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Abstract—With the increasing importance of machine

learning, research on optimization algorithms has become
increasingly vital. The basic approach involves translating a
machine learning problem into an optimization problem and
then solving it. First-order stochastic optimization is a key
method for addressing machine learning problems. The
Barzilai-Borwein (BB) step size has been widely studied, but it
suffers from potential issues where the denominator approaches
zero or becomes negative, leading to instability in optimization
algorithms. To address these challenges, this paper proposes a
new step size strategy called the Cumulative Stabilized
Barzilai-Borwein (CSBB) Method. Two experiments were
conducted to illustrate the variations in the CSBB step size and
the evolution of gradient norms. Another two experiments,
neural network training and binary classification, were
conducted to evaluate the effectiveness of the CSBB method.
Experimental results demonstrate that CSBB effectively
stabilizes the step size, preventing it from approaching zero or
becoming negative. Moreover, the CSBB method enhances the
convergence speed and classification accuracy compared to the
traditional BB step size, making it a promising alternative for
improving optimization algorithms in machine learning
applications.

Index Terms—Barzilai-Borwein (BB) step size, Cumulative
Stabilized Barzilai -Borwein (CSBB) Method, optimization
problem, adaptive learning rate, machine learning

I. INTRODUCTION
ACHINE learning has rapidly advanced, drawing
significant attention from both researchers and industry

professionals. This field has emerged as a major focus of
research, greatly influencing areas like speech recognition,
machine translation, recommendation systems, and image
processing. Optimization is essential in machine learning, as
numerous tasks in this field can be reframed as optimization
problems. At its core, the majority of machine learning
algorithms entail constructing an optimization model and
deriving the objective function's parameters based on the
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given data.
To further enhance machine learning methods, numerous

effective optimization techniques have been developed to
boost their performance and efficiency. From the viewpoint
of how gradient information is applied in optimization,
commonly used methods fall into three categories: first-order
methods, with stochastic gradient approaches being the most
notable; high-order methods, exemplified by Newton’s
method; and heuristic, derivative-free methods, such as the
coordinate descent technique discussed in [1].
More recently, the step size selection from the traditional

full-gradient method, known as limited memory steepest
descent, was modified by Franchini et al. [2]. This
modification made the method compatible with stochastic
gradient algorithms.
Reference [3] introduced the Barzilai-Borwein (BB)

method. This method has since become widely recognized as
an efficient approach for tackling large-scale unconstrained
optimization problems with moderate precision. Moreover, it
can be adapted to address a broad range of constrained
optimization problems. Recently, numerous researchers have
focused on improving the step size selection in existing
algorithms, yielding promising outcomes. For instance, an
innovative mini-batch algorithm named mS2GD-BB was
presented in [4]. This algorithm integrates the BB method’s
self-adjusting step size into the mini-batch semi-stochastic
gradient descent (mS2GD) framework, which was originally
developed in [5]. Similarly, the algorithm SGD-BB was
developed by applying the BB method to automatically
determine step sizes in Stochastic Gradient Descent (SGD).
A similar approach was used to develop SVRG-BB, which
applies the BB method to the Stochastic Variance Reduced
Gradient (SVRG) variant, as shown in [6]. For a more
detailed discussion of the BB method and its applications,
readers are referred to [7] and the relevant references.
Additionally, a diagonal BB step size (DBB) was proposed in
[8] for the variable metric proximal gradient (VM-PG)
algorithm. Recently, the DBB approach was implemented in
[9] in a mini-batch proximal stochastic recursive gradient
algorithm. The convergence of the method was analyzed
under various conditions.
From the above-mentioned studies, it is evident that the

