
Abstract—For the problem of predefined-time control of 

nonlinear systems with unknown elements, a predefined-time 

non-singular terminal sliding mode control based on affective 

neural networks is proposed. Initially, a predefined-time 

sliding mode controller is designed using sliding mode control 

and predefined-time stability theory. Subsequently, unknown 

components in the nonlinear system are approximated using 

affective neural networks, and the introduction of a saturation 

function addresses the singularity issue inherent in traditional 

terminal sliding mode control. This is integrated with an 

equivalent controller to design a new controller. Finally, the 

proposed control methodology is thoroughly analyzed for 

stability using Lyapunov's stability theorem, and its 

effectiveness is validated through simulation examples. 

 
Index Terms—Predefined time control, Nonsingular control, 

Terminal sliding mode control, Nonlinear system, Neural 

network control 

 

I. INTRODUCTION 

 n the field of control, the theory of nonlinear systems 

control has been continuously evolving and improving. 

Although most studies have focused on the asymptotic 

stability or boundedness of the systems, in practical 

engineering applications, control objectives are often 

expected to be achieved within a limited timeframe [1]-[2]. 

Thus, precisely controlling a system to reach 

synchronization within a predefined period holds 

significant value. Compared to traditional non-finite time 

stability methods, finite-time stability has become 

particularly important in practical control systems where 

strict convergence time requirements are necessary due to 

its higher convergence precision and faster convergence 

speed. Although finite-time control strategies ensure that 

the system's state convergence time is bounded, the actual 

convergence time is limited by the system's initial state. 

This results in significant variability in convergence 

difficult to accurately predict the exact convergence time. 
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To address the dependency of finite-time stability on 

initial states, fixed-time stability has been proposed. Unlike 

finite-time stability, fixed-time stability is independent of 

the system's initial conditions, ensuring stability within a 

predetermined fixed time for any initial state, with an upper 

bound on the convergence time that can be calculated 

through parameters [3]-[4]. 

Although the convergence time for fixed-time stability is 

determinable, the complex relationship between control 

parameters and stabilization time often leads to overly 

conservative estimates of convergence time. To address this 

issue, predefined-time control was proposed. This strategy 

allows for the adjustment of predefined time parameters, 

thereby enhancing the certainty and stability of system 

convergence times. Reference [5] introduced a novel 

predefined-time neural learning control strategy aimed at 

synchronizing chaotic systems with unknown dynamics. 

This approach integrates control laws and parameter update 

rules, consistent with predefined-time Lyapunov theory, to 

ensure that synchronization errors converge rapidly and 

precisely to a minimal value near zero. The effectiveness of 

this method was validated through simulations, 

highlighting its robustness and adaptability in managing 

chaotic systems. In addressing the control issues of multi-

joint uncertain robots, input saturation effects often 

adversely impact system performance. To tackle this 

challenge, Reference [6] proposed an adaptive and practical 

predefined-time neural tracking control strategy. This 

approach is based on predefined-time stability design and 

employs radial basis function neural networks (RBFNN) to 

approximate the unknown dynamics of robot manipulators. 

By dynamically compensating for input saturation, this 

strategy ensures that tracking errors converge to a small 

neighborhood near the origin within a predefined time, 

irrespective of initial conditions. Numerical simulations 

and experimental results have demonstrated that this 

control strategy significantly enhances precision and 

responsiveness in robotic arms with up to nine joints, 

outperforming traditional methods. In response to the 

challenge of predefined-time smooth control under external 

disturbances, Reference [7] introduced a neural adaptive 

control method. This approach utilizes adaptive neural 

networks to predict and compensate for unknown 

nonlinearities and disturbances in robot manipulator arms, 

ensuring that the system states converge accurately to the 

desired trajectory within the set time. By avoiding 

singularity issues and dynamically adjusting control 

parameters to adapt to external changes, the strategy 

significantly enhanced the system's overall robustness. 

Reference [8] addressed the synchronization issue of 
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uncertain hyperchaotic systems and introduced a novel 

predefined-time sliding mode control (SMC) approach. 

