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Abstract—This research focuses on a spatially diffusive
predator-prey model incorporating the Dinosaur-type func-
tional response, subject to homogeneous Dirichlet boundary
constraints. The primary aim is to explore the emergence of
nontrivial, small-amplitude positive solutions branching from
the zero equilibrium and to assess their long-term stability.
To substantiate the theoretical findings, computational experi-
ments are performed. The theoretical framework is established
using LyapunovCSchmidt decomposition, the application of the
implicit function theorem, and linear approximation methods.

Index Terms—Predator-prey model, Dinosaur functional re-
sponse, Double bifurcation, Stability.

I. INTRODUCTION

ONE of the central topics in mathematical ecology [1] is
the study of the dynamic interplay between predators

and their prey. This field involves modeling and analyzing
population fluctuations of predator and prey species over time
within ecological systems. Mathematical models serve as
powerful tools for investigating the complexities of predator-
prey interactions and their implications for ecosystem sta-
bility and dynamics. Over the past three decades, both
mathematicians and biologists have increasingly explored
the intricate dynamics of these systems [2]–[7], reflecting
a growing awareness of the fundamental role predator-prey
relationships play in shaping ecological communities and
maintaining ecosystem stability. In 1995, Hsu and Huang [8]
proposed the following predatorCprey model:

ẋ = x

(
r1 −

x

K1

)
− b ϕ(x) y,

ẏ = y

(
r2 −

y

K2

)
+ c ϕ(x) y,

x(0) > 0, y(0) > 0,

(1)

where x(t) and y(t) denote the densities of prey and predator
populations, respectively. The parameters r1, r2, K1, K2,
b, and c are strictly positive constants. Here, K1 and K2

represent the environmental carrying capacities for the prey
and predator species, while r1 and r2 correspond to their
intrinsic growth rates. The function ϕ(x) captures the preda-
tor’s functional responsełthat is, the per capita rate of prey
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consumption. The coefficient b reflects the predation pressure
on prey, and c indicates the extent to which predation
contributes to predator reproduction or survival, including
its natural mortality adjustment.

With the progression of mathematical ecology, a wide
range of ecologically relevant functional responses have been
introduced, such as the Holling Types I-IV, the Beddington-
DeAngelis (B-D) formulation [10], the Ivlev model [11],
the Crowley-Martin (C-M) type [12], and the Hassell-Varley
response [13]. The Dinosaur functional response, considered
an improvement or simplification of the Ivlev-type response
[14], provides a refined model for describing changes in
prey population density. Unlike the Ivlev-type functional
response, (1 − e−kx), the Dinosaur reaction term more
effectively captures prey behavior by accounting for their
defensive adaptations when their population density exceeds
a certain threshold. This adaptive strategy enhances their
ability to evade or camouflage themselves. By incorporating
the Dinosaur functional response, defined as φ(x) = xe−kx

[14], [15], system (1) can thus be reformulated as follows:
ẋ = x(r1 − x

K1
)− bxe−kxy,

ẏ = y(r2 − y
K2

) + cxe−kxy,

x(0) > 0, y(0) > 0

(2)

Taking spatial heterogeneity into consideration, the reaction-
Cdiffusion counterpart of system (2) can be expressed as

∂u

∂t
= ∆u+ u

(
a− u− bve−ku

)
, x ∈ Ω, t > 0,

∂v

∂t
= ∆v + v

(
c− v + due−ku

)
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) 6≡ 0, x ∈ Ω,
(3)

where u(t, x) and v(t, x) represent the spatiotemporal den-
sities of prey and predator populations, respectively. The
operator ∆ denotes the Laplacian acting on the spatial
domain Ω, a bounded region in Euclidean space with smooth
boundary ∂Ω. The coefficients a, b, c, d, and k are all
strictly positive constants. Analyzing steady states in such
reactionCdiffusion models has become a central theme in
contemporary mathematical ecology. In the present work, we
focus on the equilibrium solutions associated with system (3),
which are governed by the following elliptic system:

−∆u = u(a− u− bve−ku) x ∈ Ω,

−∆v = v(c− v + due−ku) x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4)
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Building upon the foundational work of Feng et al. [14],
who utilized bifurcation and perturbation methods to analyze
single bifurcations emerging near semi-trivial steady states,
the present study turns its attention to the existence and
stability of double bifurcation phenomena in the vicinity of
the trivial (zero) equilibrium. The contributions of Feng et
al. [14] concerning the existence, uniqueness, multiplicity,
and stability of single bifurcating branches form the theoret-
ical underpinning for the current investigation.

