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Abstract—It is a well-established fact that fractional
differential equations provide a more accurate description
of several real-life phenomena. Unlike the traditional integer
derivatives, fractional derivatives have memory and non-local
properties that consider the past behavior of the equation or
system. Fractional derivatives are widely studied and used for
these reasons, especially in mathematical models or systems
involving differential equations. An essential component of
research in dynamical systems is the theory of stability, which
describes how a differential equation responds to significantly
small perturbations. The famous Routh-Hurwitz criterion pro-
vides the necessary and sufficient conditions for determining
the stability of systems described by integer order differential
equations. However, for systems described by fractional-order
derivatives, this criterion is only a sufficient condition to
guarantee that the zeros of a characteristic polynomial lie
in the left half of the complex plane. Therefore, devising
techniques for the stability analysis of dynamic systems with
derivatives in the fractional sense has become imperative. In
this paper, we compute an optimal Routh-Hurwitz criterion
obtained from a boundary locus technique for the stability
analysis of a fractional-order reverse butterfly-shaped chaotic
system. This criterion satisfies the necessary and sufficient
conditions for the roots of the system’s characteristic polynomial
to lie inside the Matignon stability sector. The results provide
a better understanding of how the stability criterion of the
fractional system is affected by the adjustable control parameter
c. The Backward Differential Formula is used to validate the
numerical results and is supported by graphical illustrations.

Index Terms—Reverse butterfly-shaped system, Fractional
order derivative, Matignon stability, Optimal Routh-Hurwitz
stability criterion.

I. INTRODUCTION

FRACTIONAL calculus first appeared in the
correspondence between Leibniz and L’Hopital,

Bernoulli, and Wallis in the years 1695-1697. In a letter to
Leibniz’, who had invented the classical calculus - dn/dxn

and
∫
dx, L’Hopital asked ’What if n = 1/2?’ [1]. This

question caught the attention of many mathematicians such
as Laplace, Lacroix, Fourier, Abel, Liouville, Riemann,
Grunwald, Letnikov, Sonin, Laurent, and Caputo, who
contributed to the theory [2].

Today, fractional calculus is considered well-posed. It is
well-established that fractional differential equations better
describe several real-life phenomena due to their non-local
and memory properties, which consider the past behavior of
the equation. For these reasons, fractional calculus applies
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in several areas of science, such as control theory [3],
viscoelasticity [4], wave propagation [5], [6], signal and
image processing [7], [8], [9].

An essential component of research in dynamical systems
is the theory of stability, which describes how a differential
equation responds to significantly small perturbations. The
famous Routh-Hurwitz criterion provides the necessary and
sufficient conditions for determining the stability of systems
described by integer-order differential equations. However,
for systems described by fractional-order derivatives, this
criterion is only sufficient to guarantee that the zeros of a
characteristic polynomial lie on the left half of the complex
plane. In his elegant research titled ’Stability results for
fractional differential equations with applications to control
processing,’ Matignon developed a theorem for the stability
of systems of fractional-order differential equations in the
year 1996 [10]. The Matignon stability theorem establishes
necessary and sufficient conditions which ensure that all the
roots of a characteristic polynomial associated with a system
of fractional differential equations lie inside the Matignon
stability sector. This major leap has sparked active research
in the area. Stability analysis of new and existing systems
have been studied in their fractional sense in [11], [12],
[13], [14]. However, in applying the Matignon stability
criterion, some literature employs techniques that do not
establish explicit results. For instance, the stability results of
the nontrivial symmetric equilibria of the fractional reverse
butterfly-shaped chaotic system presented in Theorem 1 of
the paper [15] do not permit explicit stability and bifurcation
checks of the system. The paper [16] is another example.

Using a boundary locus technique, Čermák and Nechvátal
[17] developed optimal Routh-Hurwitz conditions for the
stability analysis of fractional dynamic systems. Their result
explicitly states the necessary and sufficient conditions for
which the roots of a third-order polynomial satisfy the
Matignon stability criterion and, thus, lie inside the Matignon
sector. They successfully applied their results to the stability
and bifurcation analysis of the fractional Lorenz system
[17], Rössler system [18], Chen system [19]. Ng and Phang
[20] also applied the optimal Routh-Hurwitz conditions to
determine the stability criterion for the fractional Shimizu-
Morioka System.