This strategy involves a new sliding mode function and its 

corresponding controller that ensure errors in 

synchronization converge effectively to the sliding surface 

within a predefined time. The method excels in managing 

uncertainties, external disturbances, and time delays within 

the system, significantly enhancing the system's robustness 

and dynamic performance. Reference [9] proposed a novel 

adjustable predefined-time non-singular terminal sliding 

mode control (TSMC) method. This method innovatively 

combined adjustable predefined-time stability (PTS), radial 

basis function neural networks, and the robustness of 

sliding mode control. It effectively resolved the issues of 

singularity and unknown model dynamics that were present 

in traditional terminal sliding mode control methods. In 

addressing the control challenges of strict-feedback 

nonlinear systems, Reference [10] introduced a new 

adaptive command-filtered predefined-time fuzzy control 

approach. This method employed fuzzy logic systems to 

estimate uncertain functions within the control system, and 

integrated command filters to tackle the issue of 

"complexity explosion" commonly encountered in 

controller design. To effectively manage the errors 

introduced by command filtering, an improved command 

filter compensation mechanism was proposed, thereby 

enhancing the overall stability and response speed of the 

system.  

Based on the analysis and discussions above, this study 

developed a novel predefined-time non-singular terminal 

sliding mode control based on affective neural networks. 

The main innovations include: 

 (1) A new control strategy was designed based on the 

proposed predefined-time stability lemma, ensuring that the 

system achieves predefined-time stability during both the 

sliding and reaching phases. 

 (2) The study introduced a method incorporating 

saturation functions, which not only overcame the issue of 

singularity but also ensured the system reached the 

predefined-time stability.  

(3) A new controller based on the emotion neural 

network (ENN) was developed, addressing the challenge of 

unknown model information and ensuring that the system 

stably reached the sliding surface within the set time. 

Additionally, a complete proof of predefined-time stability 

based on the Lyapunov method was provided.  

I. PROBLEM STATEMENT 

A. Key Definitions and Lemmas 

Consider a class of nonlinear systems: 

( ), (0) 0x f x f= =                                 (1)                                                                 

Here, 
mx  represent the state vector of the system, 

and ( )f x  is a nonlinear continuous function. 

Lemma 1: [11] For system 1, there exists a Lyapunov 

function that satisfies the following conditions: 

( ) ( )
1 12 2

( ) ( ) ( )

c

V x V x V x
T

 


 



− + 
 − + + 

 
 

       (2) 

Here, 0, 0,0 1, 0cT       ,and 0  + . 

Then, system 1 can actually achieve predefined-time 

stability, stabilizing in the vicinity of the origin: 

( )
( ) ( )

1 1
2 2

lim min ,
1 1

c c

t T

T T
x V x

 

   

   →

− + 
     

        − −    
 

  (3) 

Here, ( )0,1  , within a bounded settling 

time cT T  . 

Lemma 2: [12] If
1 2, ..., nx x x  is a positive scalar 

and 0 1, 1c d    , then it follows that: 

1 1

n n

i i

i i

c c

x x
= =

 
  

 
    

1

1 1

n n
d

i i

i i

d d

n x x−

= =

 
 

 
 
                            (4) 

B. Problem Formulation 

A single-input single-output second-order nonlinear 

system can be described as follows: 

1 2

2 ( ) ( ) ( ) ( , )

x x

x f x g x u t x t

y x



=


= + +
 =

                                         (5) 

Here, 
1 2[ , ]Tx x x=  represents the state vector, ( )f x  is an 

unknown nonlinear function, ( )g x  is a known smooth 

nonlinear function, ( )u t  is the control input, ( , )x t  is the 

external disturbance, and y is the system output. 

Assumption 1: The system's uncertainties and 

disturbances are bounded, and there exists a known 

constant 0  such that ( , )x t   [13]-[14]. 

According to equation (5), the tracking error: 

1 1 1de x x= −                                                   (6) 

Here, 
1dx  is the expected value of

1x . 

II. PREDEFINED-TIME NON-SINGULAR SLIDING MODE 

CONTROL 

To ensure that the variable
1e  converges within the 

predetermined time during the sliding phase, The sliding 

surface is as follows: 

1

1

1 1
1

2 22 1

1 1 1

1 1

1
( )

2
s e e sign e

T



 



−−
− 

= +  
 

  

1

1

1 1
1

2 22 1

1 1

1 1

1
( )

2
e sign e

T



 



−+
+ 

+  
 

                 (7) 

Here, (0,1) ,
1 0T   , 0   , 0  . 

