)

−LC1,c[ux(0, y)].

By definition 6, we have

LCEE[uxx]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny) uxx(x, y) dx dy

=

∫ ∞

0

[
e−(px+iqny) ux(x, y)

]∞
0

dy

− (−p)

∫ ∞

0

∫ ∞

0

e−(px+iqny) ux(x, y) dx dy

= p [p u(p, q)]− p LC1,c[u(0, y)]− LC1,c[ux(0, y)]

= p2 u(p, q)− p u1(q)− u3(q),

where u3(q) = LC1,c[ux(0, y)].

Theorem 9.

LCEE[uyy] = −q2n u(p, q)− iqn LE1,e[u(x, 0)]

− LE1,e[uy(x, 0)]. (26)
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By definition 6, we have

LCEE[uyy]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny) uyy(x, y) dx dy

=

∫ ∞

0

[
e−(px+iqny) uy(x, y)

]∞
0

dx

− (−iqn)

∫ ∞

0

∫ ∞

0

e−(px+iqny) uy(x, y) dx dy

= iqn [iqn u(p, q)]− iqn LE1,e[u(x, 0)]− LE1,e[uy(x, 0)]

= −q2n u(p, q)− iqn u2(p)− u4(p).

where u4(p) = LE1,e[uy(x, 0)].

Theorem 10.

LCEE[uxy] = ipqn u(p, q)− iqn LE1,e[u(0, y)]

− p LE1,e[u(x, 0)] + u(0, 0). (27)

By definition 6, we have

LCEE[uxy]

=

∫ ∞

0

∫ ∞

0

e−(px+iqny) uxy(x, y) dx dy

=

∫ ∞

0

[
e−(px+iqny) ux(x, y)

]∞
0

dx

− (−iqn)

∫ ∞

0

∫ ∞

0

e−(px+iqny) ux(x, y) dx dy

= iqn
[ ∫ ∞

0

∫ ∞

0

e−(px+iqny) ux(x, y) dx dy

]
− LE1,e[ux(x, 0)].

= ipqn u(p, q)− iqn u1(q)− p u2(p) + u(0, 0).

Remark 1. Result of Loknath Debnath [1], equations (44)
to (48) can be obtained from our results, if we put n = 1
and replace iq by q, in Theorems (4 to 8) as a special case.

Remark 2. Results of A. Issa, E. A. Kuffi [2], results
(4.1 to 4.5) can be obtained from our results, if we replace
p by ipm, in Theorems (4 to 8) as a special case.

VI. APPLICATIONS TO SOLVE PARTIAL DIFFERENTIAL
EQUATIONS

The Laplace transform is used to solve linear,
homogeneous, and non-homogeneous partial differential
equations of both first and second order. This includes
equations such as the Laplace equation, wave equation,
heat transfer equation, and telegraph equations. These
mathematical tools are essential in various important
applications across engineering, astronomy, physics, life
sciences [3], and medical fields [14], [26].

Examples: (First and Second order PDE)
Now we will apply our results to the following problems.

Examples 1: Consider second order nonhomogeneous

partial differential equation with constant coefficients,

a0uxx + a1uyy + a2ux + a3uy + a4u = g(x, y), (28)

Where a1, a1, a2, a3, a4 are constants,
with initial and boundary conditions,

u(x, 0) = g1(x), uy(x, 0) = g2(x),

u(0, y) = g3(x), ux(0, y) = g4(x). (29)

Apply the Laplace-Complex EE (Emad-Elaf) integral trans-
form with linearity and derivative properties on (28),

a0LCEE[uxx] + a1LCEE[uyy] + a2LCEE[ux]

+ a3LCEE[uy] + a4LCEE[u]

= LCEE[g(x, y)].

a0[p
2 u(p, q)− p LC1,c[u(0, y)]− LC1,c[ux(0, y)]]

+ a1[−q2n u(p, q)− iqn LE1,e[u(x, 0)]− LC1,e[uy(x, 0)]]

+ a2[p u(p, q)− LC1,c[u(0, y)]] + a3[iq
n u(p, q)

− LE1,e[u(x, 0)]] + a4u(p, q)

= g(p, q),

(a0p
2 − a1q

2n + a2p+ ia3q
n + a4) u(p, q)− a0 p g3

− a0 g4 − ia1 qn g1 − a1 g2 − a2 g3 − a3 g1 = g(p, q),

u(p, q) =

g(p, q) + a0(p g3 + g4) + a1(iq
ng1 + g2) + a2g3 + a3g1

a0p2 − a1q2n + a2p+ ia3qn + a4
.

