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Abstract—This paper investigates the space-time fractional-
order Korteweg-de Vries (STFKdV) equation using dynamical
systems and bifurcation theory. First, the STFKdV equation is
transformed into a Hamiltonian system, and exact parametric
expressions for its traveling wave solutions are derived. Sub-
sequently, the paper also compares the space-time fractional-
order and integer-order KdV equations, highlighting structural
similarities and graphical differences, particularly influenced by
the parameter λ. Finally, the theoretical methodology developed
in this study is capable of addressing the solution of the entire
spectrum of fractional-order KdV and integer-order equations
with p ∈ N+.

Index Terms—Fractional-order; Traveling wave transforma-
tion; Hamiltonian system ; Exact solution.

I. INTRODUCTION

IN the present work, a considerable amount of research
activity has focused on nonlinear partial differential equa-

tions (NPDEs) (see [1]–[18]). Recently, numerous scholars
have endeavored to explore the damped Korteweg-de Vries
(KdV) equation

ut + βuux + µuxxx − νuxx + vx = 0, ν > 0, (1)

where v is a forcing term and ν is a damping parameter. And
its generalized form

ut + βupux + µuxxx − νuxx + vx = 0, p > 0, ν > 0.
(2)

Setting the parameters v = 0 and ν = 0, the equation reverts
to the unperturbed system

ut + βupux + µuxxx = 0, p > 0. (3)

In Eq. (1), (2) and (3), u = u(x, t) and v = v(x, t) represent
the unknown functions dependent on the independent vari-
ables x and t. Meanwhile, p, µ, β and ν are real parameters.

In general, the Korteweg-de Vries equations are pivotal
in the realms of mathematical physics, nonlinear theory,
and their physical applications. Over the past few decades,
numerous methodologies have been developed to address
KdV equations [19]–[29]. Especially, Derks and Gilf [22]
studied the uniqueness of traveling waves in perturbed KdV
equations. Sun and Huang [28] proved that the KdV equa-
tions possess periodic waves with a fixed range of wave
speed and established the coexistence of the solitary wave
and one periodic wave. By analyzing the ratio of Abelian
integrals, Chen et al. [29] proved that the limit wave speed
of the general KdVs is decreasing and provided the upper and
lower bounds of the limit wave speed. Liu et al. [30]–[32]
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transformed the variable-coefficient partial differential Kd-
V equations into constant-coefficient KdV equations under
some conditions by constructing equivalent transformations
and presented the explicit solutions to the variable-coefficient
KdVs in terms of the equivalent transformations.

Drawing from the extensive scholarly work, we consider
the conformable space-time fractional Korteweg-de Vries
(STFKdV) equation, which is formulated as follows:

Dα
t u+ βupDλ

xu+ µDλ
xD

λ
xD

λ
xu = 0, 0 < α, λ ≤ 1.

(4)
In the Eq. (4), for the sake of convenience, let us assume
that α, β, µ, λ are real constants and p is positive integer.
And Dα

t u and Dλ
xu are the conformable fractional derivative

proposed by Khalil et al. [33]. If λ = 1, then STFKdV
equation (4) degenerates into the time fractional-order KdV
equation

Dα
t u+ βupux + µuxxx = 0, 0 < α ≤ 1. (5)

Obviously,when α = 1 and λ = 1, then STFKdV equation
(4) becomes the integer-order KdV equation (3).

The paper is organized as follows. In Section II, the model
be transformed into Hamiltonian system by traveling wave
transformation. In Section III, we study the bifurcations and
phase portraits of the Hamiltonian system. In Section IV, we
present exact solutions of the Eq. (4) obtained respectively.
In Section V, comparison between STFKdV equation and
the integer-order KdV equation is presented. Finally, we
conclude our paper in Section VI.

