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Abstract—The concept of a tilting pair occupies a central
position in tilting theory. For a balanced pair (X ,Y), we
introduce the notions of ∗-selforthogonal module C and n-C-X
tilting pair with respect to (X ,Y). In this paper, we mainly
prove key properties of the former and establish equivalent
characterizations for the latter, thereby generalizing the main
results of classical tilting pairs.

Index Terms—balanced pair; ∗-selforthogonal module; n-C-
X tilting pair; ∗-acyclic complex.

I. INTRODUCTION

THE concept of balanced pairs was introduced by Chen
[1], who established sufficient conditions under which a

balanced pair of subcategories induces a triangle equivalence
between the homotopy categories of complexes. Later, in
2016, Li, Wang, and Hang [2] extended this notion to Abelian
categories by introducing cotorsion pairs relative to balanced
pairs. Subsequently, Dan and Yang [3] further explored the
relationships among balanced pairs, special approximations,
and cotorsion pairs. Building on these developments, Estrada,
Prez, and Zhu [4] explored in 2018 the connection between
balanced pairs and cotorsion triplets, providing a new char-
acterization of Abelian categories with enough projectives
and injectives. Further advancements were made in 2022
by Zhang, Liu, and Wei [5], who studied the interrelations
of balanced pairs across three Abelian categories while also
introducing the concept of relative tilting modules. Recently,
in 2024, Xu and Fu [6] introduced the notion of ideal bal-
anced pairs and presented their equivalent characterizations.
Under certain conditions, they also established a one-to-one
correspondence between ideal balanced pairs and balanced
pairs.

In recent years, balanced pairs have been widely applied
in relative homological algebra and tilting theory.

The concept of tilting pairs was first introduced by
Miyashita [7] in 2001, marking the beginning of a significant
research direction in homological algebra. Building on this
foundation, Wei and Xi [8] established several key proposi-
tions and provided a concise characterization of tilting pairs.
Further developments were made by Liao and Chen [9],
who expanded the theory by linking tilting pairs to con-
travariant finite subcategories and cotorsion pairs, revealing
deeper structural connections. Gorenstein tilting pairs were
introduced by Liu and Wei [10] in 2020, who demonstrated
that classical Gorenstein cotilting and tilting modules are
special cases within this broader framework. Later, Zhang,
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Ma, and Zhao [11] investigated the study of tilting pairs
and Wakamatsu tilting subcategories over triangular matrix
algebras, achieving this by constructing equivalence classes
and identifying specific generators.

Briefly, this paper offers several conclusions about ∗-
selforthogonal modules, explores the properties of n-C-X
tilting pairs, and delivers a crucial characterization of n-C-
X tilting pairs. Specifically, if C is ∗-selforthogonal and
C ∈ XPresn

CQ
(T ), then (C, T ) is an n-C-X tilting pair

if and only if XPresn
CQ

(T ) = T ∗⊥
⋂
CQ. These findings

generalize classical results on n-tilting pairs (see Corollary
4.1 for detailed proofs and extensions).

II. PRELIMINARIES

In this paper, we consistently maintain the standing as-
sumption that subcategories are closed under isomorphisms.
Let R be a fixed Artin k-algebra. By convention, all mod-
ules always mean finitely generated left R-modules and we
denote by R−mod the category of all finitely generated left
R−modules.

Let A be an Abelian category. Assume that X is a subcat-
egory of A and C(A) is the category of cochain complexes
over A. A complex A• in C(A) is called right (respectively,
left) X -acyclic if the complex HomA(X,A

•) ) (respectively,
HomA(A

•, X) ) is acyclic, for any X ∈ X . Assume that X
is a subcategory of R−mod. For any left R−mod M , there
exists a complex X• = · · · → X2 → X1 → X0 → M → 0
with Xi ∈ X for i ≥ 0 . If it is exact by applying the functor
HomR(X,−) for any X ∈ X , then, we call the complex a
X -resolution of M . A subcategory B of R−mod is said to be
contravariantly finite, if for any left R−mod A, it has a right
B- approximation, i.e., there is a homomorphism f : B → A
for some B ∈ B such that HomR(B

′, f) is surjective for any
B′ ∈ B. Dually, we have the definition of the X -coresolution
and covariantly finite subcategory.

Definition 2.1: ([5, Definition 2.1]) A pair (X ,Y) of
subcategories in an Abelian category A is called a balanced
pair if the following conditions are satisfied:

(1) X is contravariantly finite in A and Y is covariantly
finite in A.
(2) For any object M ∈ A ,there exists a X -resolution

X• →M of M such that it is left Y- acyclic.
(3) For any object N ∈ A ,there exists a Y-coresolution

N → Y • of N such that it is right X - acyclic.
If a complex A• is both right X -acyclic and left Y-acyclic,
then we call ∗-acyclic.

Let A be an Abelian category. A contravariantly finite
subcategory B of A is admissible provided that each right
B-approximation is surjective. Dually, a covariantly finite
subcategory C of A is coadmissible provided that each left
C-approximation is monomorphism. If X is admissible or Y
is coadmissible, we will call that a balanced pair (X ,Y) is
admissiable.
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Throughout this paper, we always assume that (X ,Y)
is an admissible balanced pair in R−mod. We denote the
projective (or injective) modules by ProjR (or InjR). As
is well-known, (ProjR, InjR) is a classical balanced pair.
Consider a ∗-acyclic complex 0 → A

i∗→ B
π∗→ C → 0,

where i∗ and π∗ are respectively called ∗-monomorphism
and ∗-epimorphism. Therefore, it is easy to know that ∗-
monomorphism must be monomorphism and ∗-epimorphism
must be epimorphism, that is, a ∗-acyclic complex must be
an exact sequence.