Take the derivative of s  

1

1

1 1
1

2 22

1 1 1 1

1 1

1
(1 )

2
s e e e

T



 




−−

− 
= + − 

 
  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−+

 
+ + 
 

                  (8) 

By integrating equations (5) and (6) into equation (8), the 

equivalent controller is obtained as follows: 
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1

1

1 1
1

2 22

1 1 1

1 1

1 1
( ) (1 )

( ) 2
eq du x f x e e

g x T



 




−−

−


 = − − −   



    

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−+ 
  − +   



     (9) 

From equation (9), it is evident that the presence of 

1 1e e −  in the equivalent controller introduces a singularity 

issue when
1 20, 0e e=  . Therefore, a saturation function is 

incorporated into the controller to address this singularity 

problem. The saturation function is defined as follows: 

( )
( )

x x h
sat x

hsign x x h


= 


                          (10) 

Then the equivalent controller can be written as: 

1

1

1 1
1

2 22

1 1 1

1 1

1 1
( ) (1 )

( ) 2
xeq du x f x sat e e

g x T



 




−−

−

  
   = − − −    

   

 

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−+ 
  − +   



        (11) 

In the controller, to approximate unknown terms, an 

ENN is employed. The ENN comprises four main parts: the 

hypothalamus, sensory cortex, amygdala, and orbitofrontal 

cortex (OFC) [15]. Within the hypothalamus layer, each 

node corresponds to a radial basis function, constructed as 

follows: 

( ) ( )
2

exp , 1,2,3...

T

i i

i

i

i j
b

   


 − −
 = − =
 
 

                (12) 

Here,  1 2 3, , ...
T

n    =  represents the input vector to 

the ENN, 
i  denotes the mean, j   is the number of nodes 

in the hypothalamus, and 
ib  is the standard deviation. 

The sensory cortex primarily functions as a distributor, 

relaying the vector of radial basis functions to the amygdala 

and the OFC. The outputs from the amygdala and OFC are 

as follows: 

1

j
T

a i i

i

E V V 
=

= =                                           (13) 

1

j
T

o i i

i

E W W 
=

= =                                                         (14) 

The total output of ENN is: 

( )T

a oE E E V W = − = −                                 (15) 

Here, 1 2, ,..., jV V V V =    represents the weights of the 

amygdala, and 1 2, ,..., jW W W W =    denotes the weights of 

the OFC. 

The unknown term ( )f x  is approximated using the ENN, 

expressed as follows: 
* * *( ) ( )Tf x V W  = − +                                 (16) 

* * * *( )b   = ，                                            (17) 

Here, * *,V W  represents the optimal weights,   denotes 

the minimum error, *  is the optimal mean error, and *b  

indicates the optimal standard deviation. 

ˆ ˆˆ ˆ( ) ( )Tf x V W = −                                              (18) 

* * * ˆˆ ˆ( ) ( )T TV W V W   = − − − +   

( )* * ˆ ˆˆ ˆ( ) ( )T TV W V W   = − + − − +   

( )ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )T T TV W V W V W    = − + − + − − +
 

  

ˆˆ ˆ( ) ( ) ( )T T TV W V W V W   = − + − + + −   

ˆ ˆ ˆ( ) ( )T TV W V W   = − + − +                        (19) 

Here, ˆˆ ˆ, ,V W   are the estimated values of 

* * *, ,V W  , * ˆV V V− = , * ˆW W W− = , * ˆ  − = ,

( )TV W  = − + . 

The nonlinear activation function is converted to a 

partially linear form by Taylor expansion, Perform a Taylor 

expansion of   at the point ( )* * * *b   = ，  [16]. 