II. TRANSFORMATION

In this section, we use the following transformation

u(x, t) = u(η), η = xλ − ltα, (6)

where l, which is positive, signifies the velocity at which the
wave propagates. We obtain

Dα
t u(x, t) = t1−α ∂u(x, t)

∂t
= t1−α du(η)

dη

∂η

∂t
= −lαu′,

(7)

Dλ
xu(x, t) = x1−λ ∂u(x, t)

∂x
= x1−λ du(η)

dη

∂η

∂x
= λu′, (8)

Dλ
xD

λ
xD

λ
xu(x, t) = λ3u′′′. (9)

Substituting the above into the STFKdV equation, we derive
the following ordinary differential equation:

−lαu′ + βλupu′ + µλ3u′′′ = 0. (10)

Then, by integrating both sides of Eq. (10), we obtain the
following equations:

−lαu+
βλ

p+ 1
up+1 + µλ3u′′ = a, (11)
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u′′ − lα

µλ3
u+

β

µ(p+ 1)λ2
up+1 =

a

µλ3
, (12)

where a is arbitrary constants. For convenience, posing c =
lα
µλ3 , b = β

µλ2 , δ = a
µλ3 , transforms Eq. (11) to the following

form:
u′′ − cu+

b

p+ 1
up+1 = δ. (13)

Now, let’s talk about properties of Eq. (13) and transform it
into Hamiltonian system

du

dη
= Ψ,

dΨ

dη
= cu− b

p+ 1
up+1 + δ.

(14)

Additionally, the first integral is expressed as

H(u,Ψ) =
1

2
Ψ2 − 1

2
cu2 +

b

(p+ 1)(p+ 2)
up+2 + δu = h.

(15)
Based on the analysis above, we reach the following theorem:

Theorem II.1. The STFKdV equation (4) can be turn into a
dynamical systems (14) by the traveling wave transformation
(6).

III. BIFURCATIONS AND PHASE PORTRAITS OF
DYNAMICAL SYSTEM (14)

For further analysis, we need to discuss the equilibrium
points of the Hamiltonian system (14). Let Γ(u) = cu −
b

p+1u
p+1+ δ, then Γ′(u) = c− bup. Apparently, the roots of

Γ(u) = 0 depend on the parameter set (p, c, b, δ). Through
computation, we find:

1) If p is odd and (δ + d0)b < 0, then Γ(u) = 0 has no
real root:

2) If one of the following cases is satisfied, then Γ(u) = 0
has only one real root u1:

• p is even and bc < 0;
• p is even, δ ̸= ±d0, and bc > 0;
• p is odd and δ = d0;

3) If one of the following cases is satisfied, then Γ(u) = 0
has two real roots u2, u3(u3 < u2):

• p is odd and (δ + d0) > 0;
• p is even, δ = ±d0, and bc > 0;

4) If one of the following cases is satisfied, then Γ(u) = 0
has three real roots u4, u5, u6(u6 < u5 < u4):

• p is even, b < 0, c < 0, and d0 < δ < −d0;
• p is even, b > 0, c > 0, and −d0 < δ < d0;

where d0 = pc
p+1 (

c
b )

1
p .

Furthermore, note that

J(ui,Ψi) = detM(ui,Ψi) = −Γ′(u) = −bup + c. (16)

In the context of the linearized system derived from equation
(14) at equilibrium points Ei(i = 1, 2, . . . , 6) (Ei = (ui, 0)),
the matrix of coefficients is denoted by M(ui,Ψi). By ap-
plying the equilibrium point theory (as detailed in reference
[34]), the computation is readily executed to find that

a. J(u1, 0) > 0 (indicating a center point), if p is
even, b > 0, c < 0 or b > 0, c > 0, and δ ̸= ±d0;
[as shown in Fig. 1(a)]

b. J(u1, 0) = 0 (indicating a saddle point), if p is odd
and δ = d0; [as shown in Fig. 1(b)]

c. J(u1, 0) < 0 (indicating a cusp point), if p is
even,b < 0, c > 0 or b < 0, c < 0, δ ̸= ±d0;
[as shown in Fig. 1(c)]

d. J(u2, 0) > 0 (indicating a center point), J(u3, 0) <
0 (indicating a saddle point), if p is odd, b > 0,
δ < −d0; [as shown in Fig. 1(d)]

e. J(u2, 0) < 0 (indicating a saddle point),
J(u3, 0) > 0 (indicating a center point), if p is
odd, b < 0, δ > −d0; [as shown in Fig. 1(e)]