Lemma 2.1: ([2]) Let (X ,Y) be a balanced pair and
M,N ∈ A. For any i ∈ Z , there exists an isomorphism
of Abelian groups ExtiX (M,N) ∼= ExtiY(M,N). We denote
both Abelian groups by Exti∗(M,N).

Lemma 2.2: (1) The pushout of ∗-acyclic complexes are
still ∗-acyclic complexes.

(2) The pullback of ∗-acyclic complexes are still ∗-acyclic
complexes.

Proof: (1) Assume that 0 → A → B → C → 0 and
0 → A → D → E → 0 are ∗-acyclic complexes, then we
have the following pushout diagram, referring to Fig. 1.

FD C 00

BA C 00
α

EE

β

0

0

0

0

Fig. 1. The pushout diagram of morphisms α and β

Applying the functor HomR(X,−),∀X ∈ X to Fig. 1, we
want to prove that 0 → HomR(X,D) → HomR(X,F ) →
HomR(X,C) → 0 is exact. That is, for all f : X → C,
there exists a morphism g : X → F . Since the sequence
0 → HomR(X,A) → HomR(X,B) → HomR(X,C) → 0
is exact, there exists a morphism g′ : X → B. Let f ′ :
B → F , then we can construct a morphism g : X → F
such that g = f ′g′. Consequently, the middle row is exact
by applying the functor HomR(X,−). Subsequently, by the
Snake Lemma, we obtain the middle column is still exact
when this functor is likewise applied. Therefore, all rows
and columns in Fig. 1 are also exact by applying the functor
HomR(−, Y ),∀Y ∈ Y since the balanced pair (X ,Y) is
admissible [1, Corollary 2.3].

In other case, assume that the sequences 0→ A→ B →
C → 0 and 0→ B → D → E → 0 are ∗-acyclic complexes.
Consequently, we have another pushout diagram, as shown
in Fig. 2.

DA F 00

BA C 00
µ

E E

υ

0

0

0

0

Fig. 2. The pushout diagram of morphisms µ and υ

Similar to the proof of (1), we are able to deduce that all
rows and columns in Fig. 2 are ∗-acyclic complexes.

(2) Given that 0 → A → B → C → 0 and 0 →
D → E → C → 0 are ∗-acyclic complexes, we have the
subsequent pullback diagram, as illustrated in Fig. 3.

FA E 00

BA C 00
δ

D D

γ

0

0

0

0

Fig. 3. The pullback diagram of morphisms δ and γ

By applying the functor HomR(−, Y ),∀Y ∈ Y to
Fig. 3, we aim to demonstrate that the sequence 0 →
HomR(E, Y ) → HomR(F, Y ) → HomR(A, Y ) → 0 is
exact. This means for all s : A→ Y , there exists a morphism
t : F → Y . Since the sequence 0 → HomR(C, Y ) →
HomR(B, Y ) → HomR(A, Y ) → 0 is exact, we can find
a morphism t′ : B → Y . Let s′ : F → B, and consequently,
there exists a morphism t : F → Y such that t = t′s′.
Therefore, the middle row remains exact by applying the
functor HomR(−, Y ). Furthermore, by the Snake Lemma,
We obtain the middle column is still exact by applying the
functor HomR(−, Y ). Also, all rows and columns in Fig.
3 are also exact when the functor HomR(X,−),∀X ∈ X
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is applied since the balanced pair (X ,Y) is admissible [1,
Corollary 2.3].

In other case, let 0 → A → B → C → 0 and 0 → D →
E → B → 0 are ∗-acyclic complexes, we can construct
another pullback diagram, as shown in Fig. 4.

EF C 00

BA C 00
π

DD

ρ

0

0

0

0

Fig. 4. The pullback diagram of morphisms π and ρ

Similar to the proof of (2), we can conclude that all
rows and columns in Fig. 4 are ∗-acyclic complexes, thereby
completing the proof. �

Let C be an R−mod, and AddC denote the subcategory
consisting of all direct summands of finite direct sums of

copies of C. We use
∨

Add∗C to represent the category
cosisting of all moudles M for which there exists a ∗−acyclic
complex 0 → M → C0 → · · · → Cm → 0 for some

integer m with each Ci ∈ AddC. Let M ∈
∨

Add∗C,
we define codim∗C(M) as the minimal integer m such
that there exists a ∗-acyclic complex 0 → M → C0 →
· · · → Cm → 0 with each Ci ∈ AddC. Additionally,

∨
(Add∗C)n denotes the subcategory of all M ∈

∨
Add∗C

with codim∗C(M) 6 n. Dually,
∧

Add∗C is the category of
all moudles M for which there exists a ∗-acyclic complex
0 → Cm → · · · → C0 → M → 0 for some integer m with
each Ci ∈ AddC. The term dim∗C(M) is used to denote
the minimal integer m for which there exists a ∗-acyclic
complex 0 → Cm → · · · → C0 →→ M → 0 with each

