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Abstract—A fuzzy graph is a mathematical system that 

associates the idea of uncertainty, or fuzziness, with traditional 

graphs. Classical graph theory depicts edges between vertices as 

binary relationships, signifying the presence or absence of a 

connection between them. In contrast, fuzzy graphs can 

represent degrees of connection or membership, providing a 

more realistic and flexible framework for describing real-world 

systems with ambiguous or imprecise relationships. The idea of 

fuzzy graph labeling is to extend traditional graph labeling to 

handle vague information associated with vertices, edges, or 

both. This extension allows for a more nuanced representation 

of relationships within a graph, recognizing that not all 

connections or characteristics are absolute. An anti-fuzzy graph 

is established when the flow of an edge goes beyond the 

maximum value of the vertices. Anti-fuzzy graphs find uses in 

diverse fields, including decision-making, pattern recognition, 

and network analysis. Also, extending the labeling concept in 

anti-fuzzy graph is very helpful to handle real-time problems. 

This paper aims to study the concepts of anti-magic labeling for 

anti-fuzzy graphs. We proposed an algorithm for anti-fuzzy 

labeling(AFL) in path and star graphs. We have also established 

anti-fuzzy edge anti-magic (AFEAM) and anti-fuzzy vertex anti-

magic (AFVAM) using proposed algorithms for paths and star 

graphs, respectively. We derive their properties from vertex 

degree, strong degree, and strong edge. 

 
Index Terms—Fuzzy graph, Anti-fuzzy graph, Anti-fuzzy 

graph labeling, Anti-magic graph  

 

I. INTRODUCTION 

CCORDING to Zadeh [1], fuzzy concepts can represent 

actual uncertainty. In addition, Rosenfeld [2] and Yeh & 

Bang [3] have conducted independent studies on fuzzy 

graph development. We can apply fuzzy graphs (FG) to solve 

various problems. Although it is still very young, it has a wide 

range of applications and is growing rapidly. Fuzzy graphs 

have also seen exponential growth in mathematics, science, 

network technology, and so on. In [4], Akram defines the 

anti-fuzzy graph (AFG) as a new concept. AFG is an exciting 

research topic because there are not many studies on AFG. In 

[5], Muthuraj et al. discussed the degrees of AFG and 

characterized regular and irregular AFG. Sanggoor & Alwan 

[6] discuss operations on regular and irregular AFGs. 

Kalaivani [7] has discussed completeness in the AFG. 
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Seethalakshmi [8] explained some operations on AFG.  

Trisanti et al. [9] incorporated different types of AFG 

products. Nusantara et al. [10] discussed the regularity of 

vertex and edge in AFG. In [11], the authors presented the 

methodology of AFGs and incorporated the regularity and 

strength of these graphs. Nusantara et al. [12] postulated the 

idea of line graphs in AFGs and discussed the isomorphism 

between AFGs and their relevant line graphs. Jingwen et al. 

[13] proposed a procedure for adjacent vertex reducible edge 

labeling for some special graphs.  

Hartsfield et al. [14] provided anti-magic labeling in 1994. 

Baca et al. [15] developed the concept of EAM for some 

families of graphs. Chang et al. [16] and Latchoumanane et 

al. [17] illustrated the anti-magic labeling of regular and 

product regular graphs. Anjali Yadav and Minirani [18] 

explored the application of distance anti-magic labeling in 

specific graphs for surveillance or security systems. Ranjith 

et al. [19] established the concept of seating arrangement with 

certain conditions using the sum-signed graph labeling 

method.  

Sobha et al. [20], Jamil et al. [21], and Nagoorgani et al. [22] 

have studied the magic concept in FGs. FGs are called magic 

if they have the same value for all pairs. Sobha et al. [20] 

demonstrated the magic labeling of FGs for butterfly graphs, 

pan graphs, wheels, bulls, helms, and fan graphs. Nagoorgani 

et al. [22] showed FGs with magic labels for paths, cycles, 

and stars. Ameenal Bibi and Devi [23] investigated anti-

magic concept in FGs. Thirisangu et al. [24] and Sujatha et 

al. [25, 26] studied anti-magic idea on star graphs and 

triangular FGs. Brata et al. [27] investigated the concept of 

magic labeling for AFG. Oktaviani et al. [28] demonstrated 

the existence of m-magic, both the anti-fuzzy path and the 

anti-fuzzy bi-polar path.  