Departing from conventional approaches, this study in-
vestigates the existence and asymptotic stability of small-
amplitude positive solution branches bifurcating from the
trivial equilibrium of system (4). By leveraging advanced an-
alytical tools such as LyapunovCSchmidt reduction, the im-
plicit function theorem, and linearization techniques, we pro-
vide novel insights into population persistence and stability.
The results indicate that once a critical parameter threshold
is surpassed, further parameter enhancement contributes to
the stabilization of population levels. These findings enhance
the theoretical framework of predatorCprey interactions and
introduce versatile analytical methods that can be extended
to a wide range of ecological models, offering a foundation
for continued exploration in spatially structured population
dynamics.

The organization of this paper is as follows: Section II
provides the essential background to contextualize the re-
search motivation and methodological innovations of the
present work. Sections III and IV are devoted to analyzing
the existence and asymptotic stability of double bifurcation
phenomena in system (4). Section V highlights the princi-
pal outcomes of numerical simulations. Finally, Section VI
summarizes the main conclusions and discusses potential
directions for future research.

II. PRIOR ESTIMATES OF POSITIVE SOLUTIONS

Now, we establish certain fundamental principles to facil-
itate the interpretation of the research’s motivation and in-
novation in this paper. Let E = φ ∈ C2,α(Ω̄,R) : φ|∂Ω = 0,
where E denotes a Banach space. Assume that q ∈ Cα(Ω̄;R)
with 0 < α < 1. Consider the following eigenvalue problem:

−∆ϕ+ q(x)ϕ = λϕ, x ∈ Ω, ϕ = 0, x ∈ ∂Ω.

Let λ1(q) denote the principal (smallest) eigenvalue asso-
ciated with this problem. Then λ1(q) depends continuously
on the function q, is simple (i.e., algebraic multiplicity one),
and its corresponding eigenfunctions do not change sign in
Ω. Furthermore, if q1 ≤ q2 with q1 6≡ q2, then it holds that
λ1(q1) < λ1(q2). For convenience, we write λ1 := λ1(0),
and denote by ϕ1 the eigenfunction corresponding to λ1,
normalized so that

∫
Ω
ϕ2

1 dx = 1. It is known that ϕ1 is
strictly positive throughout Ω.

Consider the equation

(−∆ + q)w = Λw − w2, x ∈ Ω, w|∂Ω = 0, (5)

where Λ ∈ R+ and q ∈ Cα(Ω̄;R). A solution w is called a
positive solution to equation (5) if w > 0 in Ω and w|∂Ω = 0.

Lemma 1. [16] If Λ > λ1(q), then system (5) possesses
a unique positive solution, denoted as θΛ(q). Conversely, if
Λ ≤ λ1(q), then θΛ(q) = 0; in the case where q = 0, let
θΛ(0) = θΛ. For a fixed q, θΛ(q) exhibits continuity and

strict monotonicity throughout (λ1(q),∞) with respect to Λ.
Furthermore, θΛ(q) is globally asymptotically stable.

Theorem 2. If (u, v) is a positive solution to system (4),
then:

(1) (a, c) satisfies a > λ1 and c > λ1 − d
ek ;

(2) (u, v) satisfies 0 < u ≤ θa < a and 0 ≤ θc ≤ v ≤
θc+ d

ek
< c+ d

ek , for any x ∈ Ω.

Proof: Let (u, v) be a positive solution to system (4).
By considering the first equation of system (4) and Lemma
1, we obtain that

a = λ1(u+ bve−ku) > λ1(0) = λ1. (6)

Similarly, considering the second equation of system (4) and
Lemma 1, we deduce that

c = λ1(v − due−ku).

Let h(u) = ue−ku. It is readily observed that h′(u) > 0
holds for 0 ≤ u < 1/k, while h′(u) < 0 for u > 1/k, indi-
cating that the function h(u) achieves its global maximum at
u = 1/k. Moreover, we have h(1/k) = 1

ek . Thus, it follows
that

c = λ1

(
v − due−ku

)
> λ1

(
− d

ek

)
= λ1 −

d

ek
. (7)

Consider the following three equations:

−∆w1 = aw1 − w1
2, x ∈ Ω, w1|∂Ω = 0, (8a)

−∆w2 = cw2 − w2
2, x ∈ Ω, w2|∂Ω = 0, (8b)

−∆w2 = (c+
d

ek
)w2 − w2

2, x ∈ Ω, w2|∂Ω = 0. (8c)

Based on Lemma 1 and inequality (6), equation (8a) admits
a unique strictly positive solution, denoted by θa. Likewise,
in light of Lemma 1 and inequality (7), equation (8b) has a
unique non-negative solution θc, while equation (8c) admits
a unique positive solution θc+ d

ek
.