Ci ∈ AddC. Similarly,
∧

(Add∗C)n denotes the category of

all M ∈
∧

Add∗C with dim∗C(M) 6 n.
We denote by C∗⊥ (resp., ⊥C∗) the subcategory of

all R−modules M such that Exti>1
∗ (C,M) = 0, (resp.,

Exti>1
∗ (M,C) = 0). An R−module C is referred to as

∗-selforthogonal if Exti>1
∗ (C,C) = 0. CQ (resp., QC )

is denoted as the full subcategory of C∗⊥ (resp., ⊥C∗)
consisting of all R−modules M such that there exists a
∗-acyclic complex · · · f2→ C1

f1→ C0
f0→ M → 0 (resp.,

0 → M
f0→ C0

f1→ C1
f2→ · · · ) with each Ci ∈ AddC

and each Im fi ∈ C∗⊥ (resp., Im fi ∈ ⊥C∗). It is obvious

that
∧

Add∗C ⊆ CQ ⊆ C∗⊥ (resp.,
∨

Add∗C ⊆ QC ⊆ ⊥C∗).

Remark 2.1: (1) If (X ,Y) = (ProjR, InjR), in fact, ∗-
selforthogonal modules are exactly selforthogonal modules
[8].

(2) If (X ,Y) = (GP(R),GI(R)), then ∗-selforthogonal
moudles are objects in Gorenstein orthogonal classes [10].

Let T ∈ R−mod. For every n ≥ 1, we denoted by
Xpresn

CQ(T ) the category of all R−modules M such that

there exists a ∗-acyclic complex 0 → X
fn→ Tn

fn−1→ · · · f1→
T1 → M → 0 with X ∈ CQ and each Ti ∈ AddT .
Apparently, Xpres1

CQ(T ) is closed under direct summands.

III. ∗-SELFORTHOGONAL MODULES

In this section, we primarily introduce two crucial the-
orems concerning ∗-selforthogonal modules. Firstly, Let us
recall the concept of C being closed under ∗-extensions: if
for any ∗-acyclic complex 0 → L → M → N → 0 with
L,N ∈ C, we can imply M ∈ C.

Lemma 3.1: Let C be ∗-selforthogonal. Then:
(1) QC is closed under ∗-extensions, kernels of ∗-

epimorphisms, finite direct sums and direct summands.
(1)′ CQ is closed under ∗-extensions, cokernels of ∗-

monomorphisms, finite direct sums and direct summands.

(2) Exti>1
∗ (U, V ) = 0 for any U ∈

∨
Add∗C and V ∈ C∗⊥.

(2)′ Exti>1
∗ (U, V ) = 0 for any U ∈ ⊥C∗ and V ∈

∧
Add∗C.

(3)
∨

(Add∗C)n = {X ∈ QC | Extn+1
∗ (Y,X) =

0 for allY ∈ ⊥C∗} = {X ∈ QC | Extn+1
∗ (Y,X) =

0 for allY ∈ QC}.
(3)′

∧
(Add∗C)n = {X ∈ CQ | Extn+1

∗ (X,Y ) =
0 for allY ∈ C∗⊥} = {X ∈ CQ | Extn+1

∗ (X,Y ) =
0 for allY ∈ CQ}.

(4)
∨

(Add∗C)n is closed under ∗-extensions, finite direct
sums and direct summands.

(4)′
∧

(Add∗C)n is closed under ∗-extensions, finite direct
sums and direct summands.

(5) Given any ∗-acyclic complex 0→ U → V →W → 0,
if V,W ∈ CQ and Ext1∗(C,U) = 0, then U ∈ CQ.
(5)′ Given any ∗-acyclic complex 0 → U → V → W →

0, if U, V ∈ QC and Ext1∗(W,C) = 0, then W ∈ QC .
Proof: Clearly, the statement corresponding to (i)′ is

dual of (i) for all values of 1 ≤ i ≤ 5, thus proving one case
is sufficient.

(1) Firstly, we prove that QC is closed under ∗-extensions.
Let 0→ L→M → N → 0 be a ∗-acyclic complex with

L,N ∈ QC , we aim to show that M ∈ QC . By assumption,
there exist two ∗-acyclic complexes 0→ L→ CL → A→ 0
and 0 → N → CN → B → 0 with CL, CN ∈ AddC
and A,B ∈ QC . Consider the following pushout diagram,
referring to Fig. 5.

According to Lemma 2.2, all rows and columns in Fig. 5
are ∗-acyclic complexes. Since N ∈ QC ⊆ ⊥C∗, it follows
that Ext1∗(N,CL) = 0, i.e., U ∼= CL⊕N . Consequently, we
have the following pushout diagram, referring to Fig. 6.

Since both 0 → N → CN → B → 0 and 0 → CL →
CL → 0 are ∗-acyclic complexes, the middle column is
also a ∗-acyclic complex. Since the upper row is a ∗-acyclic
complex, it follows by Lemma 2.2 that all rows and columns
in Fig. 6 are ∗-acyclic complexes. It follows that V ∈ ⊥C∗,
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UCL N 00

ML N 00
α

AA

β

0

0

0

0

Fig. 5. The pushout diagram of morphisms α and β

CL ⊕ CNM V 00

CL ⊕NM A 00
µ

B B

υ

0

0

0

0

Fig. 6. The pushout diagram of morphisms µ and υ

since A,B ∈ ⊥C∗ and ⊥C∗ is closed under ∗-extensions.
Observing that A,B ∈ QC and repeating the process, it is
straightforward to conclude that M ∈ QC . Hence QC is
closed under ∗-extensions.