1
ˆ

ˆ ˆ ˆ
,... ,...

m j

T

j jD R

 

  


  



=

   
=  

    

                         (20) 

1
ˆ

ˆ ˆ ˆ
,... ,...b

m j

T

j j

b b

D R
b b b

  
 

=

   
=  

    

                          (21) 

( ) ( )* *

ˆˆ

ˆˆ
h

b b

b b O
b 

 
  

 ==

 
= − + − +
 

  

b hD D b O  = + +                                         (22) 

Here,
hO represents the higher-order terms. Substituting 

equations (20)-(22) into equation (19) yields the following: 

   ( )ˆ ˆ ˆ( ) ( )T T

b hV W V W D D b O      = − + − + + +    (23) 

The overall system controller is as follows: 

1 ˆˆ ˆ( )
( )

T

xeq sw du u u x V W
g x

= + = − −


  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
sat e e

T



 




−−

−

 
  − −   
  

  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−+

 
− + 
 

  

2

2

1 1
1

2 22 1

2 2

1
s ( )

2
s ign s

T



 



−−
−


 + −   



 

2

2

1 1
1

2 22 1

2 2

1
s ( ) ( )

2
s ign s Ksign s

T



 



−+
+


  − −   



      (24) 

2

2

1 1
1

2 22 1

2 2

1 1
s ( )

( ) 2
swu s ign s

g x T



 



−−
−


 = −   



 

2

2

1 1
1

2 22 1

2 2

1
s ( ) ( )

2
s ign s Ksign s

T



 



−+
+


  − −   



   (25) 

Here, 
20 1  ,

2T  is a positive constant. 
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III. STABILITY ANALYSIS 

( )

1 1
1

2 22

1 1 1 1

1

1
, : (1 )

2
M e e e e

T



 
 



−−

−

  
   = −         

  (26) 

( )

1 1
1

2 22

1 1 1 1

1

1
, : (1 )

2
N e e e e

T



 
 



−−

−

  
   = −         

         (27) 

Lemma 3: Given the existing second-order nonlinear 

system, along with the designed sliding surface and 

controller, and employing the neural network proposed in 

this paper, the sliding variable and error converge within a 

predefined time. According to the lemma 1, the 

convergence time satisfies 1 2cT T T  + , ( )0,1   [17]-

[20]. 

Construct the Lyapunov function as follows: 

2

1

1

2
V s B= +                                                    (28) 

Here,
1 2 3

1 1 1
( ) ( ) ( )

2 2 2

T T TB tr V V tr W W tr  
  

= + + +  

4

1
( )

2

Ttr b b


 . The learning parameter 
1 2 3 4, , ,    is 

adjusted to the optimal solution based on the adaptation 

rate. 

Differentiating equation (28) yields: 

1V ss B= +                                                       (29) 

Substituting equations (6) and (8) into equation (29) 

results in: 

1V ss B= +   

1

1

1 1
1

2 22

1 1 1 1

1 1

1
( (1 )

2
s e e e

T



 




−−

− 
= + − 

 
  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 ) )

2
e e B

T



 




−+

 
+ + + 
 

  

1

1

1 1
1

2 22

1 1 1 1

1 1

1
( (1 )

2
ds x x e e

T



 




−−

− 
= − + − 

 
  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 ) )

2
e e B

T



 




−+

 
+ + + 
 

  

( ( ) ( ) ( ) ( , ) ds f x g x u t x t x= + + −   

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−−

− 
+ − 
 

  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 ) )

2
e e B

T



 




−+

 
+ + + 
 

        (30) 

Substituting the overall controller (24) into equation (30) 

yields: 

1 ( ( ) ( ) ( ) ( , ) dV s f x g x u t x t x= + + −   

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
e e

T



 




−−

− 
+ − 
 

  

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 ) )

2
e e B

T


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2
dx t x e e

T


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 


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1
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1
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2
e e B

T


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



−+ 
  + + +   



                           (31) 

When ( )1 1,e e  is within the range of M , it can be 

obtained as follows: 

1

1

1 1
1

2 22

1 1 1

1 1

1
(1 )

2
sat e e

T



 




−−

−

 
  −   
  

  

1

1
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T



 



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− 
= − 
 

                    (32) 

Thus, rearranging equation 31 yields: 

( )1
ˆ ˆ ˆ( ) ( )T T
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2
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1

2 22 1
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1
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− 

+ −  
 

  

2

2

1 1
1

2 22 1

2 2

1
s ( ) ( ) ( , )

2
s ign s Ksign s x t B

T



 



