
 

 

Abstract— In recent years, a relationship between predictor 

and response variables has often been observed, particularly 

when the response variable consists of categorical data. Several 

methods have been developed to address cases involving 

qualitative response data. However, many of these approaches 

are limited in scope. This paper proposes a novel method for 

estimating semiparametric models with categorical response 

variables. The proposed method combines two estimators: a 

nonparametric Fourier series and a parametric linear function. 

To demonstrate the application of this method, we utilize data 

on the poverty gap status in East Java for the year 2023. The 

study selects the optimal model based on the smallest deviance 

value, the highest accuracy, and the largest Press's Q value. The 

results demonstrate that the semiparametric Fourier series 

regression provides significantly better estimation compared to 

binary logistic regression and nonparametric Fourier series 

regression. 

 
Index Terms— categorical data, Fourier Series, maximum 

likelihood estimation, semiparametric regression 

 

I. INTRODUCTION 

emiparametric regression can be used to ascertain the 
relationship between predictor and response variables. 

particularly when the regression curve's functional form 

is unknown, and some predictors exhibit a linear trend. It is 

expected that the semiparametric regression curve is smooth, 

as it lies within a specific function space. Importantly, the 

data are expected to estimate the curve independently, 

without being influenced by the researcher's subjective 

judgment. This characteristic enhances the flexibility of the 

semiparametric regression method. Using smoothing 

methods based on observed data, semiparametric regression 

can be applied. Fourier Series [1], Kernel [2], Spline [3], 
Wavelet [4], and Local Polynomial [5] are among the various 

smoothing techniques that are accessible. Spline estimators 
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are used for data that exhibits different patterns and are 

depend on knot points [3]. The local polynomial estimator has 

been used to minimize the estimator's asymptotic varianceand 

bias characteristics in nonparametric regression with many 

response variables [6]. For observations of noise-

contaminated signals, an additive wavelet estimator with a 

Gaussian distribution has been applied [7]. Patterned data 

with recurrent trends are estimated using the Fourier Series 

estimator [1]. The Fourier Series approach is the most 

effective of these estimators when there is a recurring pattern 

with a specific trend in the relationship between the predictor 

and responder variables [8]. In the context of additive 

nonparametric regression models, the Fourier Series 

estimator achieves an optimal balance between 

computational complexity and accuracy [9]. These methods 

are applicable to both univariable (single predictor) and 

multivariable (multiple predictors) scenarios [1, 7, 10, 11]. 

The Fourier Series estimator was initially put up by [1] 

and further studied by [7]. Additionally, [12] applied the 

Fourier Series estimator in the context of semiparametric 

regression. Further developments include the creation of a 

biresponse Fourier Series semiparametric regression by [13]. 

It then [14, 15, 16] developed into a mixture estimator of 

Fourier Series nonparametric regression and [17] developed 

a mixture estimator Fourier Series semiparametric regression. 

However, earlier studies, such as those by [18], focused 

exclusively on models using quantitative data. In practice, 

however, there are often a relationship between the predictor 

and response variables, where the response variable consists 

of categorical data. Because of this, researchers' Fourier 

Series semiparametric regression model for quantitative data 

is insufficient to handle problems requiring qualitative 

(categorical) answers. 

In recent developments, the modeling of categorical 

response variables has gained significant attention. Using 

categorical data, researchers have created estimators for 

nonparametric regression in recent years. For instance, [19] 

introduced a Local Likelihood Logit Estimation approach and 

[20] employed a Spline Truncated function. Other 

researchers have also contributed to this field: [21] proposed 

a Fourier Series-based nonparametric regression estimator for 

categorical data. To date, no semiparametric regression 

estimator using a Fourier Series function has been developed 

for categorical response data. This study addresses this gap 

by proposing a Fourier Series semiparametric regression 

estimator specifically designed for categorical response 

variables. We apply this method to analyze data on the 

poverty gap status in East Java for the year 2023, as it 

provides a highly relevant and practical demonstration of the 

effectiveness and applicability of the proposed Fourier Series 

semiparametric regression estimator in handling categorical 
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response data, particularly in cases where the relationship 

between the response and predictor variables exhibits both 

linear trends and recurring or periodic patterns. 

II. MATERIAL & METHODS 

There are several steps involved in developing a 

multivariable Fourier Series semiparametric regression 
estimator for categorical data. First, a Fourier Series 

semiparametric regression model is constructed, 

incorporating both parametric and nonparametric regression 

curve functions. After that, each model parameter's log-

likelihood function is calculated and derived. Finally, carries 

out numerical iterations using the Newton–Raphson method. 

Probability Distribution 

Given 𝑥1𝑖, ,  𝑥2𝑖, …,  𝑥𝑝𝑖 and 𝑧1𝑖 ,  𝑧2𝑖 ,  …  ,  𝑧𝑞𝑖 

;  𝑖 =  1,  2 , . . .  , 𝑛, are as many as the number of parametric 

predictor variables and nonparametric predictor variables 𝑞. 