BB step size plays a crucial role in optimization algorithms.
However, due to the fractional structure of the BB step size,
situations where the denominator approaches zero are
inevitable. Therefore, some scholars have considered
improving the BB step size to address this issue. For example,
the Stabilized Barzilai-Borwein (SBB) step size was
proposed in [10]. This variant adds a positive term to the
denominator's absolute value, helping to mitigate the
instability issues inherent in the original BB step size. A
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stabilized BB method was presented in [11], which limits the
distance between successive iterations. This effectively
decreases the number of required BB iterations. Reference
[12] proposed an improved BB method, called Random
Barzilai-Borwein (RBB). The concept of online step size
(OSS) was introduced in [13]. Reference [14] resorted the BB
technique with a DBB step size to implemented mS2GD
algorithm. Reference [15] developed a new adaptive strategy,
Positive Defined Stabilized Barzilai-Borwein (PDSBB),
which adjusts the BB method to compute step sizes
dynamically. The PDSBB method was combined with SGD
by the researchers in [16], forming a new algorithm called
SGD-PDSBB. The effectiveness of the algorithm was
verified. Algorithms such as loopless SVRG (L-SVRG) in
[17] improve efficiency by eliminating external loops,
thereby reducing computational complexity. Inspired by
these improvements to the BB step size, a new variant of this
approach is presented in this study.
To further illustrate the current research landscape and

practical value of the Barzilai-Borwein (BB) step size
method in the field of machine learning, this study analyzes
586 publications from the Web of Science database published
between 2016 and 2025. These papers were selected based on
the topics “Barzilai-Borwein step size” or “Barzilai-Borwein
method” combined with “machine learning”. Using
CiteSpace, we conducted a comprehensive clustering and
visualization analysis from multiple perspectives, including
subject categories, keyword clustering, and burst detection of
keywords.
Figure 1 presents a circular view of the subject categories

involved in BB-related research from 2016 to 2025. It shows
that the BB method is widely used not only in traditional
fields like Applied Mathematics (#1), Engineering, Electrical
& Electronic (#2), and Mechanics (#3), but also in many
interdisciplinary areas. These include Radiology and Medical
Imaging (#7), Surgery (#4), Energy & Fuels (#5), and
Transportation Science & Technology (#0). The broad
distribution of these categories suggests that the BB method
is becoming a practical and adaptable tool for solving
optimization problems in a wide range of fields. Its growing
presence across disciplines highlights both its academic value
and real-world potential.
Figure 2 shows how the research focus on the BB method

has evolved over time. From 2016 to 2018, most studies
centered on classical optimization techniques such as
conjugate gradient methods, line search strategies, and
unconstrained optimization. Later, new topics like variance
reduction, image reconstruction, and nonmonotone line
search started to appear, reflecting a broader range of
applications. Around 2021, “machine learning” became a
core keyword, indicating that the BB step size method is
gaining importance in the AI field. The timezone view clearly
reveals this shift from theoretical optimization to more
practical, data-driven research.
Figure 3 shows the top-ranked keyword bursts in

BB-related research from 2016 to 2025. “Machine learning”
has the highest burst strength (7.1) among all the keywords.
This suggests a growing research interest in applying BB
methods to machine learning problems. This suggests that
combining step size strategies like BB with machine learning
has become a key area of focus in recent years. In addition,

keywords such as “stepsize” and “adaptive step size” also
show strong bursts starting in 2021 and 2023, respectively.
These highlight a growing interest in how step sizes are
chosen and adjusted during optimization. This trend supports
the motivation behind the CSBB method proposed in this
paper. The method uses historical information to stabilize the
step size. This makes it especially useful for deep learning,
where optimization problems often show high variability and
non-convex patterns.

In summary, the literature visualization analysis from
multiple perspectives highlights a clear upward trend in the
use of the Barzilai-Borwein step size method and its variants
in recent machine learning research. The method has shown
promising performance and broad application potential in
practical areas such as neural network training, image
reconstruction, and compressed sensing. Therefore, the
CSBB method proposed in this paper is not only theoretically
innovative but also holds strong potential for industrial
application.
The convergence analysis of these algorithms is not

detailed in this paper. This paper focuses only on presenting
the newly proposed approach for improving the BB step size,
the specific formula of CSBB, and demonstrates the
performance of the resulting step sizes and  kg x .