This paper presents an optimal Routh-Hurwitz condition
for the stability analysis of the fractional reverse butterfly-
shaped dynamic system. The results provide a better
understanding of how the stability criterion of the fractional
system is affected by the adjustable control parameter c.
The Backward Differential Formula is used to validate the
numerical results and is supported by graphical illustrations.

The rest of the paper is organized as follows: Section two
reviews the stability results of the classical reverse butterfly-
shaped system. Section three presents optimal Routh-Hurwitz
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conditions for a fractional system. Section four highlights the
stability analysis of the fractional reverse butterfly-shaped
chaotic system, and finally, in section five we verify results
by numerical simulation.

II. REVERSE BUTTERFLY-SHAPED SYSTEM

A. Integer Order Reverse Butterfly-Shaped System

According to the paper [21], the classical reverse butterfly-
shaped system is given as

ẋ = a(y − x)

ẏ = bx+ kxz

ż = −cz − hxy

(1)

where a, b, c, h, k are positive parameters of the system.
The system in Equation (1) has three sets of equilibria
which are; the origin O(0, 0, 0) and a pair of symmetric
equilibrium points E±

(
±
√
bc/kh,±

√
bc/kh,−b/k

)
, and

demonstrates chaotic properties at a = 10, b = 40, c =
2.5, k = 16, h = 1 as shown in Fig. (1). Taking c as an

Fig. 1: Chaos at c = 2.5

adjustable parameter, the origin is unstable for all possible
values of c. The Jacobian Linearization of the system in
Equation (1) at the symmetric equilibrium points E± gives
the same characteristic polynomial as follows;

PE±

a,b,c(λ) = λ3 + (a+ c)λ2 + (ac+ bc)λ+ 2abc. (2)

By the standard Routh-Hurwitz stability criterion, all the
roots of the characteristic polynomial (2) lie on the left half
of the complex plane if and only if

c > c∗ =
a(b− a)

a+ b
. (3)

Thus, for all possible values of c > c∗, the characteristic
polynomial (2) has negative roots which implies that the
equilibria E± are stable. Also, for all positive values of
c < c∗, the characteristic polynomial (2) has a negative
real eigenvalue and a complex conjugate with a positive real
part which implies that the equilibria E± are unstable. At
c = c∗, the eigenvalues associated with the equilibria E± are
nonhyperbolic [22]. At this point, the system (1) experiences
a Hopf bifurcation characterized by a center manifold shown
in Fig. (2).

Fig. 2: Center manifold

B. Fractional Order Reverse Butterfly-Shaped System

The fractional form of the reverse butterfly-shaped system
(1) is given by

Dαx = a(y − x)

Dαy = bx+ kxz

Dαz = −cz − hxy

(4)

where Dα is the Caputo derivative operator defined as
follows: For a real function f(t) defined for all t > 0, we
introduce the fractional integral of the real order is defined
as β > 0 by

D−β
0 f(t) =

∫ t

0

(t− ξ)β−1

Γ(ξ)
f(ξ)dξ, t > 0

and the Caputo fractional derivative of the real order 0 <
α < 1 by

Dα
0 f(t) = D

−(1−α)
0

(
d

dt
f(t)

)
, t > 0.

.

III. OPTIMAL ROUTH-HURWITZ STABILITY CONDITIONS
FOR FRACTIONAL SYSTEM

We consider a classical 3-dimensional system (the case
α = 1) having the characteristic polynomial;

P (λ; p, q, r) = λ3 + pλ2 + qλ+ r (5)

where p, q, r are real coefficients. The roots of the polynomial
(5) λi, i = 1, 2, 3 have negative real parts if and only if

p > 0, q > 0, and0 < r < pq

according to the standard Routh-Hurwitz conditions [23].
For the fractional case, this condition is only a sufficient
condition for all the zeros of λi, i = 1, 2, 3 of (5) to lie
inside the Matignon stability sector

|arg(λ)| > απ

2
(6)

To guarantee (6) of (5), we use the boundary locus technique.
Following [17], we define the boundary locus BL(α) as
follows;

BL(α) = {(p, q, r) ∈ R} : ∃λ ∈ C, |arg(λ)| > απ

2
and

P (λ; p, q, r) = 0, 0 < α < 1.