AFGs may represent ambiguous or negative interactions 

among members in social networks. Traditional fuzzy graphs 

depict the extent of friendliness or affinity, while AFGs 

illustrate negative relationships, such as competition or 

hostility. Risk assessment often entails the identification of 

adverse causes and possible failures. AFGs may represent 

systems characterised by component failures or malfunctions 

under uncertain circumstances, particularly when these 

components interact in intricate ways. In fault diagnostics for 

engineering systems, AFGs may illustrate potential adverse 

interactions among components, enabling engineers to more 

accurately anticipate system breakdowns and reduce risks. 

AFG labeling is used in chemical bonding for molecular 

structure representation, stability prediction, drug design, 

reaction pathway analysis, quantum chemistry, and 

nanotechnology. It facilitates the modelling of bond types, the 

analysis of stability, the optimisation of medicinal 

compounds, the examination of reaction feasibility, the 

interpretation of spectroscopic data, and the prediction of 

material characteristics.  
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AFG labeling in statistical surveys facilitates data 

classification, trend analysis, decision-making assistance, 

social impact examination, and enhancement of market 

research. It addresses ambiguity in replies, identifies trends, 

and improves policy formulation and consumer 

segmentation. 

The purpose of this article is to prove the AFEAM and 

AFVAM of the path, cycle, comb, and star AFGs. We can 

systematically write this article as follows to ensure a clear 

description. The preliminary part presents AFG terminology, 

which includes anti-magic labeling on AFG. In the main 

results part, we have showed that anti-magic labels of AFGs 

exist for paths and stars and some properties related to degree. 

II. PRELIMINARIES 

A FG G(ζ∗, ξ∗) is a couple of functions ζ∗: V → [0,1] & 

ξ∗: V × V → [0,1] where ∀ 𝑚𝑖 , 𝑚𝑗 ∈ V, then ξ∗(𝑚𝑖 , 𝑚𝑗) ≤

min{ζ∗(𝑚𝑖), ζ
∗( 𝑚𝑗)}. An AFG G(ζ∗, ξ∗) is a couple of 

functions ζ∗: V → [0,1] & ξ∗: V × V → [0,1] where 

∀ 𝑚𝑖, 𝑚𝑗 ∈ V, then ξ∗(𝑚𝑖 , 𝑚𝑗) ≥ max{ζ∗(𝑚𝑖), ζ
∗( 𝑚𝑗)}.  

Example 2.1:  

 

Fig 1. Fuzzy graph 

 

Fig 2. Anti-fuzzy graph 

 

 

A graph G(ζ∗, ξ∗) is defined as fuzzy graph labeling, if 

ζ∗: V → [0,1] & ξ∗: V × V → [0,1] is bijective which the grade 

values on edges and vertices are distinct and ξ∗(𝑚𝑖 , 𝑚𝑗) <

min{ζ∗(𝑚𝑖), ζ
∗ (𝑚𝑗)} ∀ 𝑚𝑖 , 𝑚𝑗 ∈ V.  

Fuzzy graph labeling G(ζ∗, ξ∗) is said to be AFG labeling if 

ξ∗(𝑚𝑖 , 𝑚𝑗) > max{ζ
∗(𝑚𝑖), ζ

∗ ( 𝑚𝑗)} for all  𝑚𝑖 , 𝑚𝑗 ∈ V. [24] 

A AFG is called as regular or 𝑘-regular. If 𝑑(𝑚)  =  𝑘 for 

every 𝑚 ∈  𝑉.  