II. METHODOLOGY

To start, it is essential to identify the limitations of the BB
step size. We will first examine and analyze its shortcomings.
Through theoretical analysis and existing literature review,
we pinpoint specific issues such as denominator approaches
zero or even negative.
Secondly, propose the CSBB step size. Based on the

identified limitations, we propose an improved step size,
referred to as the CSBB step size. The CSBB is designed to
address the issues identified in the BB step size by
introducing a parameter to automatically adjust the step size
and stabilize it at an appropriate value. The formulation of the
CSBB step size is described in detail, including the
theoretical reasoning behind the modifications.
Thirdly, numerical experiments were designed. To

confirm the effectiveness of the CSBB step size, two
examples were carried out. The examples are common test
functions used in optimization algorithms.
Lastly, the evaluation and comparison were finished. We

compare the performance of the BB step size, PDSBB step

Fig. 3. Top-Ranked Keyword Bursts by Strength in BB Method Research
(2016–2025)
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size and CSBB step size and the norm gradient of each step
size. To emphasize the advantages of the CSBB step size, this
study evaluates the results from the numerical experiments in
comparison with the original BB step size. The research
framework of this study is illustrated in figure 4.

III. CUMULATIVE STABILIZED BARZILAI -BORWEIN (CSBB)
METHOD

In optimization algorithms, particularly gradient descent,
the terms "step size" and "learning rate" are frequently
synonymous, both indicating the magnitude of parameter
adjustments made during each iteration of the optimization
process. A significant challenge in stochastic optimization
involves choosing a suitable step size, as it can affect the
algorithm's convergence ability. A step size that is
excessively large may prevent convergence, while one that is
too small can lead to sluggish progress. Thus, finding the
right step size is essential for optimal algorithm performance.
The BB method is a gradient-based approach that draws

inspiration from Newton’s method, featuring adjusted step
sizes and being used alongside a non-monotone line search.
A defining feature of the BB method and its variants is their
quasi-Newton characteristics. Typically, the method employs
the full gradient of the objective function to maintain these
characteristics. In the steepest descent method, the BB
technique operates as a two-point step size by utilizing an
approximation of the secant equation.
This method requires only the storage of additional

iterations and gradients, which allows it to achieve lower
computational costs while significantly enhancing the
performance of classical steepest descent methods and other
standard gradient techniques.
Now, consider the following unconstrained optimization

problem that needs to be addressed:
 min f w (1)

where  f w is differentiable. For the optimization problem
(1), the iterative formula employed in the quasi-Newton
method is given by:

 1
1t t t tw w B f w
    (2)

The Hessian matrix ( 0t  ) is approximated through the
use of 1

ttB I , and this approximation is substituted into

the secant equation t t tB s y , where 1t t ts w w   ,

   1 , 1.t t ty f w f w t    By resolving the residual of
secant equation, i.e.,

 
2

1min
t t ts y  (3)

the BB step size can be obtained, as
2

1 t
T
t t

sBB
t s y

  (4)

Another form of BB step size is given by

2
2 T

t t

t

s yBB
t y

  (5)

which is obtained by solving the following:
2min t t ts y (6)

In general, Equation (4) tends to yield better numerical
performance than Equation (5) in practical applications.
Therefore, this study will primarily focus on Equation (4) as
the main starting point. The step size variant will be derived
from Equation (3).
Building on the limitations of the BB method previously

outlined and the need for stabilization, a new dynamic
adaptive step size named Cumulative Stabilized
Barzilai-Borwein (CSBB) has been developed. This method
modifies the BB technique to compute step sizes
automatically. The primary goal of CSBB is to address the
issue that arises as the BB step size's denominator approaches
zero. When the computed denominator falls below a
specified positive threshold, the CSBB method automatically
incorporates historical step sizes. The detailed description of
this approach is given by:
first, the step size t is computed using equation (4).

Secondly, when the denominator is close to 0, T
t ts y will be

compared to the given positive parameter , if T
t ts y  , set

1
2 1t t tt      . That is:

2

2 1

,

1 ,

t T
t tT

t tt
T

t t t t

s
s y

s y

s y
t




   


 
 


  

(6)

The similarity between the CSBB method and the BB step
size is noteworthy. When the denominator is greater than a
specified parameter  , the step size produced by the CSBB
method corresponds to the BB step size. If, however, the
denominator T

t ts y falls below a certain threshold  , the
CSBB method calculates the step size as a combination of the
two previous step sizes. Specifically, it is determined by
adding the step size from the previous iteration to a weighted
component of the step size from the iteration prior to that.
This can be expressed as the previous step size plus the step
size from two iterations earlier, scaled by 1

t ​ , where t is the

current iteration number. This method allows for automatic
adjustment of the step size, stabilizing it at an appropriate
value. Additionally, it effectively prevents situations where