Additionally, the variable 𝑌𝑖 has a probability distribution of 
and is a random Bernoulli distribution variable. 

𝑌𝑖  ~ 𝐵(1, π(𝒙𝒊, 𝒛𝒊)), 

 π(𝒙𝒊, 𝒛𝒊) = π(𝑥1𝑖 ,  𝑥2𝑖 ,  …  ,  𝑥𝑝𝑖 , 𝑧1𝑖 ,  𝑧2𝑖 ,  …  ,  𝑧𝑞𝑖), 

𝑖 = 1,2,… , 𝑛  

where the success probability 

𝑃(𝑌𝑖  =  1) = π(𝒙𝒊, 𝒛𝒊) 

and the unsuccessful probability  

𝑃(𝑌𝑖  =  0) = 1 − π(𝒙𝒊, 𝒛𝒊) 

Where π(𝒙𝒊, 𝒛𝒊) is described as follows in the probability 

distribution function 𝑃(𝑌𝑖  =  𝑦𝑖). 

𝑃(𝑌𝑖  =  𝑦𝑖) = π(𝒙𝒊, 𝒛𝒊)
𝑦𝑖(1 − π(𝒙𝒊, 𝒛𝒊))

1−𝑦𝑖
 

= (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
)

𝑦𝑖
(1 − π(𝒙𝒊, 𝒛𝒊)) (1) 

Logit Function (Link Function) 

Then, a natural logarithmic function (ln) can be used to 
express equation (1). 

ln 𝑃(𝑌𝑖  =  𝑦𝑖) =  𝑦𝑖  ln (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
)

 

+ ln(1 − π(𝒙𝒊, 𝒛𝒊)) (2) 

The ln function (2) creates the following exponential family 
distribution function when expressed in exponential form. 

exp(ln𝑃(𝑌𝑖  =  𝑦𝑖))  = exp(𝑦𝑖  ln (
π(𝒙𝒊, 𝒛𝒊)

1 − π(𝒙𝒊, 𝒛𝒊)
)

 

 

+ ln(1 − π(𝒙𝒊, 𝒛𝒊))) (3) 

Equation (3) provides the definition of the exponential family 
distribution function. 

𝑓(𝑦𝑖 , 𝜃) = exp (
𝑦𝑖 𝜃−𝑏(𝜃) 

𝑎(∅)
+ 𝑐(𝜃, ∅)) (4) 

As a result, its probability distribution function is a member 
of the exponential distribution function family. 

𝑃(𝑌𝑖  =  𝑦𝑖) = exp(
𝑦𝑖  ln(

π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
)
 

1
+ ln(1 − π(𝒙𝒊, 𝒛𝒊))) (5) 

where,  

𝜃       = ln (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
)      𝑎(∅)     = 1  

𝑏(𝜃) = ln(1 − π(𝒙𝒊, 𝒛𝒊))    𝑐(𝜃, ∅) = 0 

Since 𝜃 in function (5) is a logit function, the regression's 
logit function is 

𝜃 = ln (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
) (6) 

As a link function, the logit function makes parameter 
estimation easier and streamlines intricate regression models. 

A logit transformation is used to do this. 

Logit Transformation Model 

The following is the definition of the logit transformation 
model. 

ln (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
) = 𝑓(𝑥1𝑖 ,  …  ,  𝑥𝑝𝑖) + 𝑔(𝑧1𝑖 ,  …  ,  𝑧𝑝𝑖) (7) 

where 𝑓 and 𝑔 are an additive model-following regression 

equation, regression function, or regression curve. Based on 

equation (7), 𝑓(𝑥1𝑖 ,  …  ,  𝑥𝑝𝑖) is approximated by a 

parametric function using Linear model and 𝑔(𝑧1𝑖 ,  …  ,  𝑧𝑝𝑖) 

is approximated by a nonparametric function using Fourier 

Series model. Consequently, the logit transformation model 
looks like this. 

ln (
π(𝒙𝒊,𝒛𝒊)

1−π(𝒙𝒊,𝒛𝒊)
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗𝑖 +

𝑝
𝑗=1

∑ (𝑏𝑙𝑧𝑙𝑖 +
1

2
𝑎0𝑙 +

𝑞
𝑙=1

∑ 𝑎𝑘𝑙 cos𝑘𝑧𝑙𝑖
𝐾
𝑘=1 ) ;  𝑖 = 1,2,… 𝑛 (8) 

The Fourier Series semiparametric regression model for 
categorical data is produced as follows by the function (8). 

