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Abstract—The difficulty in solving distributed order dif-
ferential equations lies in the fact that the order of the
derivative is distributed within a finite interval. Considering the
time derivative Caputo type and spatial derivative Riesz type
distributed diffusion equation, we obtain its series solution by
spectral methods and prove its convergence, moreover, a specific
accuracy estimate of its numerical format is given.

Index Terms—Caputo-type derivative; Riesz-type derivative;
Distributed order derivative; Spectral method; convergence.

I. INTRODUCTION

IN recent decades, fractional calculus theory, as a new
mathematical tool, has been widely used in many fields

such as physics, viscoelastic mechanics and non-Newtonian
fluid forces. After the concept of variable-order integral
and variable-order derivative was proposed by Samko [1] in
1993, the variable-order derivative model was applied to the
modeling of viscoelastic materials and viscous fluids, and the
distribution order derivative whose derivative distributed in
a finite interval has also been more and more widely used,
for example, the phenomenon of ultra-low velocity diffusion
or strong anomalous diffusion in polymer physics is usually
described by the distribution-order diffusion equation [2].
The distribution-order diffusion equation can also be used
to describe the sub-diffusion stochastic process belonging
to the Wiener process, and its diffusion index decreases
with time. Many complex diffusion processes with time-
varying diffusion indices, such as decelerated hyperdiffusion
and accelerated slow diffusion, decelerated slow diffusion
and accelerated hyperdiffusion, can be described by the
distributional-order diffusion equation [3].

In the past 10 or 20 years, the study of distribution
order differential equations has attracted much attention.
Zhang Hui [4] studied the two-dimensional Riesz spatially
distributed convective diffusion equation, and proposed a
Gaussian quadratic formula with higher accuracy than the
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midpoint quadrature, which can be used to discretize the
spatial distribution derivative, and transform the equation into
amultinomial spatial fractional order equation. The numer-
ical solution of the equation was obtained by the Crank-
Nicolson alternating direction Legendre spectrum method.
Wang Mengru [5] constructed the difference format for
the time distribution order with nonlinear source terms and
the Riesz-type spatial fractional order diffusion equation by
approximating the integral term of the equation using the
midpoint quadrature, discretizing time fractional derivative
using the backward finite difference formula and the central
difference method, and proved their stability and conver-
gence. Atanackovic,T.M. et al. [6] obtained the basic solution
of the time-distribution order diffusion wave equation by
means of Fourier transform and Laplace transform. Sandev,
T. et al. [7] studied the distribution-order diffusion equation
characterized by a multifractal memory kernel, in contrast to
the simple power-law kernel of the ordinary time fractional
diffusion equation. Ye, H. and Liu, F. et al. [8] considered
the numerical analysis of the time distribution order and the
spatial Riesz-type fractional diffusion equation on a bounded
domain with Dirichlet boundaries. Zheng, D. and Chen, J.
[9] proposed the separation of variables method and spectral
method, they are used to solve distributed order diffusion
equation in three dimensional space. Here we study the time
Caputo-type and spatial Riesz-type mixed distribution order
diffusion equation, use the spectral method to find its series
solution, prove the convergence of the series solution, and
give its accuracy estimate in numerical format.

II. PRELIMINARY KNOWLEDGE

In the history of the development of fractional calcu-
lus, scholars have obtained several definitions of fractional
derivatives from different perspectives. In this article ,the
definitions of Caputo type fractional calculus and Riesz type
fractional calculus are presented as follow.

Definition 2.1. The Caputo fractional operator for k− 1 <
α ≤ k on a infinite interval a ≤ t < +∞ is defined as

C
a D

α
t Ψ(t) =

1

Γ(k − a)

∫ t

a

Ψ(k)(τ)

(t− τ)α−k+1
dτ,

where Ψ(t) is k-order differentiability on a infinite interval
a ≤ t < +∞.