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+


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( )ˆ ˆ ˆ( ) ( )T T
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
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1
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2
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
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1 2 3 4

1 1 1 1 ˆˆ ˆ ˆ( ) ( ) ( ) ( )T T T Ttr V V tr W W tr tr b b 
   

+ − + − + − + −   

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )T T

bsV sW s V W D s V W D b    = − + − + − +   
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T






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


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−


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2

2
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T


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



−+
+


  − − +   



  

1 2 3

1 1 1ˆ ˆ ˆ( ) ( ) ( )T T Ttr V V tr W W tr  
  

+ − + − + −    

4

1 ˆ( )Ttr b b


+ −                                                (33) 

Set the adaptation rate as follows: 

1
ˆˆ max( ,0)V s=                                           (34) 

2
ˆŴ s =                                                         (35) 

( )3
ˆ ˆˆT V W sD   = −                                         (36) 

( )4
ˆ ˆ ˆT

bb V W sD = −                                            (37) 

Organize the relevant terms to obtain: 

( )1
ˆ max( ,0)V V s s= −  

   

2

2

1 1
1

2 22 1

0

2 2

1
( )

2
s s sign s

T



 



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−


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2
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

−+
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
  − −   



                   (38) 

Here, 0
ˆ ˆ( ) ( , )T

hV W O x t  = − + + , max( ,0)s s s−  , 

assuming 
0

ˆTV  +  , equation (38) is rewritten as: 

( )1V s K= −                                                (39) 

When K   , it can be obtained as follows: 

1 0V                                                                (40) 

Thus, the method proposed ensures the stability of the 

system. An analysis of the predefined time will now be 

conducted. 

Based on lemma 2 and Lyapunov function (28), equation 

(38) can be derived as follows: 
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                       (41) 

According to lemma 1, the designed closed-loop system 

can stabilize within a predefined time. 

( )
( ) ( )

1 1
2 2

2 2

1lim min ,
1 1t T

T T
x V x

 

   

   

− +

→

 
     

        − −    
 

 (42) 

Here, ( )0,1  , At the predefined time 2T T   , 

2 2

1 1 1 1

2 2 2 2
1 12 2

2 2 2 2

B B
T T

 
   

 

− −

− + = + ,   is widely used in 

the existing literature. Since   is a function related to the 

adaptive law of the ENN and its approximation properties 

are broadly similar to those of the RBFNN, it follows that 

   is bounded. 

When ( )1 1,e e  are within the range of N , it can be 

concluded that: 

1 1 1
0

( ) (0) ( )
t

e t e e d = +                                 (43) 

When 
1 0e  , 

1( )e t  is monotonically increasing, and 

when
1 0e   , 

1( )e t  is monotonically decreasing. According 

to reference [21], 
1 1( , )e e  will leave region M  and will not 

permanently stay within this region. The existence of 

region N  does not affect the stability analysis, and the 

introduced saturation function does not interfere with the 

performance of the controller, as the proportion of time 

passing through region N  during the convergence process 

is very small. 

In summary, the sliding variable converges to the zero 

domain within the predefined time 2T  . 

Lemma 4: When the terminal sliding mode surface s  
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converges near the zero point, the tracking error will 

converge to the origin within the predefined time
1T  [22]-

[26]. 

When 0s =  , it can be deduced that: 
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                 (44) 

Define the Lyapunov function as: 

2

2 1

1

2
V e=                                                        (45) 

Differentiating Equation (45) yields: 
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                        (46) 

Based on the aforementioned theorem, the tracking error 

converges within the predefined time 
1T . The proof 

concludes here. 

IV. SIMULATION AND DISCUSSION 

A simulation analysis using a single-joint robotic arm 

was conducted to validate the effectiveness of the proposed 

method[27]-[32]. The dynamics of the system are as 

follows: 

( )

1 2

2 2 1

1 1 1
cos d

x x

x dx mgl x u 
  

=



= − + + −


  (47) 

Here, In the system, 
1x = represents the output angle, 

2x =  the angular velocity, 
2

1

4

3
ml

 =  the moment of 

inertia of the robotic arm, with an arm length of 0.3l =  , a 

viscous friction coefficient of 2d =  , a mass of 1.5m =  , 

and the gravitational constant 10g = . 