From the first equation in system (4), we observe that

−∆u = u(a− u− bve−ku) < u(a− u).

Utilizing the comparison principle for elliptic equations, it
follows that u ≤ θa. Examining the second equation of
system (4), we find

v(c−v) ≤ −∆v = v
(
c− v + due−ku

)
≤ v

(
c+

d

ek
− v
)
.

These inequalities imply that the solution v is bounded from
above by θc+ d

ek
and from below by θc. Similarly, it holds that

θc ≤ v ≤ θc+ d
ek

. Utilizing the maximum principle for elliptic
equations, we conclude that θa < a and θc+ d

ek
< c+ d

ek . This
completes the proof.

III. EXISTENCE OF DOUBLE BIFURCATION

In various fields, the concept of double bifurcation is
pivotal as systems transition from a singular state to a
bifurcation that yields two states, potentially leading to
increased complexity and resulting in diverse outcomes such
as stability, oscillation, or chaos [17], [18]. This phenomenon
plays a crucial role in understanding and predicting system
behaviors.
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This section is devoted to analyzing the existence of posi-
tive solutions to system (4) that bifurcate from the trivial so-
lution. The analysis is conducted via the Lyapunov-Schmidt
reduction method, following the approaches outlined in [9],
[19].

Assume p > N . Define the Banach spaces X and Y :

X = [W 2,p ∩W 1,p
0 ]2, Y = [Lp]2.

Next, define the operator F : R×R×X → Y :

F (a, c, u, v) =

(
−∆u− u(a− u) + buve−ku

−∆v − v(c− v)− duve−ku
)
.

Then the system (4) is equivalent to the nonlinear equation

F (a, c, u, v) = 0. (9)

Let
L(u, v) =

(
−∆u− λ1u
−∆v − λ1v

)
,

G(a, c, u, v) =

(
(λ1 − a)u
(λ1 − c)v

)
and

H(u, v) =

(
u2 + buve−ku

v2 − duve−ku
)
.

Then equation (9) is transformed into

L(u, v) +G(a, c, u, v) +H(u, v) = 0. (10)

Let N(L) denote the null space, R(L) the range, and L∗

the adjoint of the linear operator L. It can be readily verified
that:

N(L) = N(L∗) = span
{

(ϕ1, 0)
T
, (0, ϕ1)

T
}
.

Therefore, L is a Fredholm operator, enabling the decompo-
sition of the spaces X and Y into distinct subspaces.

X = X1 ⊕X2, Y = Y1 ⊕ Y2, (11)

where X1 = Y1 = N(L), Y2 = R(L). Define projection
operators P : Y → Y1 and Q .

= I − P : Y → Y2, where

P (U) = (

∫
Ω

ϕ1udx,

∫
Ω

ϕ1vdx)Tϕ1,∀U
.
= (u, v) ∈ Y.

Thus, the system denoted by (4) is effectively transformable
into an equivalent nonlinear system of equations:{

PF (a, c, u, v) = 0,

QF (a, c, u, v) = 0.
(12)

Given that (u, v) ∈ X , and in light of the space decom-
position articulated in (11), the components u and v can be
represented as follows:

u = α(ϕ1 + φ), v = β(ϕ1 + ψ),

where α, β ∈ R, (φ, ψ) ∈ X2. Therefore,

F (a, c, u, v) = L(α(ϕ1 + φ), β(ϕ1 + ψ))
+G(a, c, α(ϕ1 + φ), β(ϕ1 + ψ))
+H(α(ϕ1 + φ), β(ϕ1 + ψ)).

Denote K(φ, ψ; a, c, α, β)
.
= QF (a, c, u, v), then

K(φ, ψ; a, c, α, β)
.
= L(α(ϕ1 + φ), β(ϕ1 + ψ))

+QG(a, c, α(ϕ1 + φ), β(ϕ1 + ψ))
+QH(α(ϕ1 + φ), β(ϕ1 + ψ)).