Definition 2.2. [10] The Riesz fractional operator for k−1 <
α ≤ k on a bounded interval 0 ≤ t ≤ l is defined as

∂α

∂|x|α
Ψ(x, t) = −cα(0Dα

x + xD
α
l )Ψ(x, t),
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where

cα =
1

2cos(πα2 )
, α ̸= 1,

0D
α
xΨ(x, t) =

1

Γ(k − α)

∂k

∂xk

∫ x

0

Ψ(ξ, t)

(x− ξ)α+1−k
dξ,

xDα
l Ψ(x, t) =

(−1)k

Γ(k − α)

∂k

∂xk

∫ l

x

Ψ(ξ, t)

(ξ − x)α+1−k
dξ.

Lemma 2.1[10] For the functions Ψ(x) defined in
(−∞,+∞), the following equations hold,

−(−∆)
α
2 Ψ(x) = − 1

2 cos(πα2 )
[−∞Dα

xΨ(x)

+xD
α
∞Ψ(x)]

=
∂α

∂|x|α
Ψ(x), k − 1 < α < k.

Define

Ψ∗(x) =

{
Ψ(x), x ∈ (0, l),
0, x /∈ (0, l).

It follows from Lemma 2.1, one has

Corollary 2.1[10]

−(−∆)
α
2 Ψ∗(x) = − 1

2 cos(πα2 )
[0D

α
xΨ(x) + xD

α
l Ψ(x)]

=
∂α

∂|x|α
Ψ(x).

Lemma 2.2[10] Suppose the Laplacian (−∆) has a complete
set of orthonormal eigenfunctions ϕk corresponding to eigen-
values λ2

k on a bounded region D, i.e., (−∆)ϕk = λ2
kϕk on

a bounded region D; B(ϕ) = 0 on ∂D, where B(ϕ) is one
of the standard three homogeneous boundary conditions. Let

ℜγ = {f =
∞∑
k=1

ckϕk, ck = ⟨f, ϕk⟩,
∞∑
k=1

|ck|2|λ|γk <∞,

γ = max(α, 0)},

then for any f ∈ ℜγ , (−∆)
α
2 is defined by

(−∆)
α
2 f =

∞∑
k=1

ck(λ
2
k)

α
2 ϕk.

Proposition 2.1[11] For k − 1 < µ ≤ k, Laplace transform
for Caputo type fractional order derivative

L{C0 D
µ
t p(t); s} = sµP (s)−

k−1∑
n=0

sµ−n−1p(n)(0),

where P (s) is Laplace transform function of p(t).

Proposition 2.2[11] Laplace transform for Mittag-Leffler
functions

tαn+β−1E
(n)
α,β(−at

α) L←→
n!sα−β

(sα + a)n+1
,

where Eα,β(−atα) is Mittag-Leffler Dual parameter func-
tion.

III. SERIES SOLUTIONS OF THE TIME CAPUTO-TYPE AND
SPATIAL RIESZ-TYPE DISTRIBUTION ORDER DIFFUSION

EQUATION

Consider the time Caputo-type and spatial Riesz-type
mixed distribution order diffusion equation{

C
0 D

γ
t Ψ(x, t) =

∫ 2

1
∂α

∂|x|αΨ(x, t)dα,

t ≥ 0, 0 < x < l, 0 < γ < 1,
(1)

with the boundary and initial conditions given by{
Ψ(0, t) = Ψ(l, t) = 0,
Ψ(x, 0) = g(x),

(2)

where both Ψ(x, t), g(x) are real-valued function and suffi-
ciently smooth, g(x) is bounded in [0, l], and C

0 D
γ
t is Caputo-

type derivative.
Let

Ψ(x, t) =
∞∑
k=1

Tk(t) sin
kπx

l
. (3)

By Corollary 2.1 and Lemma 2.2, we have

∂α

∂|x|α
Ψ(x, t) = −(−∆x)

α
2 Ψ(x, t)

= −
∞∑
k=1

Tk(t)(
k2π2

l2
)

α
2 sin

kπx

l
. (4)

Substitute both (3) and (4) into (1), we obtain
∞∑
k=1

sin
kπx

l
C
0 D

γ
t Tk(t)

= −
∞∑
k=1

Tk(t) sin
kπx

l

∫ 2

1

(
k2π2

l2
)

α
2 dα. (5)

It follows from above equation

C
0 D

γ
t Tk(t) + [

∫ 2

1

(
k2π2

l2
)

α
2 dα]Tk(t) = 0. (6)

Combining (2) and (3) implies

Ψ(x, 0) =
∞∑
k=1

Tk(0) sin
kπx

l
= g(x).