(7)
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where

λ =ωeiαπ/2

=ω
(
cos

(απ
2

)
+ i sin

(απ
2

))
=
(
ω
(
cos

(απ
2

)
+ i sin

(απ
2

)))3

+p
(
ω
(
cos

(απ
2

)
+ i sin

(απ
2

)))2

+q
(
ω
(
cos

(απ
2

)
+ i sin

(απ
2

)))
+ r (8)

for a suitable ω ≥ 0.
Separating the real and imaginary parts, we obtain

ω3 cos

(
3απ

2

)
+ pω2 cos(απ) + rω cos

(απ
2

)
+ l = 0

ω

(
ω2 sin

(
3απ

2

)
+ pω sin(απ) + r sin

(απ
2

))
= 0

(9)
with the two solutions:
Solution 1: l = 0, ω = 0
Solution 2:

q = −ω(4 cos(
απ

2
)2ω + 2 cos(

απ

2
)p− ω),

r = 2 cos(
απ

2
)ω3 + ω2p.

(10)

From Equation (10)1, we obtain

ω± =
− cos

(
απ
2

)
p±

√
cos

(
απ
2

)2
p2 − 4 cos

(
απ
2

)2
q + q

4 cos
(
απ
2

)2 − 1
.

(11)
To determine the dependence of the constant r on p and q,
we substitute Equation (11) into Equation (10)2 to get;

r± =
−pq ± 2kα

(
p2 − 4qk2α + q

)√
k2αp

2 − 4k2αq + q + Γ

(4k2α − 1)
3

(12)
where

kα = cos(
απ

2
),

and
Γ = 2pk2α

(
−p2 + 4qk2α + q

)
Theorem 1: Let 2/3 < α < 1. All the zeros of the

polynomial (5) satisfy Equation (6) if and only if the
following conditions holds:

(i) p > 0, q > 0, 0 < r < r−(p, q;α);
(ii) p ≤ 0, q > p2/4cos2(απ/2), 0 < r < r−(p, q;α)

(iii) p > 0, q̂(p;α) ≤ q ≤ 0, r+(p, q;α) < r < r−(p, q;α).
Theorem 2: Let 1/2 < α < 2/3, All the zeros λi of the

polynomial (5) satisfy Equation (6) if and only if any of the
following conditions holds:

(i) p < 0, q ≤ q̄(p;α), r > r+(p, q;α);
(ii) p < 0, q < q < q̂(p;α), 0 < r < r−(p, q;α) or

r > r+(p, q;α);
(iii) p < 0, q > q̂(p;α), r > 0;
(iv) p ≥ 0, q < 0, r > r+(p, q;α);
(v) p ≥ 0, q ≥ 0, r > 0.
Theorem 3: Let 0 < α ≤ 1/2, All the zeros λi of the

polynomial (5) satisfy Equation (6) if and only if any of the
following conditions holds:

(i) p < 0, q ≤ q̄(p;α), r > r+(p, q;α);

(ii) p < 0, q > q̄(q;α), r > 0;
(iii) p ≥ 0, q ≥ 0, r > 0.

Proof: The proof of theorems (1)-(3) can be seen in
[17].