Therefore, QF (a, c, u, v) = 0, as detailed in (12), is equiv-
alent to the nonlinear equation:

K(φ, ψ; a, c, α, β) = 0. (13)

Obviously K(0, 0;λ1, λ1, 0, 0) = 0. Now we calculate the

product of the matrix
(

1/α 0
0 1/β

)
and the Frechet

derivative of K(φ, ψ; a, c, α, β). Simple calculations yield
that (

1/α 0
0 1/β

)
K(φ,ψ)(φ, ψ; a, c, α, β)

= L+

(
A1 A2

A3 A4

)
+

(
B1 B2

B3 B4

)
,

where A2 = A3 = 0 and

A1 = (λ1 − a)[1− ϕ1

∫
Ω
ϕ1 • dx],

A4 = (λ1 − c)[1− ϕ1

∫
Ω
ϕ1 • dx],

B1 = 2αφ+ bβ(ϕ1 + ψ)[1− kα(ϕ1 + φ)]e−kα(ϕ1+φ)

− ββϕ1

∫
Ω
ϕ1[1− kα(ϕ1 + φ)]e−kα(ϕ1+φ)dx,

B2 = bβ(ϕ1 + φ)e−kα(ϕ1+φ)

− bβϕ1

∫
Ω
ϕ1(ϕ1 + φ)e−kα(ϕ1+φ)dx,

B3 = −dα(ϕ1 + ψ)[1− kα(ϕ1 + φ)]e−kα(ϕ1+φ)

− dαϕ1

∫
Ω
ϕ1[1− kα(ϕ1 + φ)]e−kα(ϕ1+φ)dx,

B4 = 2βψ − dα(ϕ1 + φ)e−kα(ϕ1+φ)

− dαϕ1

∫
Ω
ϕ1(ϕ1 + φ)e−kα(ϕ1+φ)dx.

Therefore,(
1/α 0

0 1/β

)
K(φ,ψ)(0, 0;λ1, λ1, 0, 0)

=

(
−∆− λ1 0

0 −∆− λ1

)
= L.

It is clear that the mapping L : X2 → Y2 defines a
homeomorphism. Applying the implicit function theorem, we
confirm the existence of a constant δ0 > 0 and a continuously
differentiable function

φ̄
.
= φ̄(a, c, α, β), ψ̄

.
= ψ̄(a, c, α, β)

such that when |a − λ1|, |c − λ1|, |α|, |β| < δ0, they satisfy
equation (13), and

φ̄(λ1, λ1, 0, 0) = 0, ψ̄(λ1, λ1, 0, 0) = 0.

Assume |a− λ1|, |c− λ1|, |α|, |β| < δ0 and let

ū = α(ϕ1 + φ̄), v̄ = β(ϕ1 + ψ̄).

From the definition of the projection operator P , we derive
the expression for T (a, c, α, β) as given by (14). Obviously
T (λ1, λ1, 0, 0) = 0. Similarly, (15) holds, where

C1 =
∫

Ω
ϕ1[−ϕ1 − φ̄+ (λ1 − a)φ̄a]dx,

C2 = (λ1 − a)
∫

Ω
ϕ1φ̄cdx,

C3 = (λ1 − c)
∫

Ω
ϕ1ψ̄adx,

C4 =
∫

Ω
ϕ1[−ϕ1 − ψ̄ + (λ1 − c)ψ̄c]dx,

D1 =
∫

Ω
ϕ1{2α(ϕ1 + φ̄)φ̄a

+ bβφ̄ae
−kα(ϕ1+φ̄)[1− kα(ϕ1 + φ̄)](ϕ1 + ψ̄)

+ bβ(ϕ1 + φ̄)e−kα(ϕ1+φ̄)ψ̄a}dx,
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D2 =
∫

Ω
ϕ1{2α(ϕ1 + φ̄)φ̄c

+ bβφ̄ce
−kα(ϕ1+φ̄)[1− kα(ϕ1 + φ̄)](ϕ1 + ψ̄)

+ bβ(ϕ1 + φ̄)e−kα(ϕ1+φ̄)φ̄c}dx,

D3 =
∫

Ω
ϕ1{2β(ϕ1 + ψ̄)ψ̄a

− dαφ̄ae−kα(ϕ1+φ̄)[1− kα(ϕ1 + φ̄)](ϕ1 + ψ̄)

− dα(ϕ1 + φ̄)e−kα(ϕ1+φ̄)ψ̄a}dx,
D4 =

∫
Ω
ϕ1{2β(ϕ1 + ψ̄)ψ̄c

− dαφ̄ce−kα(ϕ1+φ̄)[1− kα(ϕ1 + φ̄)](ϕ1 + ψ̄)

− dα(ϕ1 + φ̄)e−kα(ϕ1+φ̄)ψ̄c}dx.
Hence,(

1/α 0
0 1/β

)
T(a,c)(λ1, λ1; 0, 0) =

(
−ϕ1 0

0 −ϕ1

)
.

By applying the implicit function theorem again, it is estab-
lished that there exists a constant δ1 > 0 and continuously
differentiable functions ā .