An AFG 𝐺(ζ∗, ξ∗)  is known as irregular, if there is a vertex 

that is connected only to vertices of varying degrees. [6]. For 

example, in Fig 3. 𝑑(𝑚1) = 2.1, 𝑑(𝑚2) = 2.2, 𝑑(𝑚3) =

2.3, 𝑑(𝑚4) = 1.8 , 𝑑(𝑚5) = 0.8, all the vertices are adjacent 

with only distinct degree vertices so it is an irregular AFG.  

An AFG 𝐺(ζ∗, ξ∗)  is known as neighbourly irregular AFG 

if each pair of neighbouring vertices in G have different 

degrees. [6]. For example, in Fig 2. 𝑑(𝑚1) = 1.2, 𝑑(𝑚2) =

0.8, 𝑑(𝑚3) = 0.8, 𝑑(𝑚4) = 0.4, here each pair of 

neighbouring vertices have distinct degrees so it is 

neighbourly irregular AFG.  

An AFG 𝐺(ζ∗, ξ∗) is known as highly irregular if each 

vertex of G is adjacent to vertices to different degrees.[6] 

Let 𝐺(ζ∗, ξ∗)  be an AFG. The total degree of a vertex 𝑚𝑖  ∈

 𝑉 is denoted by 𝑡𝑑(𝑚𝑖) = ∑ ξ∗(𝑚𝑖, 𝑚𝑗)𝑚𝑖≠ 𝑚𝑗 ,𝑚𝑗ϵV
+

ζ∗(𝑚𝑖) = 𝑑(𝑚𝑖) + ζ
∗(𝑚𝑖).[6]. For example, in Fig 3. 

𝑡𝑑(𝑚1) = 2.6, 𝑡𝑑(𝑚2) = 2.8, 𝑡𝑑(𝑚3) = 3.0, 𝑡𝑑(𝑚4) =

2.7 , 𝑡𝑑(𝑚5) = 1.6.  

An AFG 𝐺(ζ∗, ξ∗) is claimed to be totally irregular AFG, if 

there is a vertex which is attached to vertices with different 

total degrees. [6] If every two adjacent vertices of an AFG 

𝐺(ζ∗, ξ∗) have different total degree, then G is said to be a 

neighbourly total irregular AFG. [6] 

A path 𝑃𝑛 is said to be an FG path if 𝜉∗(𝑚𝑖 , 𝑚𝑖+1) > 0, 0 ≤

𝑖 ≤ 𝑛. An FG path 𝑃𝑛 is said to be a AFG path if  

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) ≥ max (𝜁
∗(𝑚𝑖), 𝜁

∗(𝑚𝑖+1)). [11] 

An FG star consists pair of node sets 𝑉 and 𝑈 with |𝑉| = 1 

and |𝑈| > 1, ∋∈ 𝜉∗(𝑚,𝑚𝑖) > 0 and  𝜉∗(𝑚𝑖, 𝑚𝑖+1) = 0, 1 ≤

𝑖 ≤ 𝑛. It is denoted by 𝑆1,𝑛. [10]. An FG star 𝑆1,𝑛 is known as 

AFG star if 𝜉∗(𝑚,𝑚𝑖) ≥ max (𝜁
∗(𝑚), 𝜁∗(𝑚𝑖)).  

 

Example 2.2.  

 

 
 

Fig 3. Highly irregular and Totally irregular AFG 

 

Example 2.3.  

 

Fig 4.  Neighbourly total irregular AFG 
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III. ANTI-FUZZY ANTI-MAGIC GRAPH 

An AFG is called AFEAM labeling if 𝜁∗(𝑢) + 𝜉∗(𝑢, 𝑣) +

𝜁∗(𝑣) ∀ 𝑢 , 𝑣 ∈ 𝑉 are all distinct.  

An AFG is called AFVAM labeling in a graph 𝐺 is a 1-1 

correspondence, in which for any two different vertices 𝑣 and 

𝑤, the weight of 𝑚𝑝 is differ from weight of 𝑚𝑞. 

An AFG that permits AFEAM labelling is referred to as the 

AFEAM graph. An AFG that permits AFVAM labelling is 

referred to as the AFVAM graph. 

