
Detecting a Five-petal Flower Shaped

Hyperchaotic Attractor in the Circular Restricted

Three Body Problem with Control and Its

Synchronization
P. Muthukumar, Member, IAENG, and J. Murugan

Abstract—In this study, a novel 5-D hyperchaotic system is
constructed by employing the circular restricted three body
problem (CRTBP). The existence of hyperchaos is confirmed
by Lyapunov exponents and shows that they have a symmet-
rical structure. The system exhibits a five-petal flower shaped
hyperchaotic attractor. The synchronization and control of two
identical hyperchaotic systems are accomplished via a tracking
control system. The simulation results showed the effectiveness
of the tracking and synchronization control systems. An inno-
vative property of the proposed system has been identified and
shows its ability to generate an infinitely many different-shaped
chaotic attractors with finite wings by varying only the system’s
parameters.

Index Terms—Hyperchaos, Lyapunov exponents, Tracking
control, Synchronization

I. INTRODUCTION

C
HAOS is a nonlinear activity that is extremely complex.

In [1], the physical manifestation of chaos and its

practical implications have been examined. The applications

of chaos in image processing [2], secure communication

[3], and nonlinear circuits [4], [5], [6] have been exten-

sively studied over the past three decades. In contrast to a

chaotic system, a hyperchaotic system is characterized by

the presence of multiple positive Lyapunov exponents and

the occurrence of more intricate dynamics and behaviors.

Furthermore, hyperchaotic systems were found to have better

dynamics and behaviors than chaotic systems because of

the high possibility of simultaneous exponential development

of their system’s states in multiple directions. It has been

identified in real-life systems such as financial systems

[7] memristive systems, and digital industrial supply chain

systems [8]. Within the domain of secure s-box generation

[9], it performs a more crucial function.

The dynamic characteristics of various physical systems or

processes have been extensively examined in the contempo-

rary nonlinear dynamics literature. Chaotic flow conditions

have been seen in practical systems such as vortex spin-

torque oscillators [10], double pendulums [11], stretch-twist-

fold flow systems [12], and four-disk dynamos [13]. Regulat-
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ing chaos in a higher-dimensional system is challenging. Lya-

punov stability theory is a proficient method for controlling

chaotic systems. The study in [14] examined an active control

strategy utilizing Lyapunov stability theory to attain synchro-

nization between two chaotic biological oscillators. In [15], a

singular controller was developed for the global asymptotic

synchronization of a unidirectionally coupled identical 3D

autonomous chaotic system. A nonlinear feedback controller

was developed for a brushless DC motor in [16].

The study of chaotic system synchronization has received

a lot of attention in the field of nonlinear research. How-

ever, synchronizing chaotic systems is difficult due to their

sensitivity to initial conditions. Pecora and Carroll [17] first

presented the concept of synchronizing two identical chaotic

systems with different starting conditions. However, several

ways for synchronizing chaotic (hyperchaotic) systems have

been devised. Tracking control has been used to synchronize

4D hyperchaotic systems [18], dislocated hybrid synchro-

nization [19], and a chaotic multi-agent supply chain network

[20]. In [21], researchers looked into multi-scale synchro-

nization of King Cobra chaotic systems. To synchronize hy-

perchaotic Lorenz-type systems, a fuzzy-based sliding mode

observer technique [22], [23] was used. Adaptive control

was used to manage the hyperchaotic [24] system. [25]

investigates the predictive control and synchronization of an

uncertain disturbed chaotic permanent-magnet synchronous

generator. In [26], chaos management and fractional in-

verse matrix projective difference synchronization on parallel

chaotic systems were studied. A tracking control technique

has been proposed in [27] for the synchronization of integer

order-fractional order chaotic systems. Additionally, an inte-

gral sliding mode control [28], [29] has been implemented

to synchronize multi-stable hyperchaotic two-scroll systems.

Furthermore, chaotic system control and synchronization are

heavily influenced by its potential applications in secure com-

munication [30], [31], [32], [33], [34] and signal encryption-

decryption [35].