= ā(α, β), c̄
.
= c̄(α, β) such that

PF (ā, c̄, α(ϕ1 + φ̄(ā, c̄, α, β)), β(ϕ1 + ψ̄(ā, c̄, α, β))) = 0
and ā(0, 0) = λ1, c̄(0, 0) = λ1. According to Theorem 2, for
fixed values of d, e and k, when a, c+ d

ek > λ1, 0 < α, β <
δ1, the expression in (16) represents a positive bifurcation
solution near the zero solution of the system outlined in (4).
Therefore, the main theorem of this paper can be stated as
follows:

Theorem 3. The system described in (4) displays positive
bifurcation solutions in the vicinity of the zero solution.
Additionally, for appropriately small positive constants α and
β, the bifurcation solutions can be expressed as

u(α, β) = α(ϕ1 + φ̄(ā(α, β), c̄(α, β), α, β)),

v(α, β) = β(ϕ1 + ψ̄(ā(α, β), c̄(α, β), α, β)).

Moreover, φ̄(λ1, λ1, 0, 0) = 0 and ψ̄(λ1, λ1, 0, 0) = 0.

Corollary 4. For sufficiently small positive values of α and
β, the linear approximation of the parameters ā(α, β) and
c̄(α, β), as described in Theorem 3, is given by:

ā(α, β) = λ1 + (α+ bβ)

∫
Ω

ϕ3
1dx+ o(|α|, |β|),

c̄(α, β) = λ1 + (β − dα)

∫
Ω

ϕ3
1dx+ o(|α|, |β|).

Proof: Let

φ̄ = φ̄(α, β) = φ̄(ā(α, β), c̄(α, β), α, β),

ψ̄ = ψ̄(α, β) = ψ̄(ā(α, β), c̄(α, β), α, β).

The positive bifurcation solution to the system (4) near the
zero solution can be expressed as:

ū(α, β) = α(ϕ1 + φ̄(α, β)), v̄(α, β) = α(ϕ1 + ψ̄(α, β)).

Substituting these expressions into the second equation of
system (4) results in:

−∆(ϕ1 + ψ̄) = (ϕ1 + ψ̄)[c̄− β(ϕ1 + ψ̄)]

+ dα(ϕ1 + φ̄)(ϕ1 + ψ̄)e−kα(ϕ+φ̄).
(17)

By differentiating both sides of equation (17) with respect to
α and β at the point (α, β) = (0, 0), we obtain

(∆ + λ1)
∂ψ(0, 0)

∂α
+ ϕ1

(
∂c̄(0, 0)

∂α
+ dϕ1

)
= 0, (18a)

(∆ + λ1)
∂ψ(0, 0)

∂β
+ ϕ1

(
∂c̄(0, 0)

∂β
− ϕ1

)
= 0. (18b)

Multiplying both sides of equations (18a) and (18b) by ϕ1,
integrating over the domain Ω, and applying Green’s formula,
we obtain
∂c̄(0, 0)

∂α
= −d

∫
Ω

ϕ3
1dx < 0

∂c̄(0, 0)

∂β
=

∫
Ω

ϕ3
1dx > 0.

(19)
Similarly,

∂ā(0, 0)

∂α
=

∫
Ω

ϕ3
1dx > 0

∂ā(0, 0)

∂β
= b

∫
Ω

ϕ3
1dx > 0.

(20)
Based on equations (19) and (20), for sufficiently small
positive values of α and β,

ā(α, β) = λ1 + (α+ bβ)

∫
Ω

ϕ3
1dx+ o(|α|, |β|), (21a)

c̄(α, β) = λ1 + (β − dα)

∫
Ω

ϕ3
1dx+ o(|α|, |β|). (21b)

The proof is complete.

IV. STABILITY OF DOUBLE BIFURCATION

Stability analysis is essential for evaluating the robustness
of a system’s equilibrium and its behavior under perturbation-
s. It aims to predict whether the system will remain stable,
oscillate, or undergo substantial changes [20]–[23].

This section focuses on discussing the stability of positive
solutions resulting from bifurcations. In general, the stability
of these solutions is assessed through the linearized system.

