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Abstract—In this paper, we first define the square-mean
almost periodic (∆− almost periodic) stochastic process in shifts
δ± on time scales, then the existence of square-mean almost
periodic solution in shifts δ± to a class of nonautonomous
stochastic dynamic equations is studied. Using the theory of
calculus on time scales and the Acquistapace-Terreni conditions,
sufficient conditions for the existence and uniqueness of square-
mean almost periodic mild solution in shifts δ± to those
equations on a real separable Hilbert space are established.
Finally, two examples are given to illustrate the feasibility and
effective of the results.

Index Terms—Stochastic dynamic equation; Square-mean
almost periodic solution; Shift operator; Mild solution; Time
scale.

I. INTRODUCTION

ATime scale is a nonempty closed subset of R. In recent
years, with the development of the theory of time scales

(see [1,2]), the existence of almost periodic solutions of
dynamic equations on time scales received many researchers’
special attention; see, for example, [3-6]. In [7], with the aid
of the shift operators δ±, we studied almost periodic dynamic
equations in shifts δ± on time scales, and established the
existence and uniqueness theorem of almost periodic solution
in shifts δ± on time scales. However, almost periodicity in
shifts δ± of stochastic dynamic equations on time scales has
not been studied so far.

In this paper, we first define the square-mean almost
periodic stochastic process in shifts δ± on time scales,
and then we shall study the existence and uniqueness of
square-mean almost periodic mild solution in shifts δ± of
the following nonautonomous semilinear stochastic dynamic
equations on time scales:

∆x(t) = A(t)x(t)∆t+ f(t, x(t))∆t

+g(t, x(t))∆w(t), (1)

where t ∈ T, T is an almost periodic time scale in shifts δ±;
w is a Wiener process.
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II. PRELIMINARIES

The theory of time scales and the theory of dynamic
equations on time scales, see [1].

Assume that (H1, ∥ · ∥H1) and (H2, ∥ · ∥H2) are real
separable Hilbert spaces, (Ω,F , P ) is a probability space,
and L2(H1,H2) is a space of all Hilbert-Schmidt operators
from H1 to H2, equipped with the Hilbert-Schmidt norm
∥ · ∥2.

For a symmetric nonnegative operator Q ∈ L2(H1,H2)
with finite trace, we assume that {w(t), t ∈ T} is a Q-Wiener
process defined on (Ω,F , P ) with values in H1, and Ft =
σ{w(s), s ≤ t}.

The collection of all strongly measurable, square-
integrable H-valued random variables, denoted by L2(P,H),
and L2(P,H) is a Banach space equipped with the norm
∥x∥L2(P,H) = (E∥x∥2)1/2.

Let H0 = Q1/2K, and L0
2 = L2(H0,H) with respect to

the norm

∥z∥2L0
2
= ∥zQ1/2∥22 = Trace(zQz∗).

Assume that A(t) : D(A(t)) ⊂ L2(P ;H) → L2(P ;H)
is a family of densely defined closed linear operators on a
common domain D = D(A(t)), which is independent of t
and dense in L2(P ;H), and F : T×L2(P ;H) → L2(P ;H)
and G : T × L2(P ;H) → L2(P ;L0

2) are jointly continuous
functions.

Let T∗ is a non-empty subset of the time scale T and
t0 ∈ T∗ is a fixed number, define operators δ± : [t0,+∞)×
T∗ → T∗. The operators δ+ and δ− associated with t0 ∈ T∗

(called the initial point) are said to be forward and backward
shift operators on the set T∗, respectively. The variable
s ∈ [t0,+∞)T in δ±(s, t) is called the shift size. The value
δ+(s, t) and δ−(s, t) in T∗ indicate s units translation of the
term t ∈ T∗ to the right and left, respectively. The sets

D± := {(s, t) ∈ [t0,+∞)T × T∗ : δ±(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively. Here-
after, T∗ is the largest subset of the time scale T such that
the shift operators δ± : [t0,+∞)× T∗ → T∗ exist; see [8].

Definition 1. ([7]) Let T is a time scale with the shift
operators δ± associated with the initial point t0 ∈ T∗. The
time scale T is said to be almost periodic in shifts δ± if there
exists p ∈ (t0,+∞)T∗ such that (p, t) ∈ D± for all t ∈ T∗,
that is,

{p ∈ (t0,+∞)T∗ : (p, t) ∈ D±, ∀t ∈ T∗} ̸= ∅.