Secondly, we need to prove that QC is closed under
kernels of ∗-epimorphisms.

Conside a ∗-acyclic complex 0 → L → M → N → 0
with M,N ∈ QC , our goal is to show that L ∈ QC . By
assumption, there exists a ∗-acyclic complex 0 → M →
C0 → B → 0 with C0 ∈ AddC and B ∈ QC . Based on this,
we can construct the following pushout diagram, referring to
Fig. 7.

Similarly, the right column and the middle row in Fig.
7 are also ∗-acyclic complexes by Lemma 2.2. It follows
that A ∈ QC since N,B ∈ QC and QC is closed under
∗-extensions. Consequently, we obtain that L ∈ QC . That is,
QC is closed under kernels of ∗-epimorphisms.

Finally, we prove that QC is closed under finite direct
sums and direct summands.

C0L A 00

ML N 00
f

B B

g

0

0

0

0

Fig. 7. The pushout diagram of morphisms f and g

Assume that M ∼= L⊕N . Consider the ∗-acyclic complex
0 → L → M → N → 0 with M ∈ QC , we want to show
that L ∈ QC . The sequence 0→M ∼= L⊕N → L⊕A→
B → 0 is a direct sum of two ∗-acyclic complexes by the
Fig. 7, hence it is a ∗-acyclic complex. Since M,B ∈ QC ,
we obtain that L ⊕ A ∈ QC and therefore A ∈ ⊥C∗. By
repeating this process with the sequence 0→ A→ L⊕A→
L → 0, we obtain that L ∈ QC . Therefore QC is closed
under finite direct sums and direct summands.

(2) If U ∈
∨

Add∗C, then there exists a ∗−acyclic complex
0 → U → C0 → · · · → Cn → 0 with each Ci ∈
AddC. Thus, for any V ∈ C∗⊥, by applying the functor
HomR(−, V ), we get Exti∗(U, V ) ∼= Exti+n∗ (Cn, V ) = 0
for any i ≥ 1 by dimension shift.

(3) For any X ∈
∨

(Add∗C)n, there exists a ∗-acyclic
complex 0 → X → C0 → · · · → Cn → 0 with
each Ci ∈ AddC. Consequently, for any Y ∈ ⊥C∗, by
applying the functor HomR(Y,−), we get Extn+1

∗ (Y,X) ∼=
Ext1∗(Y,Cn) = 0 for any n ≥ 1 by dimension shift.

On the other hand, for any X ∈ QC , then there ex-
ists a ∗-acyclic complex 0 → X

f0→C0
f1→C1

f2→· · · with
each Ci ∈ AddC and Imfi ∈ ⊥C∗. If Extn+1

∗ (Y,
X) = 0 for any Y ∈ ⊥C∗, then by applying the functor
HomR(Imfn+1,−), we obtain that Ext1∗(Imfn+1, Imfn) ∼=
Extn+1

∗ (Imfn+1, X) = 0 by dimension shift. It follows that
the sequence 0 → Imfn → Cn → Imfn+1 → 0 is split,
that is, Cn ∼= Imfn ⊕ Imfn+1. Hence Imfn ∈ AddC, i.e.,

X ∈
∨

(Add∗C)n.
(4) Let 0 → L → M → N → 0 be a ∗-acyclic complex.

If L,N ∈
∨

(Add∗C)n, then it follows from (1) that M ∈
QC . Moreover, by (3), we have Extn+1

∗ (Y,M) = 0 for all
Y ∈ QC . Consequently, by applying (3) again, we obtain

that M ∈
∨

(Add∗C)n. The remainder of the proof follows
similarly.

(5) Since W ∈ CQ, then we have a ∗-acyclic complex
0→W ′ → C ′ →W → 0 with W ′ ∈ CQ and C ′ ∈ AddC.
Note that Ext1∗(C,U) = 0. So we can construct the following
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pullback diagram, referring to Fig. 8.

U ⊕ C′U C′ 00

VU W 00
δ

W ′ W ′

γ

0

0

0

0

Fig. 8. The pullback diagram of morphisms δ and γ

It is evident that all rows and columns are ∗-acyclic
complexes in Fig. 8. Since V,W ′ ∈ CQ and CQ is closed
under ∗-extensions, then we have that U ⊕ C ′ ∈ CQ. Now
by (1)′, we conclude that U ∈ CQ. �

Let Q ⊆ R−mod be a subcategory closed under finite
direct sums and summands. Assume that M ∈ Q, then M
is called a relative generator of Q if for any Q ∈ Q, there
exists a ∗-acyclic complex 0 → Q′ → MQ → Q → 0 with
MQ ∈ AddM and Q,Q′ ∈ Q. Dually, M is called a relative
cogenerator of Q if for any Q ∈ Q, there exists a ∗-acyclic
complex 0→ Q→MQ → Q′ → 0 with MQ ∈ AddM and
Q′ ∈ Q.

For example, CQ and
∧

Add∗C both have a ∗-selforthogonal

relative generator C, while QC and
∨

Add∗C both have a ∗-
selforthogonal relative cogenerator C ′.

In other words, the lemma mentioned below is useful
in obtaining the ∗−acyclic complex we are aiming for
within certain-specific subcategories, hence we offer a more
thorough proof.