IV. STABILITY ANALYSIS OF THE FRACTIONAL REVERSE
BUTTERFLY SHAPED SYSTEM

In this section, we compute an optimal Routh-Hurwitz
stability criterion to determine the stability of the equilibria
E± of the fractional reverse butterfly-shaped system in
Equation (4). From the characteristic polynomial in Equation
(2), we have p = a + c > 0, q = c(a + b) > 0,
and r = 2abc > 0. Applying Theorem (3), it is easy to
establish that the equilibria E± are asymptotically stable
for 0 < α < 1/2. Also, according to Theorem (2), the
system is asymptotically stable for 0 < α < 2/3. Therefore,
we conclude that E± has all roots located in the Matignon
stability sector in Equation (6), which guarantees that the
fractional system in Equation (4) is locally asymptotically
stable for 0 < α < 2/3.
For 2/3 < α < 1, we apply Theorem (1) to show that the
inequality r < r−(p, q, r) is satisfied. And so, substituting
p = a+ c, q = c(a+ b), and r = 2abc into r < r−(p, q, r)
we obtain;

2abc <
{
−c(a+ c)(a+ b)− 2kα

(
(a+ c)2

− 4c(a+ b)k2α + c(a+ b)

×
√
k2α(a+ c)2 − 4c(a+ b)k2α + c(a+ b)

+2(a+ c)
(
−(a+ c)2 + 4c(a+ b)k2α

+ c(a+ b)k2α}/
(
4k2α − 1

)3
(13)

where kα = cos
(
απ
2

)
.

Further simplification of Equation (13) yields

Ac3 +Bc2 +Dc+ E > (Fc2 +Gc+H)
√
Ic2 + Jc+K

(14)
where
A = 2 cos2

(απ
2

)
B = −2(a+ b) cos2

(απ
2

)
− 8(a+ b) cos4

(απ
2

)
+ 6a cos2

(απ
2

)
+ (a+ b)

D = −8a(a+ b) cos4
(απ

2

)
+
(
2ab− 4a2

)
cos2

(απ
2

)
+ a2 + ab

(
1 + 2

(
4 cos4

(απ
2

)
− 1

)3
)

E = 2a3 cos2
(απ

2

)
F = −2 cos

(απ
2

)
G = −4a cos

(απ
2

)
+ 8 cos3

(απ
2

)
− 2 cos

(απ
2

)
(a+ b)

H = −2a2 cos
(απ

2

)
I = cos2

(απ
2

)
J = (−2a− 4b) cos2

(απ
2

)
+ (a+ b)

K = a2 cos2
(απ

2

)
.

Taking the limit as α → 1, one obtains F = G = H =
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0. This forces the right side of the inequality (14) to zero.
However, on the left side, we get;

A = 0, B = (a+ b), D = a(a− b), E = 0. (15)

Substituting these into the inequality (14) gives

c >
a(b− a)

a+ b
. (16)

The inequality in Equation (16) is the same as Equation (3),
the classical case (α = 1) where we used the standard Routh-
Hurwitz stability criterion. Therefore, the stability criterion
in Equation (14) is the corresponding fractional extension of
the Routh-Hurwitz criterion. Also, by squaring both sides of
the inequality in Equation (14), we obtain the polynomial in
Equation (17) which could equally be used for our analysis
in place of the inequality (14).

Q(c) =(F 2I −A2)c6 + (F 2J + 2FGI − 2AB)c5

+ (F 2K + 2FGJ + 2FHI +G2I − 2AD −B2)c4

+ (2FGK + 2FHJ +G2J + 2GHI − 2AE−
2AD)c3 + (2FHK +G2K + 2GHJ +H2I

− 2BE −D2)c2 + (2GIK +H2J − 2DE)c

+H2K − E2

(17)
Fixing the original values of the parameters a = 10, b =

40, k = 16, h = 1, the dependence of the adjustable control
parameter c on the derivative order α can be analyzed.
The fractional order reverse butterfly-shaped system thus
becomes;

Dαx = 10(y − x)

Dαy = 40x+ 16xz

Dαz = −cz − xy.