Let (B, ∥ · ∥) is a Banach space.
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Definition 2. A stochastic process x : T → L2(P ;B) is said
to be continuous if

lim
t→s

E∥x(t)− x(s)∥2 = 0.

Definition 3. (Square-mean almost periodic stochastic pro-
cess in shifts δ±) Let T is an almost periodic time scale
in shifts δ±. A continuous stochastic process x : T∗ →
L2(P ;B) is said to be square-mean almost periodic in shifts
δ± if the ε-translation set of x

E{ε, x} = {(p, t) ∈ D± :

sup
t∈T

E∥x(δp±(t))− x(t)∥2 < ε, ∀t ∈ T∗}

is a relatively dense set in T∗ for all ε > 0; that is, for any
given ε > 0, there exists a constant l(ε) > t0, (l(ε), t) ∈ D±,
such that in any interval [t, δl(ε)+ (t)]([δ

l(ε)
− (t), t]), there exists

at least a p ∈ E{ε, x} such that

sup
t∈T

E∥x(δp±(t))− x(t)∥2 < ε,

where δp±(t) := δ±(p, t), p is called the ε-translation number
of x, l(ε) is called the inclusion length of E{ε, x}.

Definition 4. (square-mean ∆-almost periodic stochastic
process in shifts δ±) Let T is an almost periodic time scale
in shifts δ±. A continuous stochastic process x : T∗ →
L2(P ;B) is said to be square-mean ∆-almost periodic in
shifts δ± if the ε-translation set of x

E{ε, x} = {(p, t) ∈ D± :

sup
t∈T

E∥x(δp±(t))δ
∆p
± (t)− x(t)∥2 < ε, ∀t ∈ T∗}

is a relatively dense set in T∗ for all ε > 0; that is, for any
given ε > 0, there exists a constant l(ε) > t0,, (l(ε), t) ∈
D±, such that in any interval [t, δl(ε)+ (t)]([δ

l(ε)
− (t), t]), there

exists at least a p ∈ E{ε, x} such that

sup
t∈T

E∥x(δp±(t))δ
∆p
± (t)− x(t)∥2 < ε,

where δp±(t) := δ±(p, t), p is called the ε-translation number
of x, l(ε) is called the inclusion length of E{ε, x}.

The collection of all stochastic processes x : T →
L2(P ;B) which are square-mean almost periodic in shift-
s δ± is then denoted by APS(R;L2(P ;B)). The space
APS(R;L2(P ;B)) of square-mean almost periodic process-
es in shifts δ± equipped with the norm

∥x∥∞ = sup
t∈T

(E∥x(t)∥2)1/2

is a Banach space.

Lemma 1. If x belongs to APS(R;L2(P ;B)), then
(i) the mapping t → E∥x(t)∥2 is uniformly continuous;
(ii) there exists a constant M̃ > 0 such that E∥x(t)∥2 ≤ M̃ ,

for all t ∈ T.

Let (B1, ∥ · ∥1), (B2, ∥ · ∥2) are Banach spaces, and
L2(P ;B1), L2(P ;B2) are their corresponding L2-spaces,
respectively.

Lemma 2. Let f : T × L2(P ;B1) → L2(P ;B2), (t, x) →
f(t, x) is a square-mean almost periodic function in shifts
δ± in t ∈ T uniformly in x ∈ S (S ⊂ L2(P ;H) is a compact

subspace). Moreover, there exists a positive constant M̂ > 0
such that

E∥f(t, x)− f(t, y)∥2 ≤ M̂E∥x− y∥21,

for all x, y ∈ L2(P ;B1), and for each t ∈ T. Then for any
square-mean almost periodic in shifts δ± process Φ : R →
L2(P ;B1), the stochastic process t → f(t,Φ(t)) is square-
mean almost periodic in shifts δ±.

Lemma 3. ([1]) Assume that ν : T → R is strictly
increasing and T̃ := ν(T) is a time scale. If f : T → R
is an rd-continuous function and ν is differentiable with rd-
continuous derivative, then for a, b ∈ T,∫ b

a

g(s)ν∆(s)∆s =

∫ ν(b)

ν(a)

g(ν−1(s))∆̃s.