A novel five-dimensional hyperchaotic Circular Restricted

Three-Body Problem (CRTBP) is formulated, leading to

the identification of a five-petal flower-shaped hyperchaotic

attractor. The Lyapunov exponents of the suggested system

exhibit a symmetrical form upon analysis. The proposed

hyperchaotic CRTBP is governed and synchronized by em-

ploying a tracking control technique. The system’s unique

feature has been identified. This research illustrates that

modifying the system’s parameters produces an unlimited

array of chaotic attractors with finite wings of various shapes.
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The subsequent sections of this paper are as follows:

Section 2 examines innovative hyperchaotic systems and

their dynamic characteristics. Section 3 delineates the con-

struction of a tracking controller designed for controlling

chaotic trajectories toward an unstable equilibrium. Section

4 establishes the methodology for synchronizing chaotic

systems through the application of tracking controllers and

corresponding numerical simulations to validate the effec-

tiveness of the theoretical analysis. Section 5 concludes the

paper.

II. SYSTEM DESCRIPTION AND THEIR DYNAMICAL

PROPERTIES

The restricted three body problem [36]: Two bodies re-

volve around their center of mass in circular orbits under the

influence of their mutual gravitational attraction and a third

body moves in the plane defined by the two revolving bodies,

which is attracted by two bodies but not influencing their

motion. Therefore, the restricted problem of three bodies is

to describe the motion of this third body.

Consider the equations of motion of CRTBP [37], [36],

which is described by

ẍ− 2ẏ = Ωx (1)

ÿ + 2ẋ = Ωy

where Ω = 1

2
(x2 + y2) + µ1

r1
+ µ2

r2
, r21 = (x− µ2)

2 + y2 and

r2
2
= (x+µ1)

2+y2. Here r1 and r2 correspond to distances

between the third body and primaries (two revolving bodies);

µ1 and µ2 are the mass parameters of the primaries. The

dependent variables x and y refer to the rotating system. For

instance, if they are constant then it is moving on a circle

with constant velocity.

The circular restricted three body problem (1) can be writ-

ten as a system of four first order differential equations[37]

ẋ1 = x2

ẋ2 = x1 + 2x4 −
µ1x1

r3
1

−
µ2x1

r3
2

(2)

ẋ3 = x4

ẋ4 = x3 − 2x2 −
µ1x3

r3
1

−
µ2x3

r3
2

where x = x1, ẋ1 = x2, y = x3, ẏ = x4. Note that, µ1

r3
1

and µ2

r3
2

are always positive because r1, r2 and µ1, µ2 are

represents the distances and mass parameters respectively.

The mass parameters µ1 and µ2 of primaries are connected

by the relation µ1 + µ2 = 1 and whose distance is also

unity[36].

For system (2), we have

∇.V =
∂ẋ1

∂x1

+
∂ẋ2

∂x2

+
∂ẋ3

∂x3

+
∂ẋ4

∂x4

= 0.

As a result, the dynamical system (2) is conservative. Further-

more, system (2) is unstable and has one trivial equilibrium

point.

Motivated by the aforementioned circular restricted three

body problem and its properties, a novel hyperchaotic system

with a new variable x5 is introduced without altering the

variables x1, x2, x3, x4 in (2), which is described by

ẋ1 = x2

ẋ2 = x1 + 2x4 −
µ1x1

r3
1

−
µ2x1

r3
2

ẋ3 = x4 (3)

ẋ4 = x3 − 2x2 −
µ1x3

r3
1

−
µ2x3

r3
2

ẋ5 = −2cx5

where (x1, x2, x3, x4, x5) ∈ R5 and c > 0 is the parameter

of the new system (3).

The new system (3) has one trivial equilibrium point

O(0, 0, 0, 0, 0) and it is unstable. Further, the system (3) is

symmetric about the transformation (x1, x2, x3, x4, x5) →

(−x1,−x2,−x3,−x4,−x5).
For system (3), one can have

∇.V =
∂ẋ1

∂x1

+
∂ẋ2

∂x2

+
∂ẋ3

∂x3

+
∂ẋ4

∂x4

+
∂ẋ5

∂x5

= −2c < 0.

When c > 0, the dynamical system (3) is dissipative.