f. J(u2, 0) < 0 (indicating a saddle point),
J(u3, 0) = 0 (indicating a cusp point), if p is even,
b < 0, c < 0, δ = d0; [as shown in Fig. 1(f)]

g. J(u2, 0) = 0 (indicating a cusp point), J(u3, 0) <
0 (indicating a saddle point), if p is even, b < 0,
c < 0, δ = −d0; [as shown in Fig. 1(g)]

h. J(u2, 0) > 0 (indicating a center point), J(u3, 0) =
0 (indicating a cusp point), if p is even, b > 0,
c > 0, δ = d0; [as shown in Fig. 1(h)]

i. J(u2, 0) = 0 (indicating a cusp point), J(u3, 0) >
0 (indicating a center point), if p is even, b < 0,
c < 0, δ = −d0; [as shown in Fig. 1(i)]

j. J(u4, 0) < 0 (indicating a saddle point),
J(u5, 0) > 0 (indicating a center point), J(u6, 0) <
0 (indicating a saddle point), if p is even, b < 0,
c < 0, d0 < δ < −d0; [as shown in Fig. 1(j) and
Fig. 1(l)]

g. J(u4, 0) > 0 (indicating a center point), J(u5, 0) <
0 (indicating a saddle point), J(u6, 0) > 0 (indi-
cating a center point), if p is even, b > 0, c > 0,
−d0 < δ < d0. [as shown in Fig. 1(k)]

It is evident that the system (14) exhibits more phase
portraits when p is even compared to when p is odd .

IV. EXACT SOLUTIONS TO THE STFKDV EQUARION (4)

In this section, we identify the solutions of the Hamiltonian
system (14). From the first integral, we establish the integral
constant h as a fixed value, which results in

Ψ2 = cu2 − 2b

(p+ 1)(p+ 2)
up+2 + 2δu+ 2h

= | 2b

(p+ 1)(p+ 2)
| Φ(u). (17)

The function Φ(u) represents a polynomial of the (p+ 2)th
degree in the variable u.

Ψ2 =

{
2b

(p+1)(p+2)Φ(u), b ≥ 0,

− 2b
(p+1)(p+2)Φ(u), b < 0.

(18)

Apparently, the number and types of equilibrium points of
planar dynamical system (14) are affected by the parity of
p. As the parity of p has an impact on the phase diagram
of system (14), we will now engage in a classification
discussion.

A. Case I: p is odd

In this section, we examine the case where p is an odd
number. For the sake of simplicity, we presume p = 1.
We now proceed to analyze the traveling wave solutions
associated with the distinct bounded bifurcations of the phase
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(a) p is even (b) p is odd (c) p is even

(d) p is odd (e) p is odd (f) p is even

(g) p is even (h) p is even (i) p is even

(j) p is even (k) p is even (l) p is even

Fig. 1: Bifurcations and phase portraits of the system (14).
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(a) Periodic wave of (14) (b) Exact solutions of (4)

(c) Bright solitary wave of (14) (d) Exact solutions of (4)

(e) Dark solitary wave of (14) (f) Exact solutions of (4)

(g) Periodic wave of (14) (h) Exact solutions of (4)

Fig. 2: Various waves of system (14) and graphs of solutions for (4) with α = 1
2 , λ = 1

3 ,p = 1
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portraits depicted in Fig.1 (b) and Fig. 1(d). If p = 1, then
the Eq. (17) is transformed into the following form

Ψ2 = cu2 − b

3
u3 + 2δu+ 2h = ± b

3
Φ(u). (19)

In the formula (19), Φ(u) is defined as a three-degree
polynomial in u. Integrating along a branch of the curve,
starting from the initial value u(t0) = u0, yields us

η =

∫ u

u0

√
± 3

bΦ(s)
ds. (20)

Let hi = H(ui, 0)(i = 1, 2, . . . , 6), for the phase portraits,
respectively.