Fig. 4. The Research Framework
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the denominator of the step size approaches zero or even
becomes negative.
The CSBB method introduced in this paper serves as

foundational work for machine learning research and will be
integrated with various stochastic optimization algorithms.
This includes various methods such as SGD proposed in [18];
the SVRG method introduced in [19]; SAGA, an innovative
incremental gradient approach introduced in [20]; the
mS2GD approach developed in [5]; the Stochastic Average
Gradient (SAG) method created in [21]; the Stochastic
Path-Integrated Differential Estimator (SPIDER) method
presented in [22]; the Accelerated Mini-batch Prox-SVRG
(Acc-Prox-SVRG) algorithm introduced in [23]; and the
Stochastic Recursive Gradient Algorithm (SARAH)
proposed in [24], among others, all aimed at improving the
optimization process and computational efficiency of these
algorithms.

IV. NUMERICAL EXAMPLE AND DISCUSSION

The numerical performance of the CSBB method is
illustrated in this section through two numerical experiments.
All coding was carried out in MATLAB 2022 and executed
on a personal computer equipped with a 12th Gen Intel(R)
Core (TM) i5-12500H processor, operating at 2500 MHz
with 12 cores, and running on the Windows 11 operating
system. The tolerance is set to 810tol  , and the
termination criterion is      kg x tol . The maximum number

of iterations is configured to 40. This paper mainly presents
the results of two examples.
In the two examples in this paper, the CSBB method

proposed is consistently represented by a solid line with
triangles, the BB method is depicted using a solid line with
circles, while the PDSBB method is illustrated with a solid
line featuring crosses. Example 1 is similar to the one
presented in reference [1], and Example 2 is a common test
function used in optimization algorithms or numerical
analysis to assess performance.

A. Example 1
In this example, we minimize the function

1
2( ) T Tf x x Ax b x 

where

200 0 0 0
0 100 0 0
0 0 20 0
0 0 0 10

A

 
 
 
 
 
 

,

1
1
1
1

b

 
 
 
 
 
 

.

Figure 5 displays the changes in step sizes over the
iterations, along with the corresponding gradient sequence
 kg‖ ‖ (after taking log10) for both the BB, PDSBB and
CSBB methods on the given function in this example. The
initial step size for all three methods is set to 1.
Figure 5 illustrates that, in Example 1, the CSBB step size

exhibits a divergent trend from that of BB and PDSBB after
approximately 20 iterations. Upon completion of the 35th
iteration, the results for the BB step size and the CSBB step
size are identical. In overall, the differences in step sizes

among the three methods are not significant. This is due to
the fact that the step sizes of BB remain relatively stable in
this example, which means that the step size of CSBB does
not undergo significant revisions. This ensures that the step
size maintains a decreasing property, which is consistent with
the strategy of using a decreasing step size in machine
learning optimization algorithms. However, in terms of the
gradient norm, none of the three step sizes are very stable and
all exhibit some degree of oscillation. Comparatively, the BB
step size is the most stable one.

To facilitate the presentation of results, we present the
results of the gradient norm in Table I. The values of the
Norm Gradient (NG) for three different step sizes in this
example are presented in the table.

TABLE I
RESULTS OF kg‖ ‖FOR THE BB, PDSBB AND CSBB METHODS

Iteration NG_BB NG_PDSBB NG_CSBB

1 2.00000E+00 2.00000E+00 2.00000E+00
2 2.23258E+02 2.23258E+02 2.23258E+02
3 2.84675E+02 2.84675E+02 2.84675E+02
4 3.79879E+01 3.79879E+01 3.79879E+01
5 1.42709E+01 1.42709E+01 1.42709E+01
6 1.22516E+01 1.22516E+01 1.22516E+01
7 7.04790E+00 7.04790E+00 7.04790E+00
8 2.28707E+01 2.28707E+01 2.28707E+01
⋮ ⋮ ⋮ ⋮
31 7.51687E-07 3.43216E-02 5.58080E-04
32 6.76314E-07 7.30671E-07 4.70026E-04
33 1.43188E-07 7.22781E-07 3.99282E-04
34 2.70355E-06 8.30614E-06 3.73174E-04
35 2.00160E-08 9.74384E-05 5.24164E-04
36 9.47780E-09 1.14305E-03 1.17449E-03
37 0.00000E+00 1.34092E-02 3.07445E-03
38 0.00000E+00 9.10932E-10 8.46312E-03
39 0.00000E+00 0.00000E+00 2.41454E-02
40 0.00000E+00 0.00000E+00 1.12707E-04

B. Example 2 Consider the function

       2
1 2

1

1 3 2
n

i
i

f x x sin x cos x


  
where n is taken to be 100, 400, 800, and 1600, respectively.