Obviously, by the properties of Fourier series, one has

Tk(0) =
2

l

∫ l

0

g(x) sin
kπx

l
dx.

Denote

λk =

∫ 2

1

(
k2π2

l2
)

α
2 dα,

which come from (6), calculating this integral, we can easily
get

λk =
(πl )

2k2 − π
l k

ln k + ln π
l

.

By Proposition 2.1, Laplace transform on both sides of (6)
leads to

sγ T̂k(s)− sγ−1Tk(0) + λkT̂k(s) = 0,

thus

T̂k(s) =
sγ−1

sγ + λk
Tk(0). (7)
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Performing an inverse Laplace transform on both sides of
equation (7) by Proposition 2.2 result in

Tk(t) = Eγ(−λkt
γ)Tk(0)

= Eγ(−λkt
γ)

2

l

∫ l

0

g(x) sin
kπx

l
dx.

Consequently, we find the solutions of equation (1) and (2)

Ψ(x, t)

=
∞∑
k=1

sin
kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx. (8)

IV. CONVERGENCE ANALYSIS OF THE SERIES SOLUTIONS

Lemma 4.1[11] If 0 < α < 2, β is a real number, for any
C > 0 and µ: πα

2 < µ < min{π, πα}, then

|Eα,β(Z)| ≤ C

1 + |z|
, µ ≤ |arg(z)| ≤ π, |z| ≥ 0.

Theorem 4.1 For any given pair (x,t), the series solutions
(8) of equation (1) and (2) is convergent.
Proof. g(x) is bounded on interval [0, l], for k ∈ Z+, we
can easily get

|Tk(0)| =
2

l

∣∣ ∫ l

0

g(x) sin
kπx

l
dx

∣∣
≤ 2

l
| sup
x∈[0,l]

g(x)|
∣∣ ∫ l

0

sin
kπx

l
dx

∣∣
≤ m,

where m is a constant 0 < m <∞.
Furthermore, when l

π /∈ Z+, for any k ∈ Z+, we have

| sin kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx|

≤ m|Eγ(−λkt
γ)|

≤ m
∣∣ c

1 + |λktγ |
∣∣

≤ mc

tγ
∣∣ 1
λk

∣∣
=

mcl2

tγπ2

∣∣ ln k + ln π
l

k(k − l
π )

∣∣.
Firstly, consider convergence of series of positive terms∑∞

k=1 |
ln k+ln π

l

k(k− l
π )
|, for the fact that

lim
k→∞

ln k/k(k − l
π )

1/k
3
2

= lim
k→∞

√
k ln k

k − l
π

= lim
k→∞

ln k + 2

2
√
k

= lim
k→∞

1
k
1√
k

= lim
k→∞

1√
k

= 0.

Additionally, p-series
∑∞

k=1
1

k
3
2

is convergent, thus,∑∞
k=1

ln k
k(k− l

π )
is absolutely convergent.

Secondly, consider
∑∞

k=1 |
ln π

l

k(k− l
π )
| similarly,

lim
k→∞

ln π
l /k(k −

l
π )

1/k
3
2

= lim
k→∞

√
k ln π

l

k − l
π

= lim
k→∞

ln π
l

2
√
k

= 0.

Series
∑∞

k=1
ln π

l

k(k− l
π )

is absolutely convergent in the
same way. Combining above two cases , we know that∑∞

k=1
ln k+ln π

l

k(k− l
π )

is absolutely convergent. Therefore, the so-
lutions of series form

Ψ(x, t) =
∞∑
k=1

sin
kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx

are convergent independent of variable x.