Then we just consider the Fig. 2(a) as follows.
(i) Firstly, considering Fig. 1(d), we identify the green

curve that represents a series of periodic orbits surrounding
the equilibrium point E2(u2, 0). These orbits exist within the
range h ∈ (h2, h3) and under the condition that b is positive
Designating ξ1, ξ2, ξ3 (with ξ3 < ξ2 ≤ u < ξ1) intersection
points of the green curve with the u-axis in Fig. 1(d), we
proceed to write:

Φ(u) = (ξ1 − u)(u− ξ2)(u− ξ3). (21)

From the formula (see 235.00 in [35]), we have∫ u

ξ2

ds√
(ξ1 − s)(s− ξ2)(s− ξ3)

= gsn−1(sinφ, k)

=

√
b

3
η, (22)

where φ = sin−1
√

(ξ1−ξ3)(u−ξ2)
(ξ1−ξ2)(u−ξ3)

, g = 2√
(ξ1−ξ3)

, k2 =

ξ1−ξ2
ξ1−ξ3

. Consequently, based on Eq. (22), it guides us to

sinφ = sn( 1g

√
b
3η, k) =

√
(ξ1−ξ3)(u−ξ2)
(ξ1−ξ2)(u−ξ3)

. Therefore, the
parametric formulation of the periodic trajectory of system
(14) as depicted in Fig. 2(a), is presented as follows:

u(η) =
ξ3(ξ1 − ξ2)sn2( 1g

√
b
3η, k)− ξ1ξ2 + ξ2ξ3

(ξ1 − ξ2)sn2( 1g

√
b
3η, k)− ξ1 + ξ3

. (23)

Here sn(ξ, k) denotes the elliptic sine function, which is
a Jacobian elliptic function. Correspondingly, the precise
periodic waveform solutions for Eq. (4), as illustrated in Fig.
2(b), can be articulated as:

u(x, t) =
ξ3(ξ1 − ξ2)sn2( 1g

√
b
3 (x

λ − ltα), k)− ξ1ξ2 + ξ2ξ3

(ξ1 − ξ2)sn2( 1g

√
b
3 (x

λ − ltα), k)− ξ1 + ξ3

.

(24)
(ii) Secondly, if h = h2, we get the blue level curve in

Fig. 1(d). Currently, there is a homoclinic orbit encircling
the equilibrium point E2(u2, 0). Hence, the function Φ(u) =
(u−ξ2)

2(ξ1−u) (ξ1, ξ2, with ξ1 and ξ2 being the coordinates
where the blue curve intersects the u-axis as shown in Fig.
1(d). For values of u that satisfy ξ2 < u < ξ1, we then

formulate ∫ ξ1

u

ds√
(ξ1 − s)(s− ξ2)2

=
1√

ξ1 − ξ2
ln
√
ξ1 − ξ2 +

√
ξ1 − u√

ξ1 − ξ2 −
√
ξ1 − u

=

√
3

b
η. (25)

Therefore, the parametric formulation of the homoclinic
trajectory of system (14) as depicted in Fig. 2(c), is presented
as follows:

u(η) = ξ1 − [
eρη − 1

eρη + 1
]2(ξ1 − ξ2), (26)

where ρ =
√

b(ξ1−ξ2)
3 . Hence, correspondingly, the precise

bright solitary waveform solutions for Eq. (4), as illustrated
in Fig. 2(d), can be articulated as:

u(x, t) = ξ1 − [
eρ(x

λ−ltα) − 1

eρ(xλ−ltα) + 1
]2(ξ1 − ξ2). (27)

Similarly, according to Fig. 1(e), we determine the precise
parametric expression for the homoclinic orbit within system
(14), as depicted in Fig. 2(e). We also identify the dark
solitary wave solutions for Eq. (4), shown in Fig. 2(f),
along with the parametric expression for the periodic orbit
of system (14), illustrated in Fig. 2(g), and the exact periodic
wave solutions for Eq. (4), as seen in Fig. 2(h).