𝜋(𝒙𝒊) =  
𝑒

𝛽0+ ∑ 𝛽𝑗𝑥𝑗𝑖+
𝑝
𝑗=1

∑ (𝑏𝑙𝑧𝑙𝑖+
1
2
𝑎0𝑙+∑ 𝑎𝑘𝑙 cos𝑘𝑧𝑙𝑖

𝐾
𝑘=1 )

𝑞
𝑙=1

1+𝑒
𝛽0+ ∑ 𝛽𝑗𝑥𝑗𝑖+

𝑝
𝑗=1

∑ (𝑏𝑙𝑧𝑙𝑖+
1
2
𝑎0𝑙+∑ 𝑎𝑘𝑙 cos𝑘𝑧𝑙𝑖

𝐾
𝑘=1 )

𝑞
𝑙=1

   (9) 

where, 𝑖 = 1,2, … , 𝑛. 𝛽0 and 𝛽𝑗  , 𝑗 = 1,2,… , 𝑝 are the 

parametric function's model parameters. Meanwhile, 

𝑏𝑙 , 𝑎0𝑙 and 𝑎𝑘𝑙 , 𝑙 = 1,2,… , 𝑞 , 𝑘 = 1,2,… ,𝐾 are the 

nonparametric function's model parameters. 

Likelihood Function 𝑙(𝜽) 

By applying the Maximum Likelihood Estimation (MLE) 

approach, the form of the likelihood function is obtained as 

𝑙(𝜽). 

where, 

𝜽 = (𝛽0 𝛽1 ⋯ 𝛽𝑝 ⋯ 𝑏𝑞 𝑎0q 𝑎𝐾𝑞) 

so, 

𝑙(𝜽) =  ∏ 𝑃(𝑌𝑖 =  𝑦𝑖)
𝑛
𝑖=1   

= π(𝒙𝒊, 𝒛𝒊)
∑ 𝑦𝑛

𝑖=1 𝑖(1 − π(𝒙𝒊, 𝒛𝒊))
𝑛−∑ 𝑦𝑛

𝑖=1 𝑖   (10) 

By maximizing the log likelihood function's first derivative, 

the MLE approach can be used to estimate parameters in 

logistic regression.  It is simple to maximize the likelihood 

function (10) as follows ln 𝑙(𝜽). 

Log-Likelihood Function 𝐿(𝜽)  

ln [𝑙(𝜽)] = 𝐿(𝜽) = ∑ 𝑦𝑖 ln[π(𝒙𝒊, 𝒛𝒊)]
𝑛

𝑖=1

+ ∑ (1 − 𝑦𝑖) ln[1 − π(𝒙𝒊, 𝒛𝒊)]
𝑛

𝑖=1
 

= ∑ {𝑦𝑖 (𝑓(𝑥1𝑖 ,  …  ,  𝑥𝑝𝑖) + 𝑔(𝑧1𝑖 ,  …  ,  𝑧𝑞𝑖)) +𝑛
𝑖=1   

− ln[1 + exp( 𝑓(𝑥1𝑖 ,  …  ,  𝑥𝑝𝑖) +

𝑔(𝑧1𝑖 ,  …  ,  𝑧𝑞𝑖))]}  (11) 
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By partially deriving the function (11) in relation to 

𝛽0, 𝛽𝑗 , 𝑏𝑙 , 𝑎0𝑙 , and 𝑎𝑘𝑙, then equating to 0, the estimator �̂� is 

produced. 

𝜕 𝐿(𝜽) 

𝜕𝛽0
= 0   

𝜕 𝐿(𝜽) 

𝜕𝛽𝑗
= 0 ;  𝑗 = 1,2, … , 𝑝  

𝜕 𝐿(𝜽) 

𝜕𝑏𝑙
= 0 ;  𝑙 = 1,2,… , 𝑞  

𝜕 𝐿(𝜽) 

𝜕𝑎0𝑙
= 0 ;  𝑙 = 1,2,… , 𝑞  

𝜕 𝐿(𝜽) 

𝜕𝑎𝑘𝑙
= 0 ;  𝑘 = 1,2,… , 𝐾 ;  𝑙 = 1,2,… , 𝑞  

Equation (12) will be used to determine the estimator 𝛽0̂. 

∑ {(𝑦𝑖 −  π(𝒙𝒊, 𝒛𝒊))}
𝑛
𝑖=1 = 0  (12) 

Equation (13) will be used to determine the estimator �̂�. 

∑ {(𝑦𝑖 −  π(𝒙𝒊, 𝒛𝒊))𝑥𝑗𝑖}
𝑛
𝑖=1 = 0  (13) 

Equation (14) will be used to determine the estimator �̂�. 

∑ {(𝑦𝑖 −  π(𝒙𝒊, 𝒛𝒊))𝑧𝑙𝑖}
𝑛
𝑖=1 = 0  (14) 

Equation (15) will be used to determine the estimator 𝒂�̂�. 

∑ {
1

2
(𝑦𝑖 −  π(𝒙𝒊, 𝒛𝒊))}

𝑛
𝑖=1 = 0  (15) 

Equation (16) will be used to determine the estimator 𝒂�̂�. 