Assuming that α = β ≡ s, for a sufficiently small positive
s, the positive bifurcation solution originating from the zero
solution, as discussed in Theorem 3, can be parameterized
in terms of s, i.e.,

u (s) = sϕ1 + o(s), v (s) = sϕ1 + o(s). (22)

The linearized system of equation (4) at (u(s), v(s)) is
expressed as (23). Note that

L =

(
−∆−λ1 0

0 −∆−λ1

)
and define the matrices R(s) and Z(s) as given in (24) and
(25), respectively:

R(s) =

(
λ1 − a(s) 0

0 λ1 − c(s)

)
(24)

Then, system (23) is transformed into the equation
A(s)U

.
=(L+R(s) +Z(s))U = 0, where U = (u, v)T . The

corresponding eigenvalue problem for system (23) is given
by

(A(s)− µI)(y, z)
T

= 0,
0 6= (y, z) ∈ D(A(s)) ⊂ X, (26)

where I denotes the identity operator. The stability of the
bifurcated positive solution (u(s), v(s)) is determined by the
locations of the eigenvalues associated with equation (26) in
the complex plane. Specifically, if all eigenvalues lie in the
right half of the complex plane, the solution is asymptotically
stable. Conversely, if any eigenvalues lie in the left half of
the complex plane, the solution is unstable.

Theorem 5. For sufficiently small s > 0, the positive
bifurcation solution (u(s), v(s)) of the system in equation
(4) is asymptotically stable.
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Proof: The eigenfunction (y, z) associated with the
eigenvalue problem (26) takes the following form:

y = ϕ1 + w1, z = mϕ1 + w2, (27)

where m is a complex number, and 〈φ1, wi〉2 = 0, i = 1, 2.
Let ξ = (ϕ1, 0)T , η = (0, ϕ1)T , w = (w1, w2)T ∈ X2. The
eigenvalue problem (26) can then be reformulated as

(L+R(s)+Z(s))(ξ+mη+w)−µ(ξ+mη+w) = 0. (28)

Given that
∫

Ω
φ2

1 dx = 1, we take the inner product of both
sides of equation (28) with ξ and η, respectively, and obtain

λ1 − a(s) + 〈Z(s)(ξ +mη + w), ξ〉2 − µ = 0, (29a)

m(λ1 − c(s)) + 〈Z(s)(ξ +mη + w), η〉2 −mµ = 0. (29b)

By the definitions of the projection operators P and Q
as introduced in Section III, we apply Q to both sides of
equation (28) to obtain

Lw +R(s)w +QZ(s)(ξ +mη + w)− µw = 0. (30)

By combining equations (29a) and (30), we define the
operator J : X2 × C × C ×R→ Y2 × C:

J(w, µ;m, s)

=

(
Lw +R(s)w +QZ(s)(ξ +mη + w)− µw
λ1 − a(s) + 〈Z(s)(ξ +mη + w), ξ〉2 − µ

)
.

It is clear that J(0, 0;m, 0) = 0. Now, let us compute the
Frechét derivative of J(ω,µ)(ω, µ;m, s) at (0, 0;m, 0). Upon
calculation, we obtain

J(ω,µ)(ω, µ;m, s) =

(
L+R(s) +QZ(s)− µI −ω

X Y −I

)
,

where X =
∫

Ω
(2u+b v e−k u− kb v u e−k u)ϕ1dx and Y =∫

Ω
b u e−k uϕ1dx. Therefore,

J(ω,µ)(0, 0;m, 0) =

(
L 0
0 −I

)
.

It is clear that J(ω,µ)(0, 0;m, 0) : X2 × C → Y2 × C is
a homeomorphism. By the implicit function theorem, we
deduce that for sufficiently small s > 0, there exists a
continuously differentiable function (ω(m, s), µ(m, s)) such
that J(ω(m, s), µ(m, s);m, s) = 0 with ω(m, 0) = 0 and
µ(m, 0) = 0. Since u ′(0) = v ′(0) = ϕ1, we have (31) and
then (32a) and (32b) hold.

From (21a) and (21b), we know that

λ1− a(s) = −s(1 + b)

∫
Ω

ϕ1
3dx+ o(|α||β|), (33a)

λ1− c(s) = s(d− 1)

∫
Ω

ϕ1
3dx+ o(|α||β|). (33b)

Let u = µ
s
∫
Ω
ϕ1

3dx
. From (29a), (32a) and (33a), we can

deduce that
1 +mb− µ+o(1) = 0. (34)

From (29b), (32b) and (33b), we have

(2− b+ µ)m+ k + 2d− 1 + o(1) = 0. (35)

Moreover, it follows from (35) that m = 1−k−2d
2−b+µ +o(1). We

can combine it with (34) to obtain a quadratic equation with
respect to µ:

µ2 +(b− 1)µ+(b(k − 2d)− 2) = 0. (36)

It is easy to see that all roots of equation (36) have positive
real parts. This completes the proof.