When k = l
π ∈ Z+, we have

λk =

∫ 2

1

(
kπ

l
)αdα =

∫ 2

1

dα = 1,

and

| sin kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx|

≤ m|Eγ(−λkt
γ)|

≤ m
∣∣ c

1 + |λktγ |
∣∣

≤ m
∣∣ c

1 + tγ
∣∣

≤ mc.

It follows that, given that the l
π -th term of series

Ψ(x, t) =
∞∑
k=1

sin
kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx

is a bounded constant under condition l
π ∈ Z+, the series

Ψ(x, t) is convergent as well. This ends the proof.

V. ACCURACY ESTIMATION IN NUMERICAL FORMAT

From chapter 4, we can take

ΨK(x, t)

=
K∑

k=1

sin
kπx

l
Eγ(−λkt

γ)
2

l

∫ l

0

g(x) sin
kπx

l
dx, (9)

as numerical format of solution to Problem (1) and (2).

Lemma 5.1
(1) If 0 < l < π, then ln k+ln π

l

k(k− l
π )

<
2π
l

k
3
2
, k ∈ Z+;

(2) If l > π and l
π /∈ Z+, then ln k+ln π

l

k(k− l
π )

<
2l
π

k
3
2
, k ∈ Z+.

Proof. (1) If 0 < l < π, we have

ln k + ln π
l

k(k − l
π )
−

2π
l

k
3
2

=
1

k

√
k ln k +

√
k ln π

l −
2πk
l + 2

√
k(k − l

π )
.

For the fact

d(
√
k ln k +

√
k ln π

l −
2πk
l + 2)

dk
=

ln k + 2 + ln π
l −

4π
√
k

l

2
√
k

,
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when k = 1,

ln k + 2 + ln
π

l
− 4π

√
k

l

< ln k + 2 +
π

l
− 4π

√
k

l

= 2− 3π

l
< 0,

and when k ≥ 1,

d(ln k + 2 + ln π
l −

4π
√
k

l )

dk
=

1

k
− 2π

l
√
k
< 0,

thus,

d(
√
k ln k +

√
k ln l − 2πk

l + 2)

dk
< 0.

Moreover, when k = 1,
√
k ln k +

√
k ln

π

l
− 2πk

l
+ 2 = ln

π

l
− 2(

π

l
− 1) < 0.

(By the fact that when y ≥ 1, [ln y−2(y−1)]
′
= 1

y −2 < 0,
and when y = 1, ln y − 2(y − 1) = 0. Which imply that
when y > 1, we have ln y− 2(y− 1) < 0.) Therefore, when
0 < l < π, then

ln k + ln π
l

k(k − l
π )

<
2π
l

k
3
2

, k ≥ 1.

(2) If l > π and l
π /∈ Z+, when 1 ≤ k < l

π , by the fact

ln k + ln π
l

k(k − l
π )
−

2l
π

k
3
2

=
1

k

√
k ln k +

√
k ln π

l −
2kl
π + 2( l

π )
2

√
k(k − l

π )
,

and

d[
√
k ln k +

√
k ln π

l −
2kl
π + 2( l

π )
2]

dk

=
ln k + 2 + ln π

l −
4l
√
k

π

2
√
k

.

When k ≥ 1, one has

d(ln k + 2 + ln π
l −

4l
√
k

π )

dk
=

1

k
− 2l

π
√
k
< 0,

and when k = 1, it follows

ln k + 2 + ln
π

l
− 4l
√
k

π
< 0.

So we get

d[
√
k ln k +

√
k ln π

l −
2kl
π + 2( l

π )
2]

dk
< 0, k ≥ 1.

Furthermore, when k = l
π ,

√
k ln k +

√
k ln

π

l
− 2kl

π
+ 2(

l

π
)2 = 0,

so we have
√
k ln k +

√
k ln

π

l
− 2kl

π
+ 2(

l

π
)2 ≥ 0, 1 ≤ k <

l

π
.