∑ {∑ cos𝑘𝑧𝑙𝑖
𝐾
𝑘=1 (𝑦𝑖 −  π(𝒙𝒊, 𝒛𝒊))}

𝑛
𝑖=1 = 0  (16) 

Newton-Raphson Iteration 

The results of the derivative of 𝐿(𝜽) (11) against 

𝛽0, 𝛽𝑗 , 𝑏𝑙 , 𝑎0𝑙 , and 𝑎𝑘𝑙 not in closed form, which were made in 

the implicit equation, hence the Newton–Raphson method of 
numerical iteration must be used. 

𝜽(𝑡+1) =  𝜽(𝑡) −  (𝐻(𝜽)(𝑡))
−1

𝑔(𝜽)(𝑡)  (17) 

where 𝜽(𝑡) is the 𝜽 of the t-th iteration, t=1,2,..., converged. 

𝜽(𝑡)

= (𝛽0
(𝑡) 𝛽1

(𝑡) ⋯ 𝛽𝑝
(𝑡) ⋯ 𝑏q

(𝑡) 𝑎0q
(𝑡) 𝑎Kq

(𝑡)) 

while 𝑔(𝜽) is the gradient vector of 𝜽 in function (18) and 

𝐻(𝜽) is the Hessian matrix of 𝜽 in function (19), with the 
following equation. 

𝑔(𝜽) =  (
𝜕𝐿(𝜽)

𝜕𝛽0
,
𝜕𝐿(𝜽)

𝜕𝛽1
,⋯ ,

𝜕𝐿(𝜽)

𝜕𝛽𝑝
, ⋯ ,

𝜕𝐿(𝜽)

𝜕𝑏𝑞
,
𝜕𝐿(𝜽)

𝜕𝑎0𝑞
,
𝜕𝐿(𝜽)

𝜕𝑎𝐾𝑞
)

𝑇

  (18) 

𝐻(𝜽)  =

[
 
 
 
 
 
 

𝜕2𝐿(𝜽)

𝜕𝛽0
2

𝜕2𝐿(𝜽)

𝜕𝛽0𝜕𝛽1

𝜕2𝐿(𝜽)

𝜕𝛽1𝜕𝛽0

𝜕2𝐿(𝜽)

𝜕𝛽1
2

⋯
𝜕2𝐿(𝜽)

𝜕𝛽0𝜕𝑎𝐾𝑞

⋯
𝜕2𝐿(𝜽)

𝜕𝛽1𝜕𝑎𝐾𝑞

⋮ ⋮
𝜕2𝐿(𝜽)

𝜕𝑎𝐾𝑞𝜕𝛽0

𝜕2𝐿(𝜽)

𝜕𝑎𝐾𝑞𝜕𝛽1

⋱ ⋮

⋯
𝜕2𝐿(𝜽)

𝜕𝑎𝐾𝑞
2 ]

 
 
 
 
 
 

  (19) 

The first derivative of function 𝐿(𝜽) with respect to 

𝛽0, 𝛽𝑗 , 𝑏𝑙 , 𝑎0𝑙 , and 𝑎𝑘𝑙, yields the elements of vector 𝑔(𝜽) 

(18), whereas the second derivative of function 𝐿(𝜽) with 

respect to 𝛽0, 𝛽𝑢 , 𝑏𝑣 , 𝑎0𝑣 , and 𝑎𝑘𝑣 yields the elements of 

matrix 𝐻(𝜽) (19). 

The 𝐿(𝜽) Function's Second Derivative in Relation to 𝛽0 

𝜕2𝐿(𝜽)

𝜕𝛽0
2 = − ∑ π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊))

𝑛
𝑖=1   (20) 

The 𝐿(𝜽) Function's Second Derivative in Relation to 𝛽𝑢  

𝜕2𝐿(𝜽)

𝜕𝛽𝑢𝜕𝛽𝑗
= −∑ 𝑥𝑗𝑖𝑥𝑢𝑖

𝑛
𝑖=1 π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊))  (21) 

The 𝐿(𝜽) Function's Second Derivative in Relation to 𝑏𝑢 

𝜕2𝐿(𝜽)

𝜕𝑏𝑣𝜕𝑏𝑙
= −∑ 𝑥𝑙𝑖𝑥𝑣𝑖

𝑛
𝑖=1 π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊))  (22) 

The second derivative of the parameter combinations is 
determined in the same way as in (22). 

𝜕2𝐿(𝜽)

𝜕𝑎𝑘𝑣𝜕𝑏𝑙
= −∑ ∑ π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊))𝑥𝑙𝑖 cos𝑘𝑥𝑣𝑖

𝐾
𝑘=1

𝑛
𝑖=1   

(23) 

The 𝐿(𝜽) Function's Second Derivative in Relation to 𝑎0𝑢 

𝜕2𝐿(𝜽)

𝜕𝑎0𝑣𝜕𝑎0𝑙
= −

1

4
∑ π(𝒙𝒊, 𝒛𝒊) (1 − π(𝒙𝒊, 𝒛𝒊))

𝑛
𝑖=1    (24) 

The second derivative of the parameter combinations can be 
found in the same way (24). 