Fig. 5. Step Size and kg‖ ‖Results of the BB, PDSBB and CSBBMethods on
Example 1
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Fig. 6. Step Size and kg‖ ‖ Results of the BB, PDSBB and CSBB Methods

on Example 2 with 100n  (Fig. 6 a)) , 400n  (Fig. 6 b)), 800n  (Fig. 6
c)), and 1600n  (Fig. 6 d)), respectively.

Figure 6 illustrates the variations of step sizes with the
iteration and the resulting gradient sequence  kg‖ ‖ (after
taking log10) for both the BB, PDSBB and CSBB methods
on the provided example 2.
From Figures 6 a), b), and d), it is evident that when the

step size approaches zero (i.e., less than a positive threshold
set 610  in this paper) or becomes negative, the CSBB
step size effectively prevents these issues and maintains a
more appropriate value. This capability is particularly
advantageous when employing the BB step size in
conjunction with first-order stochastic optimization
algorithms, as it mitigates the risk of algorithm failure. This
principle underpins the design of the CSBB step size.
In comparison, the convergence speed of the CSBB

method is only slightly slower than that of the BB method;
the BB method achieves convergence tolerance in
approximately 20 steps, while the CSBB method requires
about 30 steps, as illustrated in the second subplots of Figures
6 a), b), and d). The CSBB method successfully avoids
negative step sizes while minimally impacting the
convergence speed, indicating that it stabilizes the step size
with negligible cost.
In Figure 6 c), it is observed that as the parameter n

increases, the BB step size exhibits substantial fluctuations,
resulting in multiple negative values. In contrast, both the
PDSBB and CSBB methods effectively stabilize the step
size.
Regarding kg‖ ‖, the CSBB method consistently reaches

the stopping criterion before the PDSBB method. When
800n  , the CSBB method reaches the stopping criterion in

approximately 28 iterations, compared to about 34 iterations
for the BB method. This demonstrates that the CSBB method
not only prevents the denominator of the step size from
nearing zero or becoming negative but also enhances
convergence speed.
Overall, this example illustrates that the CSBB method

stabilizes the step size with minimal impact on convergence
speed in some instances, while in others, it improves both
stability and convergence efficiency.

TABLE II
RESULTS OF kg‖ ‖FOR THE BB, PDSBB AND CSBB METHODS WITH

100n 

Iteration NG_BB NG_PDSBB NG_CSBB

1 1.99249E+01 1.99249E+01 1.99249E+01
2 1.99857E+01 1.99857E+01 1.99857E+01
3 3.73893E+00 3.73893E+00 3.73893E+00
4 1.01578E+00 1.01578E+00 1.01578E+00
5 2.09272E+00 2.09272E+00 2.09272E+00
6 6.18328E+00 2.52978E+00 2.52978E+00
7 2.05955E+00 1.14855E+00 1.14855E+00
8 3.07247E+00 2.24186E+00 2.24186E+00
9 4.05345E-01 5.25731E-01 5.25731E-01
10 1.37204E-01 5.22766E-01 5.22766E-01
⋮ ⋮ ⋮ ⋮
32 0.00000E+00 4.50201E-07 4.50201E-07
33 0.00000E+00 2.26664E-07 2.26664E-07
34 0.00000E+00 9.31507E-08 9.31507E-08
35 0.00000E+00 3.82817E-08 3.82817E-08
36 0.00000E+00 1.57328E-08 1.57328E-08
37 0.00000E+00 6.46985E-09 6.46985E-09
38 0.00000E+00 0.00000E+00 0.00000E+00
39 0.00000E+00 0.00000E+00 0.00000E+00
40 0.00000E+00 0.00000E+00 0.00000E+00
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TABLE V
RESULTS OF kg‖ ‖FOR THE BB, PDSBB AND CSBB METHODS WITH