III. MAIN RESULTS

In this section, we shall study the existence of mild
solutions of equation (1). Firstly, we make the following
assumptions:

(H1) Assume that the equation

x∆(t) = A(t)x(t), t ≥ s,

x(s) = ϕ ∈ L2(P ;H),

has an associated evolution family of operators
{X(t, s) : t ≥ s with t, s ∈ T}, which is uniformly ex-
ponentially stable, that is, there exist positive constants
M,α > 0, such that

∥X(δp±(t), δ
p
±(s))∥ ≤ Me⊖α(t, σ(s)), ∀t ≥ s.

(H2) The functions f : T×L2(P ;H) → L2(P ;H), (t, x) →
f(t, x) and g : T × L2(P ;H) → L2(P ;L0

2), (t, y) →
g(t, y) are square-mean ∆-almost periodic functions in
shifts δ± in t ∈ T uniformly in x ∈ S (S ⊂ L2(P ;H)
is a compact subspace), and

E∥f(δp±(t), x(δ
p
±(t)))δ

∆p
± (t)− f(t, x(t))∥2 < η;

E∥g(δp±(t), x(δ
p
±(t)))δ

∆p
± (t)− g(t, x(t))∥2L0

2
< η;

where η → 0 as ε → 0. Moreover, there exist positive
constants K1,K2 > 0 such that

sup
t∈T

E∥f(t, x(t))∥2 ≤ K1;

sup
t∈T

E∥g(t, x(t))∥2L0
2
≤ K2.

(H3) The functions f and g which have been defined in (H2)
are Lipschitz in the sense

E∥f(t, x)− f(t, y)∥2 ≤ LfE∥x− y∥2,
E∥g(t, x)− g(t, y)∥2L0

2
≤ LgE∥x− y∥2,

for all t ∈ T, x, y ∈ L2(P ;H), and Lf , Lg > 0 are
positive constants.

Lemma 4. Assume that A(t) satisfies the Acquistapace-
Terreni conditions, X(t, s) is exponentially stable, then for
any ε > 0, there exists a constant l(ε) > t0 (t0 is the initial
point), such that in any interval [t, δl(ε)+ (t)]([δ

l(ε)
− (t), t]), there

exists at least a p ∈ E{ε,X} (E{ε,X} is a relatively dense
set) such that

∥X(δp±(t), δ
p
±(s))−X(t, s)∥ < εe⊖α

2
(t, σ(s)),
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for all t− s ≥ ε.

Theorem 1. Assume that the graininess function µ(t) is
bounded on time scale T, (H1) − (H3) and the conditions
of Lemma 4 hold, and

λ =

(
2M2Lf

α̃2
+

2trQM2Lg

α̃

) 1
2

< 1,

where α̃ = inf{−⊖α|t ∈ T}, then equation (1) has a unique
square-mean almost periodic mild solution in shifts δ±, and

x(t) =

∫ t

−∞
X(t, s)f(s, x(s))∆s

+

∫ t

−∞
X(t, s)g(s, x(s))∆w(s), t ∈ T.

Proof: Let x(t) = Φx(t) + Ψx(t), and

Φx(t) =

∫ t

−∞
X(t, s)f(s, x(s))∆s,

Ψx(t) =

∫ t

−∞
X(t, s)g(s, x(s))∆w(s).

Now, we prove that Φx and Ψx are square-mean almost
periodic in shifts δ± whenever x is almost periodic in shifts
δ±. We first consider the case of Φx. In fact,

∥Φx(δp±(t))− Φx(t)∥

=

∥∥∥∥ ∫ δp±(t)

−∞
X(δp±(t), s)f(s, x(s))∆s

−
∫ t

−∞
X(t, s)f(s, x(s))∆s

∥∥∥∥.
Let g(s) = X(δp±(t), δ

p
±(s))f(δ

p
±(s), x(δ

p
±(s))) and ν(t) =

δp±(t), by Lemma 3,∫ δp±(t)

−∞
X(δp±(t), s)f(s, x(s))∆s

=

∫ ν(t)

−∞
g(ν−1(s))∆s

=

∫ t

−∞
g(s)ν∆(s)∆s

=

∫ t

−∞
X(δp±(t), δ

p
±(s))f(δ

p
±(s), x(δ

p
±(s)))δ

∆p
± (s)∆s.