Lemma 3.2: Assume that Q ⊆ R−mod contains a ∗-
selforthogonal relative generator C and is closed under ∗-
extensions, finite direct sums and summands. Let X be
an R−mod such that there exists a ∗-acyclic complex
0 → X → Nm → · · · → N1 → Z → 0 for some m
and Z, with each Ni ∈ Q. Then:

(1) There exists a ∗-acyclic complex 0 → Um → Vm →
X → 0 for some Um ∈ Q, and for some Vm such that there
exists a ∗-acyclic complex 0 → Vm → Cm → · · · → C1 →
Z → 0 with each Ci ∈ AddC.
(2) If, moreover, Z ∈ Q too, then there exists a ∗-acyclic

complex 0 → U → V → X → 0 for some U ∈ Q, and for

some V ∈
∨

(Add∗C)m.
(3) There exists a ∗-acyclic complex 0 → X → U →

V → 0 for some U ∈ Q, and for some V such that there
exists a ∗-acyclic complex 0→ V → Cm−1 → · · · → C1 →
Z → 0 with each Ci ∈ AddC. If moreover, U ∈ Q, then V

can be taken in
∨

(Add∗C)m−1.

Proof: (1) We prove the statement by induction on m.
If m = 1, then we have a ∗-acyclic complex 0 → X →
N1 → Z → 0 with N1 ∈ Q for some X ∈ R−mod. Since
N1 ∈ Q, there exists a ∗-acyclic complex 0→ U1 → C ′ →
N1 → 0 with U1 ∈ Q and C ′ ∈ AddC. Consequently, we
can construct the following pullback diagram, referring to
Fig. 9.

C′V1 Z 00

N1X Z 00
α

U1U1

β

0

0

0

0

Fig. 9. The pullback diagram of morphisms α and β

We have the middle row is also a ∗-acyclic complex by
Lemma 2.2. Therefore, the left column is just the desired ∗-
acyclic complex by the snake lemma.

Assume that the result holds for m−1. We will show that
the conclusion holds for m.

Firstly, by the induction assumption, there exists a ∗-
acyclic complex 0 → U ′m−1 → V ′m−1 → X ′ → 0 for
some U ′m−1 ∈ Q, and for some V ′m−1 such that there
exists a ∗-acyclic complex 0 → V ′m−1 → C ′m−1 →
· · · → C ′1 → Z → 0 with each C ′i ∈ AddC. Sec-

ondly, define X ′ = Coker(X → Nm), we can construct the
following pullback diagram, referring to Fig. 10.

It is evident that both the middle column and the mid-
dle row are ∗-acyclic complexes. Since Nm, U

′
m−1 ∈

Q and Q is closed under ∗-extensions, it follows that
Y ∈ Q. Consequently, there exists a ∗-acyclic complex
0 → Um → CY → Y → 0 with CY ∈ AddC

and Um ∈ Q. So we have the following pullback diagram,
referring to Fig. 11.

It is obvious that the middle row is a ∗-acyclic complex
by Lemma 2.2, and it is straightforward to verify that the
left column is represents the desired ∗-acyclic complex by
the snake lemma.

(2) If Z ∈ Q, then there exists a ∗-acyclic complex
0 → Z ′ → C0 → Z → 0 with C0 ∈ AddC

and Z ′ ∈ Q. Define X1 = Ker(N1 → Z). We have the
following pullback diagram, referring to Fig. 12.

Again we observe that both the middle column and the
middle row are ∗-acyclic complexes. It follows that there
exists a ∗-acyclic complex 0 → X → Nm → · · · → N2 →
Y ′ → C0 → 0. Since N1, Z

′ ∈ Q, by Lemma 3.1, it follows
from the middle column that Y ′ ∈ Q. Hence by (1), we
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YX V ′m−1 00

NmX X ′ 00
δ

U ′m−1 U ′m−1

γ

0

0

0

0

Fig. 10. The pullback diagram of morphisms δ and γ

CYVm V ′m−1 00

YX V ′m−1 00
π

UmUm

ρ

0

0

0

0

Fig. 11. The pullback diagram of morphisms π and ρ

Y ′X1 C0 00

N1X1 Z 00
δ

Z′ Z′

γ

0

0

0

0

Fig. 12. The pullback diagram of morphisms δ and γ

obtain a ∗-acyclic complex 0 → U → V → X → 0 for
some U ∈ Q and for some V such that there exists a ∗-
acyclic complex 0 → V → Cm → · · · → C1 → C0 → 0

with each Ci ∈ AddC, i.e., V ∈
∨

(Add∗C)m.
(3) By (1), there exists a ∗-acyclic complex 0 → U ′ →

V ′ → X → 0 for some U ′ ∈ Q. And for some V ′ such
that there exists a ∗-acyclic complex 0 → V ′ → Cm →
· · · → C1 → Z → 0 with each Ci ∈ AddC. Denote
V = Coker(V ′ → Cm). Consequently we have the following
pushout diagram, referring to Fig. 13.

CmU ′ U 00

V ′U ′ X 00
µ

V V

υ

0

0

0

0

Fig. 13. The pushout diagram of morphisms µ and υ

The middle row is also a ∗-acyclic complex, so we can
get the right column is just the desired ∗-acyclic complex.