(18)

With c as the adjustable control parameter, from the
inequality (14) the following deductions and phase analysis
can be arrived at;

A ≡ A(α) = 2 cos2
(απ

2

)
B ≡ B(α) = −400 cos4

(απ
2

)
− 40 cos2

(απ
2

)
+ 50

D ≡ D(α) = −4000 cos4
(απ

2

)
− 400 cos2

(απ
2

)
+

800
(
4 cos2

(απ
2

)
− 1

)3

+ 500

E ≡ E(α) = 2000 cos2
(απ

2

)
F ≡ F (α) = −2 cos2

(απ
2

)
G ≡ G(α) = −140 cos

(απ
2

)
− 400 cos3

(απ
2

)
H ≡ H(α) = −200 cos2

(απ
2

)
I ≡ I(α) = cos2

(απ
2

)
J ≡ J(α) = −180 cos2

(απ
2

)
+ 50

K ≡ K(α) = 100 cos2
(απ

2

)
.

(19)
Let

Ac3 +Bc2 +Dc+ E = f(c;α),

(Fc2 +Gc+H)
√
Ic2 + Jc+K = g(c;α)

(20)

and write inequality (14) as

f(c;α) > g(c;α) (21)

where 2/3 < α < 1, and c > 0. Observing the graphs of
(21) in the interval 2/3 < α < 1, it is seen that

F (α) < 0, G(α) < 0, H(α) < 0.

Thus, g(c;α) < 0 for c > 0 and 2/3 < α < 1. Graphs of
the components of the left side of (21) reveals that

A(α) > 0, B(α) > 0, E(α) > 0

in the interval 2/3 < α < 1. However, D(α) ≥ 0 in the
interval

2/3 < α ≤ αo ≈ 0.8727337622.

Therefore, the criterion in Equation (14) is satisfied for c > 0,
and 2/3 < α < 0.8727337622. Also, f(c;α) > 0 for all
0 < c < c∗ = 6.0.
For our next analysis, we assume α0 < α < 1, and
c > 6.0. Using elementary computations, the signs of the
first and second derivatives of g(c;α) are determined. It
is observed from analysis that g(c;α) decreases whereas
f(c;α) increases in (0,∞) for any fixed value of α0 < α <
1.
Following [17],

dg

dγ
(c; γ) =

U(c; γ)

V (c; γ)

where;

U(c; γ) = 1600c3k4 − 4c4k2 − 288000c2k4 + 440c3k2+

160000ck4 + 109600c2k2 − 100c3 + 44000ck2 − 7000c2−
40000k2 − 10000c

and

V (c; γ) =
√
c2k2 − 180ck2 + 100k2 + 50c

The interval (α0, 1) is bijectively mapped by γ = cos(απ/2)
onto (0, γ0) where

γ0 = cos(
α0π

2
) = 0.1985804760.

Next, we determine the point αcr where the two curves
f(c;α) and g(c;α) intersect by formulating the following
system of equations;

A(α)c3 +B(α)c2 +D(α)c+ E(α)

=
(
F (α)c2 +G(α)c+H(α)

)√
I(α)c2 + J(α)c+K(α)

(22)

6F (α)I(α)c3 + (5F (α)J(α) + 4G(α)I(α))c2+

(4F (α)K(α) + 3G(α)J(α) + 2HI)c+ 2G(α)K(α)+

H(α)J(α)

=
(
6A(α)c2 + 4B(α)c+ 2D(α)

)
×
√

I(α)c2 + J(α)c+K(α)
(23)

with c and α unknown. Solving the system in Equations (22)
and (23) numerically, gives the critical value of α,

αcr ≈ 0.9504050658

in the interval [2/3, 1).
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V. NUMERICAL RESULTS

In this section, we test the stability results of the
fractional system in Equation (18) via numerical simulations.
Garrappa’s code flmm2 is used in MATLAB to obtain
numerical solutions of the fractional system. This code
is available on MathWorks and discussed in [24]. Three
optional techniques are included in this code; we have
opted for the fractional backward differential formula (BDF)
method with a step size of 10−4 for the construction of time
series and phase portrait.
Following previous discussions in section (IV), if we let
a = 10, b = 40, k = 16, h = 1 and αcr = 0.9504050658,
we get c = 0.8242472099. At these points, the fractional
system in Equation (18) experiences a Hopf bifurcation,
which results in a centre manifold. This is analogous to the
Hopf bifurcation of the classical system at c = 6.0 from
Equation (2). The center manifold is displayed in Fig. (3)
where we have truncated c = 0.824 and the critical value
αcr = 0.95 for convenience.