Let a = µ1

r3
1

and b = µ2

r3
2

. Throughout this manuscript,

assume that 0 < a + b < 1 since the total masses of

primaries is unity and whose distance is also unity. For

every a, b, c > 0, the system (3) has two positive Lyapnuov

exponents, three negative Lyapnuov exponents and the sum

of all the Lyapnuov exponents is −2c. Hence, the new

system (3) exhibits hyperchaos. Fig. 1 depicts the Lyapnuov

exponents of the system (3) for random values of a, b and

c = 1.

For example, the value of the Lyapnuov exponents of

the system (3) for a = 0.5, b = 0.01, c = 1 are L1 =
0.0138, L2 = 0.0143, L3 = −0.0143, L4 = −0.0138 and

L5 = −2, which is represented in Fig. 1(A). The sum

of the Lyapnuov exponents is −2. It is worth noting that

the first four Lyapnuov exponents of the system (3) form a

symmetrical shape curve at 0 as seen in Fig. 1.

For a = 0.5, b = 0.01 and c = 1, the system (3) exhibits

hyperchaos and their phase portraits are shown in Fig. 2. The

five-petal flower shaped hyperchaotic attractor shown in x1-

x3 phase portrait of the Fig. 2. Further, the time history of

uncontrolled hyperchaotic system (3) is depicted in Fig. 3.

III. CONTROL DESIGN OF PROPOSED CRTBP

HYPERCHAOTIC SYSTEM

In this section, a tracking controller is designed to track

the states of the hyperchaotic system.

The system (3) with control inputs can be written as

ẋ1 = x2 + u1

ẋ2 = x1 + 2x4 − ax1 − bx1 + u2

ẋ3 = x4 + u3 (4)

ẋ4 = x3 − 2x2 − ax3 − bx3 + u4

ẋ5 = −2cx5 + u5

where a = µ1

r3
1

, b = µ2

r3
2

and U = (u1, u2, u3, u4, u5) is the

control inputs. The system parameters a and b were thought

to be unknown and would be estimated later. The design

approach is based on satisfying the error equation shown

below.

ėi + ki = 0, i = 1, 2, 3, 4, 5. (5)
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Fig. 1. Lyapunov exponents of the hyperchaotic system (3): (A) a = 0.5, b = 0.01, (B) a = 0.05, b = 0.5, (C) a = 0.005, b = 0.001 and
(D) a = 0.25, b = 0.15 for fixed value of c = 1.
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Fig. 2. Different phase portraits of the system (3) with parameters a = 0.5, b = 0.01 and c = 1.

where ei = ri − di, di is the desired state outputs of the

system states xi and ki’s are feedback gains.

The following result can be derived by substituting (4) in (5)

and solving for U .

u1 = ḋ1 + k1e1 − x2

u2 = ḋ2 + k2e2 − x1 − 2x4 + anx1 + bnx1

u3 = ḋ3 + k3e3 − x4 (6)

u4 = ḋ4 + k4e4 − x3 + 2x2 + anx3 + bnx3

u5 = ḋ5 + k5e5 + 2cnx5

where an, bn and cn are the estimates of a, b and c.

When (6) is substituted in (4), the controlled system is

ẋ1 = ḋ1 + k1e1

ẋ2 = ḋ2 + k2e2 − (a− an)x1 − (b− bn)x1

ẋ3 = ḋ3 + k3e3 (7)

ẋ4 = ḋ4 + k4e4 − (a− an)x3 − (b− bn)x3

ẋ5 = ḋ5 + k5e5 − 2(c− cn)x5

The following error dynamical system is derived by substi-

tuting xi = di − ei and ẋi = ḋi − ėi in (7)

ė1 = −k1e1

ė2 = −k2e2 + aex1 + bex1

ė3 = −k3e3 (8)

ė4 = −k4e4 + aex3 + bex3

ė5 = −k5e5 + 2cex5

where ae = a − an, be = b − bn and ce = c − cn are the

errors between actual and estimated values of a, b and c.

To stabilize the error dynamics of the system, the estimated

values should converge to the unknown real parameters a, b

and c.