V. NUMERICAL SIMULATION

The primary objective is to present the results from nu-
merical simulations that further validate the analytical results
discussed earlier. These simulations are performed for the
parabolic system defined in (3) within a one-dimensional
spatial domain. For simplicity, we choose Ω = (0, 2π) and
proceed to examine

∂u
∂t = ∆u+ u(a− u− bve−ku), x ∈ (0, 2π), t > 0,

∂v
∂t = ∆v + v(c− v + due−ku), x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) = v(0, t) = v(2π, t) = 0, t > 0,

u(x, 0) = 1
5 sin( 1

2x), v(x, 0) = 2
3 |sin( 1

3x)|, x ∈ (0, 2π).
(37)

The MATLAB function pdepe [22], [24] is well-
established for solving initial-boundary value problems of
parabolic-elliptic partial differential equations (PDEs) in one
dimension. In this study, we carefully select appropriate pa-
rameters for equation (37) to conduct numerical simulations
using the MATLAB environment and the pdepe function. The
results are illustrated in figures captured at a significantly
advanced time point (specifically, T = 10000), allowing us
to consider the solution profiles as representative of steady
states. For these simulations, we fix a = 0.6, b = 1, c = 0.5
and d = 0.3 while varying the other parameters k, all
positive, to demonstrate diverse behaviors and outcomes of
the system.

(1) Based on Corollary 4 and MATLAB with parameters
a = 0.6, b = 1, c = 0.5, d = 0.3, and k = 1, we
investigate the presence and stability of non-constant positive
steady-state solution adjacent to the zero solution of system
(37), which are depicted in Figure 1 (a) and (b). Figure
1(c) illustrates the u− x projection of the parabolic system
(37) onto a plane after a prolonged duration (t = 10000),
evidencing the existence of positive solutions for the related
elliptic system associated with (37). Furthermore, Figure 1(d)
delineates the L1 norm of the parabolic system (37) over
the interval t ∈ [0, 10000], showcasing the stability of the
positive solutions for the analogous elliptic system to (37).

(2) Note that the Dinosaur functional response φ(x) =
xe−kx. Let parameters a = 0.6, b = 1, c = 0.5, d = 0.3
and k vary. Figure 2 shows the the impact of parameter k
on population densities u and v to system (37) with and
k = 1, 3, 5, 10, 30, 50, respectively in Figure 2 (a)-(f).

1) As the parameter k incrementally increase through
the sequence 1, 3, 5 and subsequently to 10, there is
a continuous augmentation in the population density
denoted by u. However, upon further escalation of the
parameter k, the increment in the population density u
becomes negligible.

2) Variations in the parameter k have an imperceptible
impact on the population density v.

3) When the parameter k is minimal, the population den-
sity v surpasses that of u. Conversely, as k increases,
the population density u exceeds v. The pivotal value
for the parameter is established at k = 5 in Figure 2
(3).
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(a)

(b)

(c)

(d)

Fig. 1. Numerical simulation diagrams of population densities u and v to
system (37) with a = 0.6, b = 1, c = 0.5, d = 0.3 and k = 1.

4) Upon reaching a specific threshold, such as k = 10 in
Figure 2 (d), an increment in the parameter k results

in the stabilization of population densities u and v,
maintaining them at a constant level without further
variation.

(a)

(b)

(c)

Fig. 2. The impact of parameter k on population densities u and v to
system (37)with a = 0.6, b = 1, c = 0.5, d = 0.3 and k = 1, 5, 30,
respectively in (a)-(c).

(3) Note that the Dinosaur reaction term φ(u) = (ue−ku),
considered an improvement or simplification of the Ivlev-
type response φ(u) = (1−e−ku), offers a more refined model
for describing changes in prey species density. Replace the
Dinosaur reaction term with the Ivlev-type response, and the
system (37) becomes:

∂u
∂t = ∆u+ u(a− u)− b(1− e−ku)v, x ∈ (0, 2π), t > 0,

∂v
∂t = ∆v + v[(c− v) + d(1− e−ku)], x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) = v(0, t) = v(2π, t) = 0, t > 0,

u(x, 0) = 1
5 sin( 1

2x), v(x, 0) = 2
3 |sin( 1

3x)|, x ∈ (0, 2π).
(38)
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Here, we compare the dynamic behaviors between the Di-
nosaur reaction term in system (37) and the Ivlev-type
response in system (38).

1) From a biological perspective, unlike the Ivlev-type
functional response, the Dinosaur reaction term effec-
tively captures prey behavior as they prioritize defenses
against predators when their population density reach-
es a threshold. This adaptive strategy enhances their
ability to evade or disguise themselves.