Fig. 3: Centre manifold of the system (18)

In terms of α, the stability criterion in Equation (14) can
be expressed as

A(α)c3 +B(α)c2 +D(α)c+ E(α) >(
F (α)c2 +G(α)c+H(α)

)√
I(α)c2 + J(α)c+K(α).

(24)
The stability results of the fractional system (18) based on
the computed criterion in Equation (14) are summarized in
Table (I) below. From the Table (I), if we let α = 0.94

α Range of c Stability Condition
α < αcr 0 < c < ∞ Stable
α > αcr Depends on (24) Stable

TABLE I: Stability conditions for fractional Reverse Butter-
fly Shaped System (18)

(assumption) which is less than the critical value αcr, then
for any choice of the bifurcation parameter c, the equilibria
E± of the fractional system (18) are asymptotically stable
as shown in the time series and phase portrait in Fig. (4) and
Fig. (5) respectively for the case c = 1.5.

For the condition α > αcr, the stability of the fractional
system (18) depends on the choice of the value of c. The

Fig. 4: Stable solution of the system (18) at α = 0.94 < αcr

Fig. 5: Phase portrait of stable solution of system (18) at
α = 0.94 < αcr

range of c for which the fractional system (18) is stable at
the equilibria E± can be obtained from the inequality (24).
For instance, if we let a = 10, b = 40, k = 16, h = 1 and
α = 0.96 which is greater than αcr, then the range of c
for which the equilibria E± are stable can be determined by
substituting α = 0.96 into the inequality (24) which yields
the range [2.164979049,∞). This is shown in Fig. (6) and
Fig. (7).

The fractional system is unstable for any choice of c
outside this range regardless of the value of α as shown
in the time series solution and phase portrait in Fig. (8) and
(9) respectively for the case α = 0.96 and c = 1.0.

Table (II) gives a summary of the values of α and the
corresponding ranges of c values where the equilibria E± of
the fractional reverse butterfly-shaped system in Equation 18
are stable.

α Range of c Stability Condition
0.951 > αcr (2.164979049,∞) Stable
0.96 > αcr (1.06894812,∞) Stable
0.94 < αcr (0,∞) stable
0.93 < αcr (0,∞) Stable

TABLE II: Ranges of c for stability of the system (18)
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Fig. 6: Stable solution of the system (18) at α = 0.94 > αcr,
and c = 2.5 ∈ [2.164979049,∞)

Fig. 7: Phase portrait of system (18) at α = 0.94 > αcr, and
c = 2.5 ∈ [2.164979049,∞)

Fig. 8: Phase portrait of unstable solution of the system (18)
at α = 0.96 > αcr

Also, the fractional system (18) is chaotic at α = 0.97 as
shown in the figure (10).

VI. CONCLUSION

In conclusion, the boundary locus technique is efficient
and provides explicit conditions that guarantee that the

Fig. 9: Unstable solutions of the system (18) at α = 0.96 >
αcr.

Fig. 10: Chaotic attractor.

fractional system’s eigenvalues lie inside the Matignon
stability sector. In addition, unlike other methods, the
results from this technique allow for bifurcation analysis of
the fractional system. An optimal Routh-Hurwitz criterion
using the boundary locus technique has been computed to
perform a stability analysis of the fractional order reverse
butterfly-shaped system. The derived optimal Routh-Hurwitz
criterion can determine values of the fractional order α for
which the fractional reverse butterfly-shaped system is stable
and unstable. Also, we have explored how the fractional
reverse butterfly-shaped system’s stability depends on the
adjustable parameter c where α is above its stability level.
The Backward Differential Formula (BDF), a fractional
linear multi-step method for numerically solving fractional
differential equations, verified the numerical results. This
research is limited to the case of α within the interval (0, 1).
Also, the boundary locus technique is still open to applying
to fractional systems of dimension beyond 3. We recommend
it for future study.
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