This section demonstrates the AFEAM and AFVAM of the 

path and star graph through a technique based on the theorem.  

Anti-fuzzy Labeled Path graph 𝑷𝒏: 

–––––––––––––––––––––––––––––––––––––––––––––– 

Algorithm 1 

–––––––––––––––––––––––––––––––––––––––––––––– 

AFL of edges and vertices of 𝑃𝑛 with 𝑛 ≥ 2 and 𝑧 ∈ (0,1] 
1. Input: The values provided for n along with z. 

2. There is a maximum of n+1 vertices.  

3. Vertex label is, 

for 𝑖 = 1 to 𝑛 + 1 

{ 

𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 + 1 

} 

4. Edge label is,  

for 𝑖 = 1 to 𝑛 + 1 

      if 1 ≤ 𝑖 ≤ 𝑛 

{ 

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) = 𝑛 + 𝑖 + 1 

} 

 

5. Output: Give the labels to indicate vertices and 

edges.  

–––––––––––––––––––––––––––––––––––––––––––––– 

Theorem 3.1. Let 𝑃𝑛: (𝜁
∗, 𝜉∗) be the AFL path graph for all 

𝑛 ≥ 2. Then 𝑃𝑛 admits AFEAM labeling.  

Proof. Let 𝑧 ∈ (0,1] so that 

 

𝑧 =

{
  
 

  
 

1

102
, 1 < 𝑛 ≤ 49  

1

103
, 49 < 𝑛 ≤ 499

1

10𝑘+3
, 49 + 𝑟 < 𝑛 ≤ 49 + 𝑠  

             𝑓𝑜𝑟 𝑘 = 1,2,3,⋯

 

where 

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘

 

and  

𝑠 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘+1

 

Defining membership values for vertex and edge using 

Algorithm 1. 

 𝜁∗: 𝑉 → [0,1] ∋ 𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 + 1 

𝜉∗: 𝑉 × 𝑉 → [0,1] such that 

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) = 𝑛 + 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛 

We discuss EAM labeling of path graph, 

𝐴𝑚0(𝑃𝑛) = 𝜁
∗(𝑚𝑖) + 𝜉

∗(𝑚𝑖 , 𝑚𝑖+1) + 𝜁
∗(𝑚𝑖+1),  

                    1 ≤ 𝑖 ≤ 𝑛 

                = 𝑖𝑧 + (𝑛 + 𝑖 + 1)𝑧 + (𝑖 + 1)𝑧 

                = (𝑛 + 3𝑖 + 2)𝑧 

From the above, it is evident that path graph 𝑃𝑛 admits 

AFEAM labeling.  

 

Theorem 3.2. Let 𝑃𝑛: (𝜁
∗, 𝜉∗)  be the AFL path graph for all 

𝑛 ≥ 2. Then 𝑃𝑛 admits AFVAM labeling.  

Proof. Given 𝑃𝑛: (𝜁
∗, 𝜉∗) be the AFL path graph.  

To prove that AFL path graph 𝑃𝑛: (𝜁
∗, 𝜉∗)  meets the 

requirement of AFVAM labeling.  

This reveals that for any two vertices 𝑚𝑝 and 𝑚𝑞 in 𝑆1,𝑛, 

the weight of 𝑚𝑝 is differ from weight of 𝑚𝑞. Let 𝑧 ∈ (0,1] 

so that 

𝑧 =

{
  
 

  
 

1

102
, 1 < 𝑛 ≤ 49  

1

103
, 49 < 𝑛 ≤ 499

1

10𝑘+3
, 49 + 𝑟 < 𝑛 ≤ 49 + 𝑠  

             𝑓𝑜𝑟 𝑘 = 1,2,3,⋯

 

where 

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘

 

and  

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘+1

 

 

Defining membership values for vertex and edge using 

Algorithm 1.  