𝜕2𝐿(𝜽)

𝜕𝑎𝑘𝑣𝜕𝑎0𝑙
= −

1

2
∑ ∑ π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊)) cos𝑘𝑥𝑣𝑖

𝐾
𝑘=1

𝑛
𝑖=1    

(25) 

The 𝐿(𝜽) Function's Second Derivative in Relation to 𝑎𝑘𝑢 

𝜕2𝐿(𝜽)

𝜕𝑎𝑘𝑣𝜕𝑎𝑘𝑙
=

 −∑ ∑ cos𝑘𝑥𝑙𝑖
𝐾
𝑘=1 ∑ cos𝑘𝑥𝑣𝑖

𝐾
𝑘=1 π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊))

𝑛
𝑖=1  

(26) 

The second derivative of the parameter combinations is 
derived in the same way as in (26). 

𝜕2𝐿(𝜽)

𝜕𝑎0𝑣𝜕𝑎𝑘𝑙
= −

1

2
∑ ∑ π(𝒙𝒊, 𝒛𝒊)(1 − π(𝒙𝒊, 𝒛𝒊)) cos𝑘𝑥𝑙𝑖

𝐾
𝑘=1

𝑛
𝑖=1   

 (27) 

Estimator �̂� 

�̂� will be derived from the Newton-Raphson iteration 
equation when  

|𝜽(𝑡+1) − 𝜽(𝑡)| < 𝜀,  𝜀 = 0,000001 (28) 

Thus, the estimator �̂� obtained when (28) is 

�̂� = (�̂�0 �̂�1 ⋯ �̂�𝑝 ⋯ �̂�q �̂�0q �̂�Kq)  

The Fourier Series semiparametric regression model for 

categorical data can be expressed using the estimator �̂� result: 

�̂�(𝒙𝒊, 𝒛𝒊) =

 
exp(�̂�0+�̂�1𝑥1𝑖+⋯+�̂�𝑝𝑥𝑝𝑖+⋯+�̂�𝑞𝑧𝑞𝑖+

1

2
�̂�0𝑞+�̂�𝐾𝑞 cos𝐾𝑧𝑞𝑖)

1+exp(�̂�0+�̂�1𝑥1𝑖+⋯+�̂�𝑝𝑥𝑝𝑖+⋯+�̂�𝑞𝑧𝑞𝑖+
1

2
�̂�0𝑞+�̂�𝐾𝑞 cos𝐾𝑧𝑞𝑖)

   (29) 

where 𝑖 = 1,2,… , 𝑛. The nonparametric function's estimate 

model estimator for the predictor variable 𝑥𝑝 is represented 

by �̂�0 and �̂�𝑝, and the estimator model of the nonparametric 

function for predictor variable 𝑧𝑞 is represented by 

�̂�𝑞 , �̂�0𝑞 and �̂�𝑘𝑞. In this case, 𝑝 and 𝑞 are the number of 

predictor variables, and 𝑘 is the number of oscillation 

parameters. 

III. DATA APPLICATION 

We apply the Fourier Series semiparametric regression 

approach for categorical data using the poverty gap status in 

East Java Province for the year 2023 as the application 

dataset. The data were obtained from secondary sources, 

including dynamic tables from the BPS (Badan Pusat 

Statistik) website and provincial publications from East Java 

in figures. The dataset consists of four predictor variables (𝑥) 

and one response variable (𝑦). 

This methodology allows us to explore the relationship 

between the predictors and the poverty gap status while 
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accommodating the complexities inherent in categorical data. 

By leveraging the flexibility of the Fourier Series 

semiparametric regression model, we aim to provide a more 

accurate model of the factors influencing poverty in East 

Java. A detailed description of the variables are provided in 

Table I. 

 
8 district exist in East Java and shown in Table II below.  

 

Descriptive Analytics 

Table III shows the characteristics of the data for each 
predictor variable as determined by descriptive analysis. 

 

The features of the variables, which include the poverty 

gap status in 38 East Java regencies and cities in 2023, are 

detailed in Table III. Furthermore, there are no 

multicollinearity amongst predictor variables and that none of 

the variables contain missing values. Poverty is a 

multifaceted issue encompassing education, economic 

conditions, infrastructure, and labor factors [22]. Poverty and 

education are closely interrelated. For instance, [23] 

employed spatial data regression techniques to examine the 

relationship between education levels and the degree of 

poverty. Their findings revealed that the poverty depth index 

is negatively influenced by the average number of years of 
education. Fig. 1 shows the conceptual predictor variable that 
was employed in this investigation. 

 

As illustrated in Fig. 1, economic factors also play a 

significant role in poverty alleviation efforts. This is 

supported by numerous studies, including one by [24], which 

found that GDP per capita significantly impacts the poverty 
depth index. 