1600n 

Iteration NG_BB NG_PDSBB NG_CSBB

1 7.99812E+01 7.99812E+01 7.99812E+01
2 7.99964E+01 7.99964E+01 7.99964E+01
3 3.73372E+00 3.73372E+00 3.73372E+00
4 1.16659E+00 1.16659E+00 1.16659E+00
5 2.02232E+00 2.02232E+00 2.02232E+00
6 5.21453E+00 2.49094E+00 2.98440E+00
7 2.52022E+00 1.25833E+00 7.15555E-01
8 4.31962E+00 2.40471E+00 8.67379E-01
9 1.68441E+00 9.83728E-01 5.19124E-01
⋮ ⋮ ⋮ ⋮
30 0.00000E+00 3.66928E-08 4.57161E-09
31 0.00000E+00 5.75012E-08 0.00000E+00
32 0.00000E+00 1.25690E-07 0.00000E+00
33 0.00000E+00 2.96479E-07 0.00000E+00
34 0.00000E+00 7.06677E-07 0.00000E+00
35 0.00000E+00 1.68659E-06 0.00000E+00
36 0.00000E+00 4.02595E-06 0.00000E+00
37 0.00000E+00 9.61026E-06 0.00000E+00
38 0.00000E+00 2.29405E-05 0.00000E+00
39 0.00000E+00 5.47610E-05 0.00000E+00
40 0.00000E+00 1.30719E-04 0.00000E+00

To facilitate the presentation of results, we present the
results of the gradient norm in Table II, Table III, Table IV,
and Table V. These tables show the values of the norm
gradient for three different step sizes in this example, with

100n  , 400n  , 800n  , and 1600n  , respectively.

C. Example 3 Comparison of SGD-BB and SGD-CSBB in
Neural Network Training
This experiment aims to compare the performance of

SGD-BB and SGD-CSBB in neural network training,
focusing on convergence speed, stability, and sensitivity to
the initial learning rate.
In this experiment, we use PyTorch to train a simple neural

network with a 1-10-1 architecture for a regression task:
fitting the nonlinear function 3y x with Gaussian noise (mean
of 0 and standard deviation of 0.1). The model architecture
includes a single hidden layer with 10 neurons, using ReLU
activation and mean squared error (MSE) as the loss function.
We compare two optimization methods: SGD-BB, which
employs the Barzilai-Borwein (BB) step size, and
SGD-CSBB, which adopts the Cumulative Stabilized BB
(CSBB) step size. The training is conducted for 100 epochs
under three different initial learning rates (0.01, 0.05, and 0.1)
in a GPU-supported environment.
Figure 7 illustrates how the loss function changes during

training for different learning rates (    0.01,  0.05,  0.1lr  ).
When the learning rate is set to 0.01, the SGD-BB method
(dashed lines) shows severe fluctuations and even diverges
during training. In contrast, the SGD-CSBB method (solid
lines) steadily converges to a lower loss value. This
difference suggests that the CSBB step size strategy provides
better stability when the learning rate is low.

The results indicate that CSBB achieves a more stable
convergence curve across all initial learning rates, effectively
mitigating the oscillations observed in BB when using a
higher learning rate (e.g., 0.1). Additionally, CSBB exhibits
improved stability in the early training stages, leading to a
lower initial loss. These results clearly indicate that the
CSBB method offers superior convergence behavior across
different learning rates, making it a robust choice for
optimizing the model.

Fig. 7. Comparison of Loss Between SGD-BB and SGD-CSBB Under
Varying Initial Learning Rates.

TABLE III
RESULTS OF kg‖ ‖FOR THE BB, PDSBB AND CSBBMETHODS WITH

400n 

Iteration NG_BB NG_PDSBB NG_CSBB

1 3.99625E+01 3.99625E+01 3.99625E+01
2 3.99929E+01 3.99929E+01 3.99929E+01
3 3.73476E+00 3.73476E+00 3.73476E+00
4 1.13699E+00 1.13699E+00 1.13699E+00
5 2.04568E+00 2.04568E+00 2.04568E+00
6 4.00220E+00 2.47395E+00 2.96584E+00
7 6.70169E+00 1.28185E+00 7.12842E-01
8 9.50151E-01 2.36812E+00 8.86258E-01
9 2.25306E+00 1.12687E+00 5.26391E-01
⋮ ⋮ ⋮ ⋮
34 0.00000E+00 3.18473E-03 0.00000E+00
35 0.00000E+00 2.44682E-07 0.00000E+00
36 0.00000E+00 1.05561E-07 0.00000E+00
37 0.00000E+00 8.54954E-08 0.00000E+00
38 0.00000E+00 6.92442E-08 0.00000E+00
39 0.00000E+00 5.60821E-08 0.00000E+00
40 0.00000E+00 4.54221E-08 0.00000E+00