𝜁∗: 𝑉 → [0,1] ∋ 𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 + 1    (3.1) 

𝜉∗: 𝑉 × 𝑉 → [0,1] such that 

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) = 𝑛 + 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛     (3.2) 

Also, the total of the edge labels incident at 

𝑚𝑖 = 𝑊𝑡(𝑚𝑖) = ∑ 𝜉∗(𝑢,𝑚𝑖)𝑢∈𝑁(𝑚𝑖)
                                 (3.3)                                                                              

Where 𝑁(𝑚𝑖) be the neighbourhood vertices of 𝑚𝑖 for all 𝑖 =
1 to 𝑛 + 1 and 𝑊𝑡(𝑚𝑖)be the weight of 𝑚𝑖. From equation 

(3.1), (3.2) and (3.3) for any pair of vertices 𝑚𝑝 and 𝑚𝑞 with 

𝑝 ≠ 𝑞, 𝑊𝑡(𝑚𝑝) and 𝑊𝑡(𝑚𝑞) have different values.  

Thus, a path graph 𝑃𝑛  admits AFVAM labeling.  

 

Example 3.1.  Fig 5 is illustrating the AFEAM and AFVAM 

path with path length 4.  

 

Fig 5. 𝑃4 − AFEAM and AFVAM path graph 

 

Illustration 3.1. Verifying the AFEAM of path graph 

using Fig 5. 
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𝑛 = 4, 𝑧 = 0.01 

 

𝐴𝑚0(𝑃𝑛) = 𝜁
∗(𝑚𝑖) + 𝜉

∗(𝑚𝑖 , 𝑚𝑖+1) + 𝜁
∗(𝑚𝑖+1),

1 ≤ 𝑖 ≤ 𝑛 

                  = (𝑛 + 3𝑖 + 2)𝑧, 1 ≤ 𝑖 ≤ 𝑛 

𝑖 = 1, 

𝐴𝑚0(𝑃4) = 𝜁
∗(𝑚1) + 𝜉

∗(𝑚1, 𝑚2) + 𝜁
∗(𝑚2)  

𝐴𝑚0(𝑃4) = (4 + 3(1) + 2)0.01 = 0.09 

𝑖 = 2, 

𝐴𝑚0(𝑃4) = 𝜁
∗(𝑚2) + 𝜉

∗(𝑚2, 𝑚3) + 𝜁
∗(𝑚3)  

𝐴𝑚0(𝑃4) = (4 + 3(2) + 2)0.01 = 0.12 

𝑖 = 3, 

𝐴𝑚0(𝑃4) = 𝜁
∗(𝑚3) + 𝜉

∗(𝑚3, 𝑚4) + 𝜁
∗(𝑚4)  

𝐴𝑚0(𝑃4) = (4 + 3(3) + 2)0.01 = 0.15 

 

𝑖 = 4, 

𝐴𝑚0(𝑃4) = 𝜁
∗(𝑚4) + 𝜉

∗(𝑚4, 𝑚5) + 𝜁
∗(𝑚5)  

𝐴𝑚0(𝑃4) = (4 + 3(4) + 2)0.01 = 0.18 

 

Therefore, in all the three cases 𝐴𝑚0(𝑃4) are different and 

unique.  

Thus 𝑃4 is AFEAM path graph.  

 

Illustration 3.2. Verifying the AFVAM of path graph 

using Fig 5. 

 

𝑛 = 4, 𝑧 = 0.01 

for the vertex 𝑚1, 𝐴𝑚0(𝑃4) = 𝜉
∗(𝑚1, 𝑚2) = 0.06 

 

for the vertex 𝑚2, 𝐴𝑚0(𝑃4) = 𝜉
∗(𝑚1, 𝑚2) + 𝜉

∗(𝑚2, 𝑚3) 
                                  = 0.06 + 0.07 = 0.13 

 

for the vertex 𝑚3, 𝐴𝑚0(𝑃4) = 𝜉
∗(𝑚2, 𝑚3) + 𝜉

∗(𝑚3, 𝑚4) 
                                                    = 0.07 + 0.08 = 0.15 

 

for the vertex 𝑚4, 𝐴𝑚0(𝑃4) = 𝜉
∗(𝑚3, 𝑚4) + 𝜉

∗(𝑚4, 𝑚5) 
                                                    = 0.08 + 0.09 = 0.17 

 

for the vertex 𝑚1, 𝐴𝑚0(𝑃4) = 𝜉
∗(𝑚4, 𝑚5) = 0.09 

 

Therefore, weight of all the vertex 𝐴𝑚0(𝑃4) are different and 

unique.  