Furthermore, poverty is linked to infrastructure. [25] 

utilized robust regression to analyze the factors influencing 

the poverty depth index. Their results indicated that the 

proportion of households with access to adequate and 

sustainable sanitation facilities negatively affects the poverty 
depth index. 

Additionally, poverty is associated with labor factors. [24] 

applied panel data regression to study the poverty depth 

index, revealing that the proportion of impoverished 

individuals working in the informal sector positively impacts 
the poverty depth index. 

Binary Logistic Regression Model 

The following is the binary logistic regression model. 

𝜋(𝒙𝒊) =  
exp(𝛽0+𝛽1𝑥1𝑖+⋯+𝛽𝑝𝑥𝑝𝑖)

1+exp(𝛽0+𝛽1𝑥1𝑖+⋯+𝛽𝑝𝑥𝑝𝑖)
 , 𝑖 = 1,2, . . . , 𝑛  (30) 

Where 𝑝 is the number of predictor parametric variable. 

Parameter Estimation 

The results of parameter estimate in the model for data on the 

poverty gap condition in East Java in 2023 are based on the 
binary logistic regression model (30). 

�̂�(𝒙𝒊) =  
exp(8.384−1.0429𝑥1𝑖+0.0354𝑥2𝑖−0.003𝑥3𝑖−0.189𝑥4𝑖)

1+exp(8.384−1.0429𝑥1𝑖+0.0354𝑥2𝑖−0.003𝑥3𝑖−0.189𝑥4𝑖)
 (31) 

Additional information is shown in the Table IV.  

 

Fourier Series Nonparametric Regression Model 

The following is the Fourier Series nonparametric regression 
model. 

𝜋(𝒙𝒊) =  
exp(∑ (𝑏𝑗𝑥𝑗𝑖+

1

2
𝑎0𝑗+∑ 𝑎𝑘𝑗 cos𝑘𝑥𝑗𝑖

𝐾
𝑘=1 )

𝑝
𝑗=1

)

1+exp(∑ (𝑏𝑗𝑥𝑗𝑖+
1

2
𝑎0𝑗+∑ 𝑎𝑘𝑗 cos𝑘𝑥𝑗𝑖

𝐾
𝑘=1 )

𝑝
𝑗=1

)
   (32) 

Where 𝑝 is the number of predictor variable. 

TABLE I 

VARIABLE DESCIPTION 

Variable Description  Unit Scale 

𝑦 Status of Poverty Gap 
 0 = Low 

1 = High 
Nominal 

𝑥1 
Percentage of Mean Years of 

Schooling 

 
Percent Rasio 

𝑥2 GRDP per Capita 
 Million 

rupiah 
Rasio 

𝑥3 
Percentage of Households with 

Proper Sanitation 

 
Percent Rasio 

𝑥4 The Open Unemployment Rate  Percent Rasio 

 

TABLE II 

LIST OF POVERTY GAP IN EAST JAVA 2023 ACCORDING TO NATIONAL 

AVERAGE 

Status District Total 

Low (𝑦 = 0) 

Pasuruan City, Mojokerto City, Madiun 

City, Ponorogo, Blitar, Kediri, Malang, 

Lumajang, Trenggalek, Tulungagung, 

Jember, Mojokerto, Jombang, Nganjuk, 

Madiun, Magetan, Pamekasan, Kediri 

City, Blitar City, Banyuwangi, 

Pasuruan, Sidoarjo, Surabaya City, 

Batu City, Malang City, Probolinggo 

City 

26 Districts 

High (𝑦 = 1) 

Situbondo, Probolinggo, Pacitan, 

Bondowoso, Ngawi, Bojonegoro, 

Tuban, Bangkalan, Sampang, Sumenep, 

Lamongan, Gresik 

12 Districts 

 

TABLE III 

DESCRIPTIVE STATISTICS OF PREDICTOR VARIABLES 

Variable Mean Variance Min Max 

𝑥1 8.38 -0.41 5.07 11.82 

𝑥2 7.06 -0.78 2.38 54.11 

𝑥3 84.59 -2.65 50.30 98.18 

𝑥4 4.66 -0.25 1.71 8.05 

 

  

                                                                                    

 
                 

Fig. 1.  Conceptual Diagram of Variables 

 Aspect of 

Economy 

 Aspect of 

Education 

 Aspect of 

Facility 

 
Aspect of 

Labor 

 Percentage of 

Mean Years of 

Schooling 

 GRDP per 

Capita 

 Percentage of 

Households 

with Proper 

Sanitation 

 The Open 

Unemployment 

Rate 

TABLE IV 

PARAMETER ESTIMATION IN BINARY LOGISTIC REGRESSION MODEL 

Parameters Estimations 

𝛽0 8.3840 

𝛽1 -1.0429 

𝛽2 0.0354 

𝛽3 -0.0030 

𝛽4 -0.1890 
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Parameter Estimation 

Using the Fourier Series nonparametric regression model 
(32), the parameter estimation results following 

nonparametric regression model offers the best oscillation 

parameter combinations for data on the poverty gap status in 

East Java in 2023: 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 1, and 𝑥4 = 2. 