The rest of proof is similar to (2), so we omit it. �
The following is a dual statement of Lemma 3.2.
Lemma 3.3: Assume that C is ∗-selforthogonal and n is

an integer. Let X be an R−mod such that there exists a
∗-acyclic complex 0 → Z → N1 → · · · → Nm → X → 0

for some m and Z with each Ni ∈
∨

(Add∗C)n. Then there
exists a ∗-acyclic complex 0→ X → V → U → 0 for some

U ∈
∨

(Add∗C)n−1 and for some V such that there exists a
∗-acyclic complex 0 → Z → C1 → · · · → Cm → V → 0
with each Ci ∈ AddC.

IV. n-C-X TILTING PAIRS

In this section, we introduce the concept of n-C-X tilting
pair and explore related theorems and propositions. Firstly,
we recall the concept of n-tilting pairs.

Definition 4.1: Let R be an Artin algebra. A pair (C, T )
is said to be n-tilting provided

(1) C is selforthogonal;
(2) T is selforthogonal;

(3) T ∈
∧

(AddRC)n;

(4) C ∈
∨

(AddRT )n.
Definition 4.2: Let R be an Artin algebra. A pair (C, T )

is said to be n-C-X tilting provided
(1) C is ∗-selforthogonal;
(2) T is ∗-selforthogonal;
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(3) T ∈
∧

(Add∗C)n;

(4) C ∈
∨

(Add∗T )n.
From now on, we assume that C is ∗−selforthogonal and

n > 1 is a fixed integer. The following lemma tells that how
to compare the relationship between TQ and CQ.

Lemma 4.1: Let T be ∗-selforthogonal.

(1) If C ∈
∨

(Add∗T )n, then T ∗⊥ ⊆ C∗⊥.

(2) If T ∈ CQ and C ∈
∨

(Add∗T )n, then TQ ⊆ CQ.
In particular, if (C,T) is n-C-X tilting pair, then T ∗⊥ ⊆

C∗⊥ and TQ ⊆ CQ.

Proof: (1) Suppose that C belongs to
∨

(Add∗T )n.
Consequently, there exists a ∗-acyclic complex 0 →
C→T0→T1→· · ·→Tn → 0 with each Ti ∈ AddT . Given
that Exti≥1∗ (T,N) = 0 for any N ∈ T ∗⊥, we apply the con-
travariant functor HomR(−, N), and we get Exti∗(C,N) ∼=
Exti+n∗ (Tn, N) = 0 for any i > 0 by demension shift. Hence
T ∗⊥ ⊆ C∗⊥.
(2) Let M ∈ TQ, then there exists a ∗-acyclic complex
· · · f2−→ T1

f1−→ T0
f0−→ M → 0 with each Ti ∈ AddT and

Kerfi ∈ TQ. Since T ∈ CQ, we can apply Lemma 3.2
to the ∗-acyclic complex 0 → Kerf0 → T0 → M → 0.
Consequently, we obtain a ∗-acyclic complex

0→ H0 →M0 → Kerf0 → 0 (∗1)

with H0 ∈ CQ and M0 satisfying the following ∗-acyclic
complex

0→M0 → C0 →M → 0 (∗2)

where C0 ∈ AddC. Since H0 ∈ CQ ⊆ C∗⊥ , Kerf0 ∈ C∗⊥
by (1) and C∗⊥ is closed under ∗-extensions, therefore, we
have M0 ∈ C∗⊥. At this point, we can consider the following
pullback diagram, referring to Fig. 14.

YH0 T1 00

M0H0 Kerf0 00
δ

Kerf1 Kerf1

γ

0

0

0

0

Fig. 14. The pullback diagram of morphisms δ and γ

Based on Lemma 2.2, we ascertain that all sequences
are ∗-acyclic complexes. Since H0, T1 ∈ CQ and CQ is
closed under ∗-extensions, so we obtain that Y ∈ CQ
from the middle row. Thus, there exists a ∗-acyclic complex
0→ H1 → C1 → Y → 0 with H1 ∈ CQ and C1 ∈ AddC.

This leads us to consider the following pullback diagram, as
illustrated in Fig. 15.

C1M1 M0 00

YKerf1 M0 00
π

H1H1

ρ

0

0

0

0

Fig. 15. The pullback diagram of morphisms π and ρ

Since the middle column and the below row are ∗-
acyclic complexes, we infer that the middle row is a ∗-
acyclic complex. Hence, there exists a ∗-acyclic complex
0 → M1 → C1 → M0 → 0 where C1 ∈ AddC. From
this, we derive another ∗-acyclic complex

0→ H1 →M1 → Kerf1 → 0 (∗3)

with H1 ∈ CQ. And M1 satisfying a ∗-acyclic complex

0→M1 → C1 →M0 → 0 (∗4)

where C1 ∈ AddC.
By repeating (∗1) to (∗4), we get a ∗-acyclic complex

· · · g2−→ C1
g1−→ C0

g0−→ M → 0 with each Ci ∈ AddC and
Kergi =Mi ∈ C∗⊥. Thus, we conclude that M ∈ CQ. �

Proposition 4.1: Assume that (C, T ) is an n-C-X tilting
pair. The following are equivalent for an R−mod M :

(1) M ∈ TQ;
(2) M ∈ T ∗⊥

⋂
CQ;

(3) M ∈ XPresn
CQ

(T ).
Proof: (1) ⇒ (2). Since (C, T ) is an n-C-X tilting

pair, we obtain that M ∈ TQ ⊆ CQ from Lemma 4.1. So
M ∈ T ∗⊥

⋂
CQ, as M ∈ TQ ⊆ T ∗⊥.