Therefore,

∥Φx(δp±(t))− Φx(t)∥

=

∥∥∥∥∫ t

−∞
X(δp±(t), δ

p
±(s))f(δ

p
±(s), x(δ

p
±(s)))δ

∆p
± (s)∆s

−
∫ t

−∞
X(t, s)f(s, x(s))∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
X(δp±(t), δ

p
±(s))[f(δ

p
±(s), x(δ

p
±(s)))δ

∆p
± (s)

−f(s, x(s))]∆s

+

∫ t

−∞
[X(δp±(t), δ

p
±(s))−X(t, s)]f(s, x(s))∆s

∥∥∥∥
≤

∥∥∥∥∫ t

−∞
X(δp±(t), δ

p
±(s))[f(δ

p
±(s), x(δ

p
±(s)))δ

∆p
± (s)

−f(s, x(s))]∆s

∥∥∥∥

+

∥∥∥∥(∫ t−ε

−∞
+

∫ t

t−ε

)
[X(δp±(t), δ

p
±(s))

−X(t, s)]f(s, x(s))∆s

∥∥∥∥.
Since (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, then

E∥Φx(δp±(t))− Φx(t)∥2

≤ 3E
[ ∫ t

−∞
∥X(δp±(t), δ

p
±(s))∥

×∥f(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)− f(s, x(s))∥∆s

]2
+3E

[ ∫ t−ε

−∞
∥X(δp±(t), δ

p
±(s))−X(t, s)∥

×∥f(s, x(s))∥∆s

]2
+3E

[ ∫ t

t−ε

∥X(δp±(t), δ
p
±(s))−X(t, s)∥

×∥f(s, x(s))∥∆s

]2
≤ 3M2E

[ ∫ t

−∞
e⊖α(t, σ(s))

×∥f(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)− f(s, x(s))∥∆s

]2
+3ε2E

[ ∫ t−ε

−∞
e⊖α

2
(t, σ(s))∥f(s, x(s))∥∆s

]2
+3M2E

[ ∫ t

t−ε

2e⊖α(t, σ(s))∥f(s, x(s))∥∆s

]2
.

Using Cauchy-Schwarz inequality

E∥Φx(δp±(t))− Φx(t)∥2

≤ 3M2

(∫ t

−∞
e⊖α(t, σ(s))∆s

)
×
[ ∫ t

−∞
e⊖α(t, σ(s))E∥f(δp±(s), x(δ

p
±(s)))δ

∆p
± (s)

−f(s, x(s))∥2∆s

]
+3ε2

(∫ t−ε

−∞
e⊖α

2
(t, σ(s))∆s

)
×
[ ∫ t−ε

−∞
e⊖α

2
(t, σ(s))E∥f(s, x(s))∥2∆s

]
+12M2

(∫ t

−∞
e⊖α(t, σ(s))∆s

)
×
[ ∫ t

t−ε

e⊖α(t, σ(s))

×E∥f(s, x(s))∥2∆s

]
≤ 3M2

(∫ t

−∞
e⊖α(t, σ(s))∆s

)2

× sup
s∈T

E∥f(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)− f(s, x(s))∥2

+3ε2
(∫ t−ε

−∞
e⊖α

2
(t, σ(s))∆s

)2

sup
s∈T

E∥f(s, x(s))∥2
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+12M2

(∫ t

t−ε

e⊖α(t, σ(s))∆s

)2

× sup
s∈T

E∥f(s, x(s))∥2

≤ 3M2η

α̃2
+

12ε2K1

α̃2
+ 12M2ε2K1,

that is, Φx is square-mean almost periodic in shifts δ±.
Next, we consider the case of Ψx. Let w̃(s) = w(δs±(t))−

w(s), w̃ is also a Wiener process and has the same distribu-
tion as w. Then

E∥Ψx(δp±(t))−Ψx(t)∥2

=

∥∥∥∥∫ t

−∞
X(δp±(t), δ

p
±(s))

×g(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)∆w̃(s)

−
∫ t

−∞
X(t, s)g(s, x(s))∆w̃(s)

∥∥∥∥2
≤ 3E

[ ∫ t

−∞
∥X(δp±(t), δ

p
±(s))∥

×∥g(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)

−g(s, x(s))∥∆w̃(s)

]2
+3E

[ ∫ t−ε

−∞
∥X(δp±(t), δ

p
±(s))−X(t, s)∥

×∥g(s, x(s))∥∆w̃(s)

]2
+3E

[ ∫ t

t−ε

∥X(δp±(t), δ
p
±(s))−X(t, s)∥

×∥g(s, x(s))∥∆w̃(s)

]2
.