Thus 𝑃4 is AFVAM path graph.  

 

Anti-fuzzy Labeled Star graph 𝑺𝟏,𝒏: 

–––––––––––––––––––––––––––––––––––––––––––––––– 

Algorithm 2 

–––––––––––––––––––––––––––––––––––––––––––––––– 

AFL of edges and vertices of 𝑆1,𝑛 with 𝑛 ≥ 2 and 𝑧 ∈ (0,1] 
1. Input: The values provided for n along with z. 

2. There is a maximum of n+1 vertices.  

3. Vertex label is, 

for 𝑖 = 1 to 𝑛 + 1 

{ 

𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 

} 

if 𝑛 ≥ 2  

 𝜁∗(𝑚𝑛+1) = (𝑛 + 1)𝑧 

 

4. Edge label is,  

for 𝑖 = 1 to 𝑛 + 1 

      if 1 ≤ 𝑖 ≤ 𝑛 

{ 

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) = (𝑛 + 𝑖 + 1)𝑧 

} 

 

6. Output: Give the labels to indicate vertices and 

edges.  

–––––––––––––––––––––––––––––––––––––––––––––––– 

Theorem 3.3. Let 𝑆1,𝑛 ∶ (𝜁
∗, 𝜉∗) be the AFL star graph for all 

𝑛 ≥ 2. Then 𝑆1,𝑛  admits AFEAM labeling.  

Proof. Let 𝑧 ∈ (0,1] so that 

𝑧 =

{
  
 

  
 

1

102
, 1 < 𝑛 ≤ 49  

1

103
, 49 < 𝑛 ≤ 499

1

10𝑘+3
, 49 + 𝑟 < 𝑛 ≤ 49 + 𝑠  

             𝑓𝑜𝑟 𝑘 = 1,2,3,⋯

 

where 

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘

 

and  

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘+1

 

 

Defining membership values for vertex and edge using 

Algorithm 2.  

 

𝜁∗: 𝑉 → [0,1] ∋ 𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 

  

𝜁∗(𝑚𝑛+1) = (𝑛 + 1)𝑧, 𝑛 ≥ 2   

 

𝜉∗: 𝑉 × 𝑉 → [0,1] such that 

𝜉∗(𝑚𝑖 , 𝑚𝑛+1) = (𝑛 + 𝑖 + 1)𝑧, 1 ≤ 𝑖 ≤ 𝑛 

We discuss EAM labeling of star graph,    

𝐴𝑚0(𝑆1,𝑛) = 𝜁∗(𝑚𝑖) + 𝜉
∗(𝑚𝑖 , 𝑚𝑛+1) + 𝜁

∗(𝑚𝑛+1), 1 ≤ 𝑖

≤ 𝑛 

                   = 𝑖𝑧 + (𝑛 + 𝑖 + 1)𝑧 + (𝑛 + 1)𝑧 

                   = (2𝑛 + 2𝑖 + 2)𝑧 

From the above, it is evident that the AFL star graph 𝑆1,𝑛 

admits AFEAM labeling.  

 

Theorem 3.4. Let 𝑆1,𝑛: (𝜁
∗, 𝜉∗)  be the AFL star graph for all 

𝑛 ≥ 2. Then 𝑆1,𝑛 admits AFVAM labeling.  

Proof. Given 𝑆1,𝑛: (𝜁
∗, 𝜉∗) be the AFL star graph.  

To prove that AFL star graph 𝑆1,𝑛: (𝜁
∗, 𝜉∗) meets the 

requirement of AFVAM labeling.  