(2) ⇒ (3). Firstly, we need to prove if M ∈ T ∗⊥
⋂
CQ,

then M ∈ XPres1
CQ

(T ). In fact, since M ∈ CQ, then there
exists a ∗-acyclic complex 0 → M1 → C0 → M → 0
with M1 ∈ CQ and C0 ∈ AddC. Given that (C, T ) is an
n-C-X tilting pair, we obtain that there exists a ∗-acyclic
complex 0 → C0 → T ′ → X → 0 with T ′ ∈ AddT

and X ∈
∨

Add∗T . This allows us to consider the following
pushout diagram, referring to Fig. 16.

It is obvious that the middle row and the right column are

∗-acyclic complexes. Since M ∈ T ∗⊥ and X ∈
∨

Add∗T ,
we get that Exti≥1∗ (X,M) = 0 by Lemma 3.1(2), then we
deduce from the right column that Y ∼=M⊕X . Furthermore,
Since Y ∈ XPres1

CQ
(T ) by the middle row, it necessarily

follows that M ∈ XPres1
CQ

(T ), too.
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T ′M1 Y 00

C0M1 M 00
µ

X X

υ

0

0

0

0

Fig. 16. The pushout diagram of morphisms µ and υ

Secondly, take M ∈ T ∗⊥
⋂
CQ, we have a ∗-acyclic

complex 0 → M ′ → TM → M → 0 with M ′ ∈ T ∗⊥ and
TM ∈ AddT , as M ∈ XPres1

CQ
(T ). Since T ∗⊥ ⊆ C∗⊥ and

AddT ⊆ CQ, it follows that M ′ ∈ T ∗⊥
⋂
CQ by Lemma

3.1(5). Now repeating the process to M ′, and so on, we
conclude that M ∈ XPresn

CQ
(T ).

(3) ⇒ (2). For any M ∈ XPresn
CQ

(T ), then there exists
a ∗-acyclic complex 0 → X→Tn→· · ·→ T1 → M → 0
where X ∈ CQ and each Ti ∈ AddT . It is evident
that M ∈ CQ by Lemma 3.1(1)′. Hence we just have
to prove that M ∈ T ∗⊥. Since T is ∗-selforthogonal
and by applying the functor HomR(T,−), we have that
Exti∗(T,M) ∼= Exti+n∗ (T,X) for all i > 1 by demension
shift. Since T is n-C-X tilting, then there exists a ∗-acyclic
complex 0 → Cn → · · · → C0 → T → 0. By applying the
functor HomR(−, X), we also obtain that Exti+n∗ (T,X) ∼=
Exti∗(Cn, X) = 0 for all i > 1 by demension shift. From the
above results we get Exti≥1∗ (T,M) = 0, that is, M ∈ T ∗⊥.
(2) ⇒ (1). In the process of the proof from (2) to (3),

we notice that there exists a ∗-acyclic complex · · ·T1
f1−→

T0 →M → 0 with each Ti ∈ AddT and each Im fi ∈ T ∗⊥
for any M ∈ T ∗⊥

⋂
CQ. It follows that M ∈ TQ by the

definition. �
It is straightforward to derive the following result.
Proposition 4.2: If XPresm

CQ
(T ) = T ∗⊥

⋂
CQ for some

m > 1, then T ∈ T ∗⊥
⋂
CQ. �

Proposition 4.3: If XPresn
CQ

(T ) = T ∗⊥
⋂
CQ, then

XPresn
CQ

(T ) = XPresn+1

CQ
(T ).

Proof: Clearly, we only need to prove that for any
M ∈ XPresn

CQ
(T ), there exists a ∗-acyclic complex 0 →

L → TM → M → 0 with L ∈ XPresn
CQ

(T ) and
TM ∈ AddT . In fact, if M ∈ XPresn

CQ
(T ), there exists

a ∗-acyclic complex 0 → N → T1 → M → 0 with
N ∈ XPresn−1

CQ
(T ) and T1 ∈ AddT . Since M,T1 ∈ CQ

and CQ is closed under cokernels of ∗-monomorphisms, we
have N ∈ CQ. Since M ∈ CQ, we can obtain another ∗-
acyclic complex 0 → L → TM → M → 0 with L ∈ CQ
and TM ∈ AddT . It follows that T is ∗-selforthogonal by

Proposition 4.2, and M ∈ T ∗⊥. Moreover, we have L ∈ T ∗⊥
since T ∗⊥ is closed under kernels of ∗-epimorphisms. Now
consider the following pullback diagram, referring to Fig. 17.

YL T1 00

TML M 00
δ

N N

γ

0

0

0

0

Fig. 17. The pullback diagram of morphisms δ and γ

It is manifest that the middle row and the middle column
are ∗-acyclic complexes. Given that TM , N ∈ CQ and
noticing that CQ is also closed under ∗-extensions, it follows
that Y ∈ CQ. Furthermore, since L ∈ T ∗⊥, we deduce from
the middle row that Y ∼= L ⊕ T1. As CQ is closed under
direct summands, it necessarily follows that L ∈ CQ. Con-
sequently, we conclude that L ∈ T ∗⊥

⋂
CQ = XPresn

CQ
(T ).