Using an estimate on the Ito integral,

E∥Ψx(δp±(t))−Ψx(t)∥2

≤ 3trQ

[ ∫ t

−∞
∥X(δp±(t), δ

p
±(s))∥2

×E∥g(δp±(s), x(δ
p
±(s)))δ

∆p
± (s)− g(s, x(s))∥2L0

2
∆s

]
+3trQ

[ ∫ t−ε

−∞
∥X(δp±(t), δ

p
±(s))−X(t, s)∥2

×E∥g(s, x(s))∥2L0
2
∆s

]
+3trQ

[ ∫ t

t−ε

∥X(δp±(t), δ
p
±(s))−X(t, s)∥2

×E∥g(s, x(s))∥2L0
2
∆s

]
≤ 3trQM2

(∫ t

−∞
e⊖α(t, σ(s))∆s

)
× sup

s∈T
E∥g(δp±(s), x(δ

p
±(s)))δ

∆p
± (s)− g(s, x(s))∥2L0

2

+3trQε2
(∫ t−ε

−∞
e⊖α(t, σ(s))∆s

)
× sup

s∈T
E∥g(s, x(s))∥2L0

2

+6trQε2
(∫ t

t−ε

e⊖α(t, σ(s))∆s

)

× sup
s∈T

E∥g(s, x(s))∥2L0
2

≤ 3trQM2η

α̃
+

3trQε2K2

α̃
+ 6trQε3K2,

that is, Ψx is square-mean almost periodic in shifts δ±.
Define

Γx(t) =

∫ t

−∞
X(t, s)f(s, x(s))∆s

−
∫ t

−∞
X(t, s)g(s, x(s))∆w(s),

then Γ has a unique fixed point. In fact

∥Γx(t)− Γy(t)∥

=

∥∥∥∥ ∫ t

−∞
X(t, s)(f(s, x(s))− f(s, y(s)))∆s

−
∫ t

−∞
X(t, s)(g(s, x(s))− g(s, y(s)))∆w(s)

∥∥∥∥
≤ M

∫ t

−∞
e⊖α(t, σ(s))∥f(s, x(s))− f(s, y(s))∥∆s

+

∥∥∥∥ ∫ t

−∞
X(t, s)(g(s, x(s))− g(s, y(s)))∆w(s)

∥∥∥∥.
Since (a+ b)2 ≤ 2a2 + 2b2, then

E∥Γx(t)− Γy(t)∥2

≤ 2M2E
(∫ t

−∞
e⊖α(t, σ(s))∥f(s, x(s))

−f(s, y(s))∥∆s

)2

+2E
(∥∥∥∥∫ t

−∞
X(t, s)(g(s, x(s))

−g(s, y(s)))∆w(s)

∥∥∥∥)2

. (2)

Now, we evaluate the right-hand side of (2). Firstly,

E
(∫ t

−∞
e⊖α(t, σ(s))∥f(s, x(s))− f(s, y(s))∥∆s

)2

≤ E
[(∫ t

−∞
e⊖α(t, σ(s))∆s

)(∫ t

−∞
e⊖α(t, σ(s))

×∥f(s, x(s))− f(s, y(s))∥2∆s

)]
≤

(∫ t

−∞
e⊖α(t, σ(s))∆s

)(∫ t

−∞
e⊖α(t, σ(s))

×E∥f(s, x(s))− f(s, y(s))∥2∆s

)
≤ Lf

(∫ t

−∞
e⊖α(t, σ(s))∆s

)(∫ t

−∞
e⊖α(t, σ(s))

×E∥x(s)− y(s)∥2∆s

)
≤ Lf

(∫ t

−∞
e⊖α(t, σ(s))∆s

)2

× sup
t∈T

E∥x(t)− y(t)∥2

≤ Lf

(∫ t

−∞
e⊖α(t, σ(s))∆s

)2

∥x− y∥2∞

≤ Lf

α̃2
∥x− y∥2∞.
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Secondly,

E
(∥∥∥∥∫ t

−∞
X(t, s)(g(s, x(s))− g(s, y(s)))∆w(s)

∥∥∥∥)2

≤ trQ

(∫ t

−∞
∥X(t, s)∥2

×E∥g(s, x(s))− g(s, y(s))∥2L0
2
∆s

)
≤ trQM2Lg

(∫ t

−∞
e⊖α(t, σ(s))∆s

)
× sup

t∈T
E∥x(t)− y(t)∥2

≤ trQM2Lg

α̃
∥x− y∥2∞.