2) Figures 3 (a) and 3 (b) show that, the local time
systems of (37) and (38) have the same constant
equilibrium and exhibit identical properties.

3) Figures 3 (c) and 3(d) show that, both systems (37) and
(38) exhibit spatially non-uniform positive equilibrium
solutions near (0, 0).

The results provide biologically meaningful insights into
predator-prey dynamics with nonlinear functional responses
[25]–[28]. The presence of double bifurcation phenomena
reveals complex transitions between multiple stable states,
indicating potential ecological resilience or abrupt regime
shifts under specific conditions. The Dinosaur-type function-
al response introduces a delayed and nonlinear influence
on predator growth, which may contribute to population
stabilization at high prey densities. Accordingly, our study
suggests that under suitable parameter regimes, both predator
and prey populations can stabilize, thus maintaining eco-
logical balance. These findings have potential implications
for conservation strategies aimed at promoting long-term
ecosystem stability.

VI. CONCLUSIONS

This study explores a diffusive predator-prey model with
a Dinosaur-type functional response under homogeneous
Dirichlet boundary conditions. We investigate the existence
of small positive solutions bifurcating from the trivial (ze-
ro) solution and analyze their asymptotic stability. To sup-
port our theoretical findings, numerical simulations are also
performed. Key analytical techniques, such as Lyapunov-
Schmidt reduction, the implicit function theorem, and lin-
earization methods, are employed. These methods for exam-
ining bifurcating solution existence and stability in system
(4) can be broadly applied to various mathematical ecological
models.

Additionally, we revisit the key findings from item (2) 4)
in Section V: Once the parameter k exceeds a specific
threshold—e.g., k = 10 in Figure 2(d)—further increases in
k lead to the stabilization of the population densities u and v,
maintaining them at constant levels without further variation.
This observation, derived from numerical simulations, can
be regarded as a conjectural insight. In future work, we will
investigate the theoretical underpinnings of this behavior in
greater detail.
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T (a, c, α, β)
.
= PF (a, c, ū, v̄)
= PG(a, c, ū, v̄) + PH(a, c, ū, v̄)

=

( ∫
Ω

(λ1 − a)ϕ1ūdx∫
Ω

(λ1 − c)ϕ1v̄dx

)
ϕ1 +

( ∫
Ω
ϕ1(ū2 + būv̄e−kū)dx∫

Ω
ϕ1(v2 − dūv̄e−kū)dx

)
ϕ1.

(14)

( 1
α 0
0 1

β

)
T(a,c)(a, c;α, β) =

(
C1 C2

C3 C4

)
ϕ1 +

(
D1 D2

D3 D4

)
ϕ1, (15)

(ā(α, β), c̄(α, β), α(ϕ1 + φ̄(ā(α, β), c̄(α, β), α, β)), β(ϕ1 + ψ̄(ā(α, β), c̄(α, β), α, β))) (16)

{
[−∆− a(s) + 2u(s) + b v(s)e−k u(s) − kb v(s)u(s)e−k u(s)]u+ b u(s)e−k u(s)v = 0,

[(k − u(s))d v(s)e−k u(s)]u+ [−∆− c(s) + 2 v(s)− b u(s)e−k u(s)]v = 0.
(23)

Z(s) =

(
2u(s) + b v(s)e−k u(s) − kb v(s)u(s)e−k u(s) b u(s)e−k u(s)

(k − u(s))d v(s)e−k u(s) 2 v(s)− b u(s)e−k u(s)

)
(25)

Z(s)(ξ +mη + w)

=

(
2u(s) + b v(s)e−k u(s) − kb v(s)u(s)e−k u(s) b u(s)e−k u(s)

(k − u(s))d v(s)e−k u(s) 2 v(s)− b u(s)e−k u(s)

)(
φ1 + w1

mφ1 + w2

)
=

(
(2u(s) + b v(s)e−k u(s) − kb v(s)u(s)e−k u(s))(φ1 + w1) + b u(s)e−k u(s)(mφ1 + w2)

(k − u(s))d v(s)e−k u(s)φ1 + w1) + (2 v(s)− b u(s)e−k u(s))(mφ1 + w2)

)
=

(
s(2 + b+mb)ϕ1

2 + o(s)
s(2m− bm+ kd)ϕ1

2 + o(s)

)
,

(31)

〈Z(s)(ξ +mη + w), ξ〉2 = s(2 + b+mb)

∫
Ω

ϕ1
3dx+ o(s), (32a)

〈Z(s)(ξ +mη + w), η〉2 = s(2m− bm+ kd)

∫
Ω

ϕ1
3dx+ o(s). (32b)
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