Consequently, when 1 ≤ k < l
π , we have

ln k + ln π
l

k(k − l
π )

<
2l
π

k
3
2

.

When k > l
π , we can get

ln k + ln π
l

k(k − l
π )
− 1

k
3
2

=
1

k

√
k ln k +

√
k ln π

l − k + l
π√

k(k − l
π )

.

By the fact

d[
√
k ln k +

√
k ln π

l − k + l
π ]

dk
=

ln k + 2 + ln π
l − 2

√
k

2
√
k

,

and

d(ln k + 2 + ln π
l − 2

√
k)

dk
=

1

k
− 1√

k
< 0, k >

l

π
,

together with the fact

ln k + 2 + ln
π

l
− 2
√
k < 0,

when k = l
π , it follows

d[
√
k ln k +

√
k ln π

l − k + l
π ]

dk
< 0, k >

l

π
.

Moreover, when k = l
π , we have

√
k ln k +

√
k ln

π

l
− k +

l

π
= 0,

thus, when k > l
π , we get the result

ln k + ln π
l

k(k − l
π )

<
1

k
3
2

.

In short, if l > π and l
π /∈ Z+, then

ln k + ln π
l

k(k − l
π )

<
2l
π

k
3
2

, k ≥ 1.

This ends the proof.

Lemma 5.2[12] Let p(x) is a continuous function which
is nonnegative , non-increased and defined in [1,+∞), then
the series

∑∞
n=1 p(n) is convergent if and only if generalized

integral
∫∞
1

p(x) is convergent and

n∑
k=2

p(k) ≤
∫ n

1

p(x)dx ≤
n−1∑
k=1

p(k).

Theorem 5.1 For any given pair (x, t), the estimation
accuracy of numerical format (9) is expressed as

|Ψ(x, t)−ΨK(x, t)| ≤ M

K
1
2

,

where M is a constant independent of K.
Proof. According to the proof of Theorem 4.1, we have

|Ψ(x, t)−ΨK(x, t)| = |
∞∑

k=K+1

sin
kπx

l
Eγ(−λkt

γ)Tk(0)|

≤ m|
∞∑

k=K+1

Eγ(−λkt
γ)|

≤ mcl2

tγπ2

∞∑
k=K+1

∣∣ ln k + ln π
l

k(k − l
π )

∣∣,
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when 0 < l < π, it follows

|Ψ(x, t)−ΨK(x, t)| ≤ mcl2

tγπ2

∞∑
k=K+1

∣∣ ln k + ln π
l

k(k − l
π )

∣∣
≤ mcl2

tγπ2

∞∑
k=K+1

2π
l

k
3
2

=
2mcl

tγπ

∞∑
k=K+1

1

k
3
2

≤ 2mcl

tγπ

∫ ∞

K

1

x
3
2

dx

= [
mcl2

tγπ2
]

2√
K

=
M1√
K

,

where M1 is independent of K when t is given. If l > π
and l

π /∈ Z+, we can deduce

|Ψ(x, t)−ΨK(x, t)| ≤ mcl2

tγπ2

∞∑
k=K+1

∣∣ ln k + ln π
l

k(k − l
π )

∣∣
≤ mcl2

tγπ2

∞∑
k=K+1

2l
π

k
3
2

=
2mcl3

tγπ3

∞∑
k=K+1

1

k
3
2

≤ 2mcl3

tγπ3

∫ ∞

K

1

x
3
2

dx

= [
2mcl3

tγπ3
]

2√
K

=
M2√
K

,

where M2 is independent of K when t is given. When l
π ∈

Z+, given K ≥ l
π , similarly, we have

|Ψ(x, t)−ΨK(x, t)| ≤ M2√
K

.

This ends the proof.

VI. SUMMARY

For the time Caputo-type spatial Riesz-type distribution
order diffusion equation, we have used the spectral method to
find its series solution, proved the convergence of the series
solution, and given its accuracy estimation of its numerical
format.
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