The specific form of the unknown nonlinear friction 

model 
d   is as follows: 

( ) ( ) ( ) ( )2 2 2 21d c sx F x x F x  = + −     (48) 

2

2

2

1,
( )

0,

e

e

x D
x

x D


 
= 



       (49) 

Here, The coulomb friction upper limit is 0.6cF =  , the 

static friction upper limit is 1.0sF = , 0.025eD = , 

2 2 2( ) 0.6exp( 3.5 ( ))cF x x sign x= − ,
2 2( ) 1.0 ( )sF x sign x= ,  

the desired trajectory is set as sin( 3)dx t= , and the 

initial state of the system is
1

6
x


= ,

2 0x = . Controller 

parameters are selected as 
1 2 0.5T T= = and 

1 2 0.2 = = . 

To validate the advantages of the control method 

proposed in this paper, it was compared with a fixed-time 

control method. The parameters involved in the 

comparative method were determined by empirical and 

trial-and-error methods. 

The fixed-time control in the literature utilizes equations 

(50) and (51) [33]-[35]: 

1 2

1 1 1 1 2 1 1( ) ( )s e e sign e e sign e = + +                         (50) 

 1 1

1 1 1 1 1( ) ( ) ( )du g x f x x sat e e
−

= − − +   

2 31

2 2 1 1 3 ( )e e s sign s 
−

+ +   

4

4 2( ) ( )]s sign s D sign s+ +                                         (51) 

Here, 1 1

1 1

1 1
( 1)

2 2

z z
sign e

+ −
= + −  ,

10 z  , 

2 2

2 1

1 1
( 1)

2 2

z z
sign e

+ −
= + − ,

21 z ,

1 1

3 1

1 1
( 1)

2 2

v v
sign s

+ −
= + − ,

1v ,
2 1v  ,

2 2

4 1

1 1
( 1)

2 2

v v
sign s

+ −
= + −  ,

1  ,
2  ,

3  ,
4 0   ,

2 0D  . 

The simulation results are as follows: 

 
Fig. 1.  Position trajectory tracking curves 

 

Fig. 1 shows the angle trajectory tracking of a single 

robotic arm, and Fig. 2 presents the tracking error. From 

the figures, it is observed that the designed predefined-time 

control achieves good tracking of the desired value around 

0.2s, while the fixed-time control stabilizes the error after 

about 0.42s. This demonstrates that the predefined-time 

error converges faster and in a shorter time compared to 

fixed-time error, resulting in better tracking performance of 

the desired values. 
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Fig. 2.  Tracking error curve 

 

 
Fig. 3.  sliding surface curves 

 

 
Fig. 4.  Convergence time 

 

Fig. 3 shows that both control schemes exhibit relatively 

good control performance under steady-state conditions. 

However, when comparing the stabilization time and 

process, the designed predefined-time control converges to 

a sliding variable of zero faster and with less fluctuation. 

Fig. 4 displays the convergence time of the sliding mode 

variable and the actual performance of the tracking error 

under different control strategies. The actual convergence 

times all fall within the preset convergence time range, and 

this preset convergence time is not influenced by the 

controller parameters, making it more adaptable to the 

needs of actual control engineering. 

 
Fig. 5.  The weights of the OFC 

 

 
Fig. 6.  The weights of the amygdala 

 

Fig. 5 and Fig. 6 illustrate the changes in the weights of 

the amygdala and OFC in the proposed ENN. Fig. 5 shows 

fluctuations in the weight W of the OFC after it trends 

towards stability. Fig. 6 depicts the weight V of the 

amygdala, which continues to exhibit a slow increasing 

trend after becoming relatively stable. These observations 

confirm that the proposed controller aligns with the 

characteristics of the ENN. 

V. CONCLUSIONS 

A predefined-time non-singular terminal sliding mode 

control based on an ENN was proposed, ensuring that the 

tracking error is predefined-time stable during both the 

reaching and sliding phases. The ENN approximates 

unknown elements in the system model and utilizes a 

saturation function to address the singularity issues of 

terminal sliding mode. Finally, experimental simulations 

demonstrated that the proposed control method offers 

superior control performance and stability compared to 

other control methods. 
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