�̂�(𝒙𝒊) =

 
exp(21.2734+⋯−1.7470𝑥4𝑖+1.4472cos𝑥4𝑖+2.8371cos 2𝑥4𝑖)

1+exp(21.2734+⋯−1.7470𝑥4𝑖+1.4472cos𝑥4𝑖+2.8371cos 2𝑥4𝑖)
 (33) 

Additional information is shown in Table V. 

 

Fourier Series Semiparametric Regression Model 

Each predictor variable that was present in multiple groups 

was plotted against the number of high poverty gaps using a 

scatterplot that we constructed (𝑦 = 1) in each group in order 

to determine the relationship that followed the Fourier Series 

semiparametric regression model. Fig. 2 displays the 
scatterplots as follows. 

 

Based on Fig. 2, The probability of a high poverty gap (𝑦 =
 1) for variable 𝑥1 has a linear pattern, but for variables 𝑥2, 

𝑥3, and 𝑥4 it has a repeating pattern and follows a downward 
trend line. his suggests that the relationship between these 

variables and the probability of a high poverty gap is more 

complex and non-linear compared to 𝑥1. Therefore, a 

semiparametric approach is needed to capture these more 

flexible and intricate patterns. 
Choosing the Best Oscillation Settings  

The lowest AIC value was used to choose the oscillation 

parameters for the Fourier Series nonparametric regression 

model.  In order to create a model that is not overly complex 

and produces results that are adequately relevant, the number 

of oscillation parameters employed in this experiment was 

limited. The AIC findings, as determined by the R program, 
are shown in Table VI. 

 

The Fourier Series model with the best oscillation parameters, 

according to Table VI, is the one with the minimum AIC 

value and a combination of oscillation parameters 𝑥2 = 3, 
𝑥3 = 3, and 𝑥4 = 3. 

Parameter Estimation 

These are the findings of parameter estimate in the model 

utilizing data on the poverty gap status in East Java in 2023, 

which is based on the Fourier Series semiparametric 
regression model (9). 

�̂�(𝒙𝒊, 𝒛𝒊) =  
exp(459.01−118.11𝑥1𝑖+⋯+109.48cos 3𝑥4𝑖)

1+exp(459.01−118.11𝑥1𝑖+⋯+109.48cos 3𝑥4𝑖)
  

Additional information is shown in Table VII. 

 

Comparing Binary Logistic Regression, Fourier Series 

Nonparametric Regression, and Fourier Series 
Semiparametric Regression 

In order to assess and compare the performance of the 

models, it is essential to evaluate how well each model fits 

the observed data. One of the key statistical measures used 
for this purpose is the deviance value. 

Utilizing Deviance Value to Determine the Best Model 

The regression model with the lowest deviation value is 

selected, as it indicates that the model with the smallest 

deviance offers the best fit to the observed data compared to 

alternative models. The results of the deviation statistical test 
are shown in Table VIII. 

TABLE V 

PARAMETER ESTIMATION IN FOURIER SERIES NONPARAMETRIC 

REGRESSION MODEL 

Parameters Estimations Parameters Estimations 

𝑎0 21.2734 𝑏3 0.0854 

𝑏1 -2.7233 𝑎1,3 1.3234 

𝑎1,1 -1.1289 𝑏4 -1.7470 

𝑏2 0.1264 𝑎1,4 1.4472 

𝑎1,2 2.3892 𝑎2,4 2.8371 

𝑎2,2 2.6540   

 

 

 
Fig. 2.  Multiple data groups' scatterplots compared to the group's substantial 

poverty gap 
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TABLE VI 

LOWEST AIC RESULTS FOR EVERY OSCILLATION PARAMETER NUMBER 

The Number of 

Oscillation 

Parameter 

Oscillation Parameter 

Combinations (K) 
AIC (K) 

𝑥2 𝑥3 𝑥4  

K=1 1 1 1 48.8913 

K=2 2 1 2 44.0591 

K=3 3 3 3 42.8249 

 

TABLE VII 

PARAMETER ESTIMATION IN FOURIER SERIES SEMIPARAMETRIC 

REGRESSION 

Parameters Estimations Parameters Estimations 

𝛽0 459.0154 𝑎1,2 31.9289 

𝛽1 -118.1128 𝑎2,2 106.6754 

𝑏1 1.1825 𝑎3,2 -41.4193 

𝑎1,1 78.9075 𝑏3 -84.8413 

𝑎2,1 31.6283 𝑎1,3 69.0279 

𝑎3,1 -17.5459 𝑎2,3 137.2307 

𝑏2 10.7718 𝑎3,3 109.4801 
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As shown in Table VIII, the binary logistic regression 

(34.1024) and Fourier Series nonparametric regression 

(23.9881) exhibit higher deviance values compared to the 

Fourier Series semiparametric regression (14.825). Since the 

Fourier Series semiparametric regression model has the 

lowest deviance value, it is the most suitable model for 
analyzing the poverty gap status in East Java in 2023. 