TABLE IV
RESULTS OF kg‖ ‖FOR THE BB, PDSBB AND CSBB METHODS WITH

800n 

Iteration NG_BB NG_PDSBB NG_CSBB

1 5.65420E+01 5.65420E+01 5.65420E+01
2 5.65635E+01 5.65635E+01 5.65635E+01
3 3.73407E+00 3.73407E+00 3.73407E+00
4 1.15676E+00 1.15676E+00 1.15676E+00
5 2.03061E+00 2.03061E+00 2.03061E+00
6 4.11054E+00 2.48399E+00 2.97717E+00
7 6.50970E+00 1.26848E+00 7.15265E-01
8 1.36893E+00 2.39523E+00 8.75926E-01
⋮ ⋮ ⋮ ⋮
31 5.72383E-05 6.46326E-08 0.00000E+00
32 1.10648E-07 7.17122E-08 0.00000E+00
33 5.93308E-08 1.27640E-07 0.00000E+00
34 9.54804E-11 2.89516E-07 0.00000E+00
35 0.00000E+00 6.86805E-07 0.00000E+00
36 0.00000E+00 1.63885E-06 0.00000E+00
37 0.00000E+00 3.91345E-06 0.00000E+00
38 0.00000E+00 9.34583E-06 0.00000E+00
39 0.00000E+00 2.23193E-05 0.00000E+00
40 0.00000E+00 5.33022E-05 0.00000E+00
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As shown in Table VI, the computational time of CSBB is
comparable to BB, with an average increase of approximately
0.005s, which is a negligible trade-off for enhanced stability.

Overall, the CSBB method proposed in this paper
demonstrates a robust step size adaptation strategy, offering
smooth convergence, which is not sensitivity to the initial
learning rate, and it also can reduce computational overhead,
making it a preferable choice for optimization tasks requiring
in neural network training.

D. Example 4 Performance Comparison of BB and CSBB
Step Size Strategies in Binary Classification
In this experiment, we will compare two step size

strategies—BB and CSBB—in a binary classification
problem. Using the make_moons function, we will generate a
dataset of two interleaving half-moon shapes with added
noise to reflect real-world complexities. A simple
feedforward neural network will be built for this
classification task. We will train the network using Stochastic
Gradient Descent (SGD), applying both BB and adaptive
CSBB step size strategies. During training, we will track the
training loss, and classification accuracy at each epoch. By
plotting the changes in loss convergence, and
accuracy—using different line styles and markers—we aim
to clearly assess the performance differences between the BB
and CSBB strategies.
The experimental results show that SGD-CSBB performs

better in terms of convergence and classification accuracy
during training. In the loss convergence curve (Figure 8),
SGD-CSBB (solid line) decreases faster in the early stages
and eventually converges to a lower loss than SGD-BB
(dashed line). This suggests that the CSBB step size strategy
adapts more effectively during optimization, leading to more
stable training and a lower final loss. In contrast, SGD-BB
adjusts the step size less efficiently, resulting in slower
convergence and a higher final loss.

In the accuracy comparison (Figure 9), SGD-CSBB
improves accuracy more rapidly at the beginning of training
and reaches convergence within fewer epochs. It ultimately
achieves an accuracy of over 92%, while SGD-BB stabilizes
at around 90%. This indicates that CSBB can find the optimal
step size more quickly, improving both convergence speed
and final performance.

Overall, the results demonstrate that compared to the
traditional BB step size, CSBB achieves better optimization
in binary classification tasks by converging faster and
yielding higher accuracy.