This reveals that for any two vertices 𝑚𝑝 and 𝑚𝑞 in 

𝑆1,𝑛, the weight of 𝑚𝑝 is differ from weight of 𝑚𝑞.  

Let 𝑧 → (0,1] so that 
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𝑧 =

{
  
 

  
 

1

102
, 1 < 𝑛 ≤ 49  

1

103
, 49 < 𝑛 ≤ 499

1

10𝑘+3
, 49 + 𝑟 < 𝑛 ≤ 49 + 𝑠  

             𝑓𝑜𝑟 𝑘 = 1,2,3,⋯

 

where 

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘

 

and  

𝑟 = ∑ (45 × 10𝑡)

𝑗

𝑡=1
1≤𝑗≤𝑘+1

 

 

Defining membership values for vertex and edge using 

Algorithm 2.  

𝜁∗: 𝑉 → [0,1] ∋ 𝜁∗(𝑚𝑖) = 𝑖𝑧 where 1 ≤ 𝑖 ≤ 𝑛 + 1    (3.4)                                                                     

𝜉∗: 𝑉 × 𝑉 → [0,1] such that 

𝜉∗(𝑚𝑖 , 𝑚𝑖+1) = 𝑛 + 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛     (3.5)   

Also, the total of the edge labels incident at 

𝑚𝑖 = 𝑊𝑡(𝑚𝑖) = ∑ 𝜉∗(𝑢,𝑚𝑖)𝑢∈𝑁(𝑚𝑖)
                                (3.6)                                                                             

Where 𝑁(𝑚𝑖) be the neighbourhood vertices of 𝑚𝑖 for all 𝑖 =
1 to 𝑛 + 1 and 𝑊𝑡(𝑚𝑖)be the weight of 𝑚𝑖. From equation 

(3.4), (3.5) and (3.6) for any two vertices 𝑚𝑝 and 𝑚𝑞 with 

𝑝 ≠ 𝑞, 𝑊𝑡(𝑚𝑝) and 𝑊𝑡(𝑚𝑞) have different values.  

Thus, a star graph 𝑆1,𝑛 admits AFVAM labeling.  

 

Example 3.2. Fig 6 is illustrating the AFEAM and AFVAM 

star with 5 pendant edges.  

 

Fig 6.  𝑆1,5 – AFEAM and AFVAM star graph 

 

Illustration 3.3. Verifying the AFEAM of star graph using 

Fig 6. 

 

𝑛 = 5, 𝑧 = 0.01 

 

𝐴𝑚0(𝑆1,𝑛) = 𝜁∗(𝑚𝑖) + 𝜉
∗(𝑚𝑖 , 𝑚𝑛+1) + 𝜁

∗(𝑚𝑛+1),

1 ≤ 𝑖 ≤ 𝑛 

                  = (2𝑛 + 2𝑖 + 2)𝑧, 1 ≤ 𝑖 ≤ 𝑛 

𝑖 = 1, 

𝐴𝑚0(𝑆1,5) = 𝜁∗(𝑚1) + 𝜉
∗(𝑚1, 𝑚6) + 𝜁

∗(𝑚6)  

𝐴𝑚0(𝑆1,5) = (10 + 2(1) + 2)0.01 = 0.14 

 

𝑖 = 2, 

𝐴𝑚0(𝑆1,5) = 𝜁∗(𝑚2) + 𝜉
∗(𝑚2, 𝑚6) + 𝜁

∗(𝑚6)  

𝐴𝑚0(𝑆1,5) = (10 + 2(2) + 2)0.01 = 0.16 

 

𝑖 = 3, 

𝐴𝑚0(𝑆1,5) = 𝜁∗(𝑚3) + 𝜉
∗(𝑚3, 𝑚6) + 𝜁

∗(𝑚6)  

𝐴𝑚0(𝑆1,5) = (10 + 2(3) + 2)0.01 = 0.18 

 