Theorem 3.1: For all initial states X(0) =
(x1(0), x2(0), x3(0), x4(0), x5(0)) ∈ R5, the hyperchaotic

system (4) will approach global and exponential asymptotical

stabilized according to the tracking control law (6).

Proof: Consider the Lyapunov candidate function

V1 =
1

2
(e2

1
+ e2

2
+ e2

3
+ e2

4
+ e2

5
+ a2e + b2e + c2e) (9)

Here V1 is a positive definite function on R5. It is enough

to prove that V̇1 is negative definite.

V̇1 = e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5 + aeȧe

+beḃe + ceċe (10)

= e1(−k1e1) + e2(−k2e2 + aex1 + bex1)

+e3(−k3e3) + e4(−k4e4 + aex3 + bex3)

+e5(−k5e5 + 2cex5) + ae(−̇an)

+be(−̇bn) + ce(−̇cn)

= −k1e
2

1 − k2e
2

2 − k3e
2

3 − k4e
2

4 − k5e
2

5

+ae(e2r1 − e1e2 + e4r3 − e3e4 − ȧn)

+be(e2r1 − e1e2 + e4r3 − e3e4 − ḃn)

+ce(2e5r5 − e2
5
− ċn)

If ȧn = e2r1 − e1e2 + e4r3 − e3e4,

ḃn = e2r1 − e1e2 + e4r3 − e3e4 and ċn = 2e5r5 − e2
5

then

V̇1 = −k1e
2

1
− k2e

2

2
− k3e

2

3
− k4e

2

4
− k5e

2

5

= −eTP1e (11)

where P1 =













k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5













Thus P1 is positive definite, then V̇1 is negative definite for

all ki > 0 on R5.

By Lyapunov stability theory, x1(t) → 0, x2(t) →

0, x3(t) → 0, x4(t) → 0, x5(t) → 0 exponentially as t → ∞.

Consequently, the system (4) is globally and exponentially

stable.
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A. Numerical simulations

For k1 = 5, k2 = k3 = 1, k4 = 1.5 and k5 = 2, (6)

becomes

u1 = ḋ1 + 5e1 − x2

u2 = ḋ2 + e2 − 5.5x1 − 2x4

u3 = ḋ3 + e3 − x4 (12)

u4 = ḋ4 + 1.5e4 + 2x2 − 5.5x3

u5 = ḋ5 + 2e5 + 0.99x5

The controlled hyperchaotic system (4) provides

ẋ1 = −5x1

ẋ2 = −5.01x1 − x2

ẋ3 = −x3 (13)

ẋ4 = −5.01x3 − 1.5x4

ẋ5 = 0.99x5

The time history of the controlled hyperchaotic system is

depicted in Fig. 4.

IV. SYNCHRONIZATION OF PROPOSED CRTBP

HYPERCHAOTIC SYSTEMS

This section intended to synchronize two identical hyper-

chaotic systems. The system (3) is uncontrolled (master sys-

tem) and its state outputs should be tracked or synchronized

by the following slave system.

ẏ1 = y2 + u1

ẏ2 = y1 + 2y4 − ay1 − by1 + u2

ẏ3 = y4 + u3 (14)

ẏ4 = y3 − 2y2 − ay3 − by3 + u4

ẏ5 = −2cy5 + u5

where U = (u1, u2, u3, u4, u5) is the control inputs to be

designed later. The synchronization error is defined as

ei = yi − xi, (i = 1, 2, 3, 4, 5) (15)

The following error dynamical system is obtained by substi-

tuting (3) and (14) in (15)

ė1 = e2 + u1

ė2 = e1 + 2e4 − ae1 − be1 + u2

ė3 = e4 + u3 (16)

ė4 = e3 − 2e2 − ae3 − be3 + u4

ė5 = −2ce5 + u5

To stabilize the error dynamical system (16), the designed

control inputs were developed to satisfy the following stable

dynamics.

ėi + kiei = 0, i = 1, 2, 3, 4, 5 (17)

Theorem 4.1: With the following tracking control law, the

systems (3) and (14) will approach global and exponential

asymptotical synchronization.

u1 = −k1e1 − e2

u2 = −k2e2 − e1 − 2e4 + ane1 + bne1

u3 = −k3e3 − e4 (18)

u4 = −k4e4 + 2e2 − e3 + ane3 + bne3

u5 = −k5e5 + 2cne5

where k′is, i = 1, 2, 3, 4, 5 are the the feedback gains which

will be estimated in order to achieve synchronization.