V. INDUSTRY APPLICATIONS

The BB method is widely recognized for its simplicity and
effectiveness in large-scale optimization tasks. In this study,
we searched the Web of Science database using the topics
“Barzilai-Borwein step size” or “Barzilai-Borwein method”,
retrieving 8,744 relevant publications. We then used the
CiteSpace software to conduct a keyword clustering analysis
based on publications from the past decade (2016–2025).
Figure 10 presents the cluster view of keywords, where each
color denotes a distinct research theme.
As shown in Figure 10, the BB method is not only strongly

associated with classical optimization topics such as “global
optimization” and “model”, but also shows significant
connections with emerging application areas like “machine
learning” and “biomarkers”. In particular, Cluster #10
(“barzilai-borwein method”) demonstrates strong linkages
with Cluster #5 (“global optimization”) and Cluster #6
(“machine learning”), indicating the widespread adoption of
BB-based techniques in intelligent algorithms and practical
problem-solving.
The color gradient of the nodes, representing the average

publication year, suggests that research on BB methods has
remained active in recent years. This illustrates the method’s
ongoing relevance and promising future in both numerical
optimization and machine learning.
Several interdisciplinary clusters are also observed, such

as “oxidative stress”, “growth factor”, and “adsorption”,
indicating the expansion of BB-related methods into fields
including biomedical science, environmental science, and
materials science.
In summary, this analysis reveals that the BB method has

TABLE VI
RESULTS OF COMPUTATIONAL TIME FOR THE BB AND CSBB METHODS

Initial Learning Rate BB Time CSBB Time

0.01 0.1159 0.1216

0.05 0.1214 0.1227

0.1 0.1144 0.1219

Fig. 8. Loss Comparison Between SGD-BB and SGD-CSBB

Fig. 9. Accuracy Comparison Between SGD-BB and SGD-CSBB
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evolved from a technique primarily used in mathematical
optimization to a broadly applicable tool across various
scientific and engineering domains. Its flexibility and
efficiency support its use in solving real-world problems,
thereby motivating the development of our proposed CSBB
method, which aims to enhance the stability of step size
selection in deep learning and other complex tasks.
Despite its advantages, the performance of the BB method

can degrade when the denominator in the step size formula
approaches zero or becomes negative, leading to instability
and unreliable convergence. To address these limitations, the
proposed CSBB method introduces a correction mechanism
that averages the BB step sizes from the two most recent
iterations when such anomalies occur.
As a result, the CSBB method proves effective in training

machine learning models where gradient-based optimization
is crucial. For example, it can be integrated into stochastic
gradient descent (SGD) to dynamically adjust step sizes,
making it suitable for neural network training.
Additionally, the CSBB method holds promise in fields

such as compressed sensing and medical imaging (e.g., MRI
and CT), where high-quality image reconstruction from
limited data is critical. It can also improve performance in
image restoration, image deblurring, and network
optimization by efficiently solving large-scale linear inverse
problems.
Additionally, the CSBB method has potential applications

in compressed sensing and medical imaging, such as MRI
and CT, where reconstructing high-quality images from

limited data is essential. It can also enhance optimization
performance in tasks like image restoration, image deblurring,
and network optimization by solving large-scale linear
inverse problems efficiently.
The CSBB method has potential applications in image

restoration and network optimization tasks. In imaging and
computer vision, CSBB method has potential applications in
solving optimization problems for applications such as
imaging, recovering sharp images from blurred ones.

VI. CONCLUSION
This study is motivated by applying the BB step size to

optimization in machine learning. The CSBB step size is
introduced in this paper, addressing the limitations of the BB
step size, along with four examples to illustrate its application.
The examples show that the CSBB step size is sometimes
very similar to the BB step size. Significant changes occur
mainly when the denominator of BB step size gets close to
zero or turns negative. The CSBB method stabilizes the step
size with a small cost to convergence speed, and in some
cases, it even improves the convergence speed while ensuring
a stable step size. The step size proposed in this paper also be
applied to stochastic optimization algorithms and machine
learning models for solving problems. In future research,
consideration should be given to the convergence of the new
stochastic optimization algorithm.

Fig. 1. Circular Visualization of Subject Categories in BB Method Research (2016–2025)
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Fig. 10. Keyword Cluster View of BB Method Research (2016–2025)

Fig. 2. Temporal Evolution of Keywords in BB Method Research: Timezone View (2016–2025)
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