𝑖 = 4, 

𝐴𝑚0(𝑆1,5) = 𝜁∗(𝑚4) + 𝜉
∗(𝑚4, 𝑚6) + 𝜁

∗(𝑚6)  

𝐴𝑚0(𝑆1,5) = (10 + 2(4) + 2)0.01 = 0.20 

 

𝑖 = 5, 

𝐴𝑚0(𝑆1,5) = 𝜁∗(𝑚5) + 𝜉
∗(𝑚5, 𝑚6) + 𝜁

∗(𝑚6)  

𝐴𝑚0(𝑆1,5) = (10 + 2(5) + 2)0.01 = 0.22 

 

Therefore, in all the three cases 𝐴𝑚0(𝑆1,5) are different and 

unique.  

Thus 𝑆1,5 is AFEAM star graph.   

 

Illustration 3.4. Verifying the AFVAM of star graph using 

Fig 6. 

 

𝑛 = 5, 𝑧 = 0.01 

 

for the vertex 𝑚1, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚1, 𝑚6) = 0.07 

for the vertex 𝑚2, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚2, 𝑚6) = 0.08 

for the vertex 𝑚3, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚3, 𝑚6) = 0.09 

for the vertex 𝑚4, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚4, 𝑚6) = 0.10 

for the vertex 𝑚5, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚5, 𝑚6) = 0.11 

for the vertex 𝑚6, 𝐴𝑚0(𝑆1,𝑛) = 𝜉
∗(𝑚1, 𝑚6) + 𝜉

∗(𝑚2, 𝑚6) +

𝜉∗(𝑚3, 𝑚6) + 𝜉
∗(𝑚4, 𝑚6) + 𝜉

∗(𝑚5, 𝑚6) 
                         = 0.07 + 0.08 + 0.09 + 0.10 + 0.11 = 0.45  

Therefore, weight of all the vertex 𝐴𝑚0(𝑆1,𝑛) are different 

and unique.  

Thus 𝑆1,𝑛 is AFVAM star graph.  

 

IV. FINDINGS 

1. For any AFEAM and AFVAM path and star graph, 

𝑑(𝑚𝑖) ≠ 𝑑(𝑚𝑗) for any pair of vertices 𝑚𝑖, 𝑚𝑗 ∈ 𝑉.  

2. For any AFEAM and AFVAM path and star graph, 

𝑑𝑠(𝑚𝑖) ≠ 𝑑𝑠(𝑚𝑗) for any pair of vertices 𝑚𝑖 , 𝑚𝑗 ∈ 𝑉.  

3. For any AFEAM and AFVAM path and star graph, 

𝑑𝑠(𝑚𝑖) = 𝑑(𝑚𝑖) ∀ 𝑚𝑖 ∈ 𝑉.  

4. In AFEAM and AFVAM path and star graph all the edges 

are fuzzy bridges and strong edges.  

5. Every AFEAM and AFVAM path and star are irregular, 

neighbourly irregular and highly irregular. 

6. AFEAM and AFVAM path and star graph are totally 

irregular.  

7. Every AFEAM and AFVAM path and star graph are 

neighbourly total irregular.  

V. CONCLUSION 

The fuzzy graph provides an efficient system for describing 

and analysing systems defined by uncertainty and 

imprecision. Such tools have a wide range of applications, 

making them valuable for addressing complexities in real-life 
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situations. Research in fuzzy graphs continues to refine and 

extend the theory to meet the demands of diverse 

applications. Researchers continue to explore the integration 

of fuzzy graph theory with other mathematical models, such 

as probability theory. The most challenging aspects of fuzzy 

graph labeling are defining appropriate membership 

functions, dealing with computational complexity, and 

developing effective visualisation techniques. As a result, the 

proposed article introduced AFEAM and AFVAM labeling 

on graphs. We discussed EAM and VAM labeling on AFGs 

for path and star graphs. Additionally, we have examined the 

properties of AFEAM and AFVAM path and star graphs. 

This concept can be extended to more standard graphs, such 

as the bi-star, coconut tree, and octopus graph, among others. 
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