u(η) = ξ2 + [
eρ1η − 1

eρ1η + 1
]2(ξ1 − ξ2), (28)

u(x, t) = ξ2 + [
eρ1(x

λ−ltα) − 1

eρ1(xλ−ltα) + 1
]2(ξ1 − ξ2), (29)

u(η) =
ξ1(ξ2 − ξ3)sn2( 1g

√
− b

3η, k1)− ξ1ξ2 + ξ2ξ3

(ξ2 − ξ3)sn2( 1g

√
1 b
3η, k1)− ξ1 + ξ3

, (30)

u(x, t) =
ξ1(ξ2 − ξ3)sn2( 1g

√
− b

3 (x
λ − ltα), k1)− ξ1ξ2 + ξ2ξ3

(ξ2 − ξ3)sn2( 1g

√
− b

3 (x
λ − ltα), k1)− ξ1 + ξ3

,

(31)
where ρ1 =

√
− b

3 (ξ1 − ξ2), k21 = ξ2−ξ3
ξ1−ξ3

.
Through the above analysis, we get the following conclu-

sion:
Given that p = 2n−1, the system (14) manifests periodic

and solitary wave patterns. Concurrently, the STFKdV equa-
tion (4) presents a spectrum of solutions including periodic
waves, as well as both dark and bright solitary waves.

B. Case II: p is even

The following section focuses on p is even. For ease of
computation, we posit p = 2 and delve into the analysis of all
traveling wave solutions associated with the various bounded
bifurcations of phase portraits as previously outlined [Fig.
1(a), 2(e), 2(f), 3(a), 3(b) and 3(c)].

In a manner analogous to Case I, the traveling wave
solutions for the STFKdV equation with p = 2 can be
determined. In the current scenario, the system (14) not only
features periodic waves, dark solitary waves, and bright soli-
tary waves but also introduces kink waves. Concurrently, the
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STFKdV equation encompass a range of solutions, including
periodic waves, dark solitary waves, bright solitary waves,
and additional kink wave solutions. The other cases will not
be further discussed, and only the case of kink wave solutions
will be presented here. Substituting p = 2 in the Eq. (17),
gives us the following form:

Ψ2 = cu2 − b

6
u4 + 2du+ 2h = ± b

6
Φ(u). (32)

In the preceding Eq. (32), Φ(u) is defined as a four-degree
polynomial in u. We derive the solution by integrating over
the corresponding curve from initial value u(t0) = u0,

η =

∫ u

u0

√
± 6

bΦ(s)
ds. (33)

If h = h4 or h = h6, we get the blue level curve in Fig.
3(a). Designate ξ1 and ξ2 as the coordinates where the red
curve crosses the u-axis in Fig. 3(a). Now, it corresponds
two heteroclinic orbits surrounding E5(u5, 0). Thus, Φ(u) =
(ξ1 − u)2(u− ξ2)

2, and ξ1 = −ξ2. When ξ2 < u < ξ1, then
we obtain ∫ u

0

ds√
(ξ1 − s)2(s− ξ2)2

=

∫ u

0

ds

(ξ1 − s)(s− ξ2)

=

√
− b

6
η. (34)

Therefore, the precise parametric formulation for the hete-
roclinic orbit of system (14), as derived from [refer to Fig.
10(a)], is given by

u(η) =
ξ1e

(ξ1−ξ2)
√

− b
6η + ξ2

1 + e(ξ1−ξ2)
√

− b
6η

. (35)

Thus, in correspondence, we derive the kink wave solutions
for Eq. (4) as detailed below [refer to Fig.(b)]:

u(x, t) =
ξ1e

(ξ1−ξ2)
√

− b
6 (x

λ−ltα) + ξ2

1 + e(ξ1−ξ2)
√

− b
6 (x

λ−ltα)
. (36)

By synthesizing the discussions from the two previous cases,
we arrive at the following theorem:

Theorem IV.1. The fractional-order Korteweg-de Vries
(STFKdV) equation (4) encompasses a variety of wave solu-
tions, including kink waves, periodic waves, dark solitary
waves, bright solitary waves, and additional kink wave
solutions.

V. COMPARISON BETWEEN THE STFKDV EQUATION AND
THE INTEGER-ORDER KDV EQUATION

As discussed in Section I, the STFKdV equation (4)
transforms into the integer-order KdV