Proof: Substitute (18) in (16), we get

ė1 = −k1e1

ė2 = −k2e2 − aee1 − bee1

ė3 = −k3e3 (19)

ė4 = −k4e4 − aee3 − bee3

ė5 = −k5e5 − 2cee5

where ae = a− an, be = b − bn, ce = c− cn
Consider the Lyapunov candidate function as

V2 =
1

2
(e21 + e22 + e23 + e24 + e25 + a2e + b2e + c2e) (20)

The time derivative of V2 becomes,

V̇2 = e1ė1 + e2ė2

+e3ė3 + e4ė4 + e5ė5

+aeȧe + beḃe + ceċe

= e1(−k1e1) + e2(−k2e2 − aee1 − bee1)

+e3(−k3e3) + e4(−k4e4 − aee3 − bee3)

+e5(−k5e5 − 2cee5) + ae(−ȧn)

+be(−ḃn) + ce(−ċe)

= −k1e
2

1 − k2e
2

2 − k3e
2

3 − k4e
2

4 − k5e
2

5

+ae(−e1e2 − e3e4 + ȧn) + be(−e1e2 − e3e4

+ḃn) + ce(−2e25 − ċn)

if ae = e1e2+e3e4−ȧn; be = e1e2+e3e4−ḃn; ce = 2e2
5
+ċn

then

V̇2 = −k1e
2

1
− k2e

2

2
− k3e

2

3
− k4e

2

4
− k5e

2

5

V̇2 = −eTP2e (21)

where P2 =













k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5













Thus P2 is positive definite, then V̇2 is negative definite for

all ki > 0 on R5.

By Lyapunov stability theory, e1(t) → 0, e2(t) → 0, e3(t) →
0, e4(t) → 0, e5(t) → 0 exponentially as t → ∞. As a

result, the system (3) and (14) are globally and exponentially

synchronized.

A. Numerical simulations

For k1 = 5, k2 = k3 = 1, k4 = 1.5 and k5 = 1, (18)

gives

u1 = −5e1 − e2

u2 = 9.01e1 − e2 − 2e4

u3 = −e3 − e4 (22)

u4 = 2e2 + 9.01e3 − e4

u5 = e5
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Fig. 3. The time response of uncontrolled hyperchaotic system (3).
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Fig. 4. The stabilization of hyperchaotic system (4)

The error system (19) can be written as

ė1 = −5e1

ė2 = 9.5e1 − e2

ė3 = −e3 (23)

ė4 = 9.5e3 − e4

ė5 = −e5

The synchronized master and slave systems is depicted in

Fig. 5 and their corresponding time variation of error system

(23) using tracking controller is interpreted in Fig. 6.

Remark 4.2: By changing the system’s parameters a and

b, the proposed 5-D hyperchaotic CRTBP generates distinct

chaotic attractors with a lot of wings. When compared to

any other chaotic systems that are currently in existence,

this is a very interesting and distinctive property of the

proposed system. For instance, the APPENDIX displays a

few dissimilar chaotic attractors that correspond to the system

(3) for various values of a and b such that 0 < a+ b < 500
when c = 1. Finally, we draw the conclude that the

special and unique feature of the proposed system is its

ability to generate an infinitely many different-shaped chaotic

attractors with finite wings by varying only the system’s

parameters.

V. CONCLUSIONS

A fascinating novel five-petal flower shaped 5D

hyperchaotic system in CRTBP has been proposed in

this paper. The necessary conditions for stabilization

and synchronization of the proposed uncontrolled system

have been established by a suitable tracking controller.

Lyapunov exponents and numerical simulations have been
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Fig. 5. The different phase portraits of synchronized master and slave systems.
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Fig. 6. Time history of synchronization error system (19)

demonstrated to validate the efficacy of the proposed theory.

Additionally, the special feature of the proposed system has

been made visible by adjusting the parameters of the system.
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