Getting the Best Classification Based on Accuracy & Press's 
Q Value  

The best accuracy or the higher Press's Q was shown by 

the chosen Fourier Series semiparametric regression model. 

The categorization test yields the following findings, which 
are shown in Table IX. 

 

 

 

As presented in Table IX, the Fourier Series semiparametric 

regression achieves an accuracy of 89.47%, which is higher 

than Fourier Series nonparametric regression (86.84%) and 
binary logistic regression (76.32%). A comparison of the 

accuracy values for the three methods across different 
thresholds are illustrated in Fig. 3. 

 

 

 

Furthermore, the Fourier Series semiparametric 

regression model demonstrates effective classification 

capabilities, as evidenced by its higher Press's Q value 

(23.6842), which exceeds the critical Chi-Square value. This 

indicates a greater probability of rejecting the null hypothesis 

(H0). A comparison of the estimation results are presented in 
Fig. 4. 

In addition to its superior classification performance, the 

model also highlights the robustness of the Fourier Series 

approach in capturing non-linear relationships within the 

data. By utilizing both the flexibility of nonparametric 

regression and the structure of parametric models, the 

semiparametric model is able to provide more reliable 

predictions with less overfitting. These characteristics make 

the model particularly valuable for analyzing complex, real-
world data like poverty status, where the interactions between 
predictor variables may not follow a simple linear pattern. 

 

 

 

The plots in Fig. 4 show that the predicted outcomes of 

the three methods vary, and no single approach consistently 

outperforms the others. However, in the specific case 
examined in this study, the Fourier Series semiparametric 

regression generally outperforms compared to others. The 

Fourier Series semiparametric regression is the optimal 

choice, as its probability estimates closely match the actual 
values in nearly all selected districts. 

IV. CONCLUSION 

This study's main goal was to provide a new 

semiparametric estimator for categorical data. Additionally, 

we introduced the MLE method for parameter estimation. To 

achieve superior estimation results, we compared the 

semiparametric approach with the other methods. This 

process was further refined to select the optimal model based 

on the previously proposed framework. 

The optimal model for both, the case study and simulation 

study was selected using the Akaike Information Criterion 

(AIC). To identify the optimal model, various combinations 

of smoothing conditions were tested. One of the case study's 

TABLE VIII 

DEVIANCE VALUES COMPARISON 

Methods Deviance Values 

Parametric 34.1024 

Nonparametric 23.9881 

Semiparametric 14.8250 

 

TABLE IX 

COMPARISON OF ACCURACY AND PRESS'S Q 

Methods Accuracy Sensitivity Specificity AUC 
Press's 

Q 

value 

Parametric 76.32% 76.31% 88.46% 50% 10.526 

Nonparametric 86.84% 88.46% 83.33% 85% 20.631 

Semiparametric 89.47% 96.15% 75% 86% 23.684 

 

 
Fig. 3.  Comparison of accuracy value in Binary Logistic, Fourier 

Series Nonparametric and Fourier Series Semiparametric regression 

 
Fig. 4.  Comparison of predicted value in Binary Logistic, Fourier 

Series Nonparametric and Fourier Series Semiparametric regression 
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main conclusions is that combining (𝑥2 = 3, 𝑥3 = 3, 𝑥4 = 3)  

for every predictor variable results in the best model. 

Compared to the other two models, the Fourier Series 

semiparametric regression model demonstrates the smallest 

deviance value, the highest accuracy, and the largest Press's 

Q value. These findings validate the hypothesis that the 

semiparametric estimator outperforms individual estimators 

when estimating the poverty gap status in East Java in 2023. 

APPENDIX 
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TABLE RESULTS OF AIC COMPARISONS FOR EVERY OSCILLATION 

PARAMETER COMBINATIONS IN SEMIPARAMETRIC REGRESSION MODEL 

 

Oscillation Parameter Combinations (K) 
AIC (K) 

𝑥2 𝑥3 𝑥4 

1 1 1 48.8913 

2 1 1 48.3442 

3 1 1 50.1357 

1 2 1 48.1021 

2 2 1 47.8624 

3 2 1 49.4003 

1 3 1 46.3338 

2 3 1 47.1193 

3 3 1 48.5888 

1 1 2 46.7705 

2 1 2 44.0591 

3 1 2 45.1193 

1 2 2 47.4183 

2 2 2 44.9095 

3 2 2 45.2476 

1 3 2 45.2757 

2 3 2 44.9268 

3 3 2 45.0191 

1 1 3 47.9156 

2 1 3 45.8831 

3 1 3 46.9094 

1 2 3 48.4006 

2 2 3 46.4109 

3 2 3 46.6957 

1 3 3 43.2803 

2 3 3 43.5334 

3 3 3 42.8250 
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