(30)

Applying the inverse transform to equation (30),
we get a solution to the partial differential equation (28).

Example 2 :
We consider first-order non-homogeneous partial differential
equation given by

∂u(x, y)

∂x
+

∂u(x, y)

∂y
= (1 + x)ey (31)

with given conditions,

u(x, 0) = x, u(0, y) = 0. (32)

We apply Laplace-Complex EE (Emad-Elaf) integral trans-
form on (31),

LCEE

[
∂u(x, y)

∂x

]
+ LCEE

[
∂u(x, y)

∂y

]
= LCEE[(1 + x)ey][p u(p, q)− u1(q)]

+ [iqn u(p, q)− u2(p)],

1

p

1

iqn − 1
+

1

p2
1

iqn − 1
(p+ iqn) u(p, q)

− 1

p2
=

1

p

1

iqn − 1
+

1

p2
1

iqn − 1
,

(p+ iqn) u(p, q) =
1

p

1

iqn − 1
+

1

p2
1

iqn − 1
+

1

p2
,

(p+ iqn) u(p, q) =
p+ 1 + iqn − 1

p2(iqn − 1)
.

We have
u(p, q) =

1

p2(iqn − 1)
. (33)

Applying the inverse transform, we get a solution to the
partial differential equation (33) as,

u(x, y) = x ey (See Fig. 1). (34)
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Fig. 1. Graph of u(x, y) = x ey , ∀ x ϵ [−1, 1], y ϵ [−2, 2].

Example 3. (Telegraph Equation):

Consider the partial differential equation given by

∂2u(x, y)

∂y2
− ∂2u(x, y)

∂x2
+

∂u(x, y)

∂y
+ u(x, y) = 6 ex+2y,

(35)
with initial and boundary conditions,

u(x, 0) = ex, uy(x, 0) = 2ex, (36)

u(0, y) = e2y, ux(0, y) = e2y.

Apply the Laplace-Complex EE (Emad-Elaf) integral
transform on (35),

LCEE

[
∂2u(x, y)

∂y2

]
− LCEE

[
∂2u(x, y)

∂x2

]
+ LCEE

[
∂u(x, y)

∂y

]
+ LCEE[u(x, y)]

= 6 LCEE

[
ex+2y

]
,

[−q2n u(p, q)− iqnu2(p)− u4(p)]− [p2 u(p, q)

− p u1(q)− u3(q)] + [iqn u(p, q)− u2(p)] + u(p, q)

=
6

(p− 1)(iqn − 2)
,

(q2n + p2 − iqn − 1) u(p, q) = p

(
1

iqn − 2

)
+

1

iqn − 2

− iqn
(

1

p− 1

)
− 2

p− 1
− 1

p− 1
− 6

(
1

p− 1

1

iqn − 2

)
,

(q2n + p2 − iqn − 1) u(p, q) =
(q2n + p2 − iqn − 1)

(p− 1)(iqn − 2)
.

We have
u(p, q) =

1

(p− 1)(iqn − 2)
(37)

Applying the inverse transform, we get a solution to the
partial differential equation (37) as,

u(x, y) = ex+2y (See Fig. 2). (38)

Fig. 2. Graph of u(x, y) = ex+2y , ∀ x ϵ [−1, 1], y ϵ [0, 20].

VII. CONCLUSION

In this paper, we introduce a new integral transform called
the Laplace-Complex EE (Emad-Elaf) integral transform
(LCEE), and we obtained its fundamental properties. These
results of the LCEE transform are useful to solve various
partial differential equations, integral equations, and trans-
forms. There is further scope for developing this theory and
its corresponding applications.
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