Therefore,

E∥Γx(t)− Γy(t)∥2

≤
(
2M2Lf

α̃2
+

2trQM2Lg

α̃

)
∥x− y∥2∞,

and then

∥Γx(t)− Γy(t)∥∞

≤
(
2M2Lf

α̃2
+

2trQM2Lg

α̃

) 1
2

∥x− y∥∞

= λ∥x− y∥∞.

Since λ < 1, then Γ has exactly one fixed point, that is, (1)
has a unique square-mean almost periodic in shifts δ±. The
proof is completed.

IV. EXAMPLES

Example 1. Consider the following stochastic dynamic
system on time scales

∆x(t, η)

=

[ n∑
i,j=1

∆xi(aij(t, η)∆xj ) + c(t, η)

]
x(t, η)∆t

+F (t, x(t, η))∆t+G(t, x(t, η))∆w(t), (3)
n∑

i,j=1

hi(η)aij(t, η)∆ηi
x(t, η) = 0, (4)

t ∈ T, η ∈ ∂Ω,

where w is a real valued Brownian motion.
Firstly, we make the following assumptions:

(H4) The coefficient aij is symmetric, and
aij ∈ Cq

p(T, L2(P,C(Ω))) ∩ Cp(T, L2(P,C1(Ω))) ∩
APS(T, L2(P,L2(Ω))), i, j = 1, 2, · · · , n;
c ∈ Cq

p(T, L2(P,L2(Ω))) ∩ Cp(T, L2(P,C(Ω))) ∩
APS(T, L2(P,L1(Ω)));
for some q ∈ ( 12 , 1].

(H5) There exists ε0 > 0 such that
n∑

i,j=1

aij(t, η)ζiζj ≥ ε0|ζ|2,

where (t, ζ) ∈ T× Ω, and ζ ∈ Tn.
If (H4)− (H5) hold, then (H1) holds, see [9].

Let H = L2(Ω). For each t ∈ T define an operator A(t)
on L2(P ;H) by

D(A(t)) = {x ∈ L2(P ;H2(Ω)) :
n∑

i,j=1

hi(η)aij(t, η)∆ηix(t, η) = 0},

and A(t)x = A(t, η)x(η) for all x ∈ D(A(t)).
Thus under the assumptions (H2)− (H5), then the system

(3)-(4) has a unique square-mean almost periodic solution in
shifts δ±, if M is small enough.

Example 2. Consider the following stochastic cellular
neural networks on time scales(

∆x1(t)
∆x2(t)

)
=

(
−1 0
0 −1

)(
x1(t)
x2(t)

)
∆(t)

+

(
1
4 sin(t)f1(x1(t)) +

1
3 cos(t)f2(x2(t))

1
48 sin(2t)f1(x1(t)) + cos(4t)f2(x2(t))

)
∆(t)

+

(
I1(t)
I2(t)

)
∆(t) (5)

+

(
1
8 sin(t)f1(x1(t)) +

1
6 cos(t)f2(x2(t))

1
48 sin(2t)f1(x1(t)) +

1
6 cos(4t)f2(x2(t))

)
×∆w(t),

where f1(x) = f2(x) = x3, I1(t) = cos(t), I2(t) = sin(t),
and w is a real valued Brownian motion.

Choose T such that µ(t) is bounded. It is easy to check
that (H1) − (H3) hold, and if trQ is small enough, then
the system (5) has a unique square-mean almost periodic in
shifts δ±.

V. CONCLUSION

This paper aims to explore the almost periodicity of
stochastic dynamic equations on time scales. To this end,
this paper firstly defined the square-mean almost periodic s-
tochastic process in shifts δ± and the square-mean ∆−almost
periodic stochastic process in shifts δ± on time scales.
On this basis, the existence and uniqueness theorem of
square-mean almost periodic mild solution in shifts δ± of
a nonautonomous semilinear stochastic dynamic equations
on time scales is established. The research in this paper
is a further promotion on the basis of [10]. These theories
are the basic theories for studying the almost periodicity of
stochastic dynamic equations on time scales.

The results of this paper can be applied to study many
other types stochastic dynamics systems on time scales. The
relevant literatures can be referred to [11-32].
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