�
Proposition 4.4: If XPresn

CQ
(T ) = T ∗⊥

⋂
CQ, then

XPresn
CQ

(T ) = XPresn
CQ

(XPresn
CQ

(T )).
Proof: For any M ∈ XPresn

CQ
(XPresn

CQ
(T )), we have a

∗-acyclic complex 0 → X → Pn → · · · → P1 → M → 0
with each Pi ∈ XPresn

CQ
(T ) and X ∈ CQ. It is evident

that XPresn
CQ

(T ) = T ∗⊥
⋂
CQ is closed under ∗-extensions,

finite direct sums and summands. In addition, we assert that
T is ∗-selforthogonal by Proposition 4.2. Hence the category
XPresn

CQ
(T ) satisfies assumptions of Lemma 3.2, then we are

able to construct a ∗-acyclic complex 0→ U → V → X →
0 for some U ∈ XPresn

CQ
(T ) and for some V such that there

exists a ∗-acyclic complex 0 → V → T ′n → · · · → T ′1 →
M → 0 with each T ′i ∈ AddT . Since U,X ∈ CQ, CQ
is also closed under ∗-extensions, we have that V ∈ CQ.
Consequently, we establish that M ∈ XPresn

CQ
(T ). This is,

XPresn
CQ

(XPresn
CQ

(T )) ⊆ XPresn
CQ

(T ). The other inclusion
is obvious, since AddT ∈ XPresn

CQ
(T ).

Proposition 4.5: Assume that XPresn
CQ

(T ) = T ∗⊥
⋂
CQ.

If C ∈ Copresn(XPresn
CQ

(T )), then C ∈
∨

(Add∗T )n.
Proof: If C ∈ Copresn(XPresn

CQ
(T )), then there exists

a ∗-acyclic complex 0 → C → Pn → · · · → P1 → P0 → 0
with Pi ∈ XPresn

CQ
(T ) for 1 6 i 6 n. We obtain that

P0 ∈ XPresn
CQ

(T ) by assumptions and Proposition 4.4. By
applying Lemma 3.2 to XPresn

CQ
(T ), we get a ∗-acyclic

complex 0→ U → V → C → 0 for some U ∈ XPresn
CQ

(T )

and for some V ∈
∨

(Add∗T )n. Note that U ∈ C∗⊥ by
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assumption. Hence V ∼= C ⊕ U . Finally, we get that

C ∈
∨

(Add∗T )n by Lemma 3.1(4). �
Proposition 4.6: Assume that XPresn

CQ
(T ) = T ∗⊥

⋂
CQ.

If C ∈ Copresn(XPresn
CQ

(T )), then T ∈
∧

(Add∗C)n.
Proof: Firstly, we prove that Extn+1

∗ (T,M) = 0 for
any M ∈ CQ.

For each M ∈ CQ, then there exists a ∗-acyclic complex
0 → Z → C1 → · · · → Cn → M → 0 with Z ∈ CQ and

each Ci ∈ AddC. Then we have that each Ci ∈
∨

(Add∗T )n
by Proposition 4.5. Thus, we obtain a ∗-acyclic complex 0→
M → V → U → 0 for some U ∈

∨
(Add∗T )n−1 and for

some V such that there exists a ∗-acyclic complex 0→ Z →
T ′1 → · · · → T ′n → V → 0 with each T ′i ∈ AddT by Lemma
3.3. It is easy to see that V ∈ XPresn

CQ
(T ) = T ∗⊥

⋂
CQ.

So we conclude that Extn+1
∗ (T,M) ∼= Extn∗ (T,U) = 0 by

dimension shift and Lemma 3.1(3).
Since T ∈ CQ by Proposition 4.2, then there exists a ∗-

acyclic complex 0 → Xn+1 → Cn
fn−→ Cn−1 → · · ·

f1−→
C0 → T → 0 with Xn+1 ∈ CQ and each Ci ∈ AddC. We
also have that Ext1∗(Imfn, Xn+1) ∼= Extn+1

∗ (T,Xn+1) = 0
by dimension shift and the above arguments. It follows that

Im fn ∈ AddC. Thus, we get that T ∈
∧

(Add∗C)n. �
The primary outcome highlighted in this study introduces a

streamlined depiction of the n-C-X tilting pair, which stands
as the core discovery of our research.

Theorem 4.1: Assume that C is ∗-selforthogonal and C ∈
Copresn(XPresn

CQ
(T )). Then (C, T ) is an n-C-X tilting pair

if and only if XPresn
CQ

(T ) = T ∗⊥
⋂
CQ.

Proof: The only if part follows from Propositions 4.1
and the if part follows from Proposition 4.2,4.5,4.6. �

Corollary 4.1: ([8, Theorem 3.10]) Assume that C is
selforthogonal and C ∈ Copresn(Presn

CX (T )). Then (C, T )
is an n-tilting pair if and only if T⊥ ∩ CX = Presn

CX (T ).
Proof: Take (X ,Y) = (ProjR, InjR). By re-

mark 2.1 (1), we know that ∗-selforthogonal mou-
dles are exactly selforthogonal moudles, CQ = CX ,
T ∗⊥ = T⊥, and XPresn

CQ
(T ) = Presn

CX (T ). Hence,
Copresn(XPresn

CQ
(T )) = Copresn(Presn

CX (T )). Then, the
result holds by Theorem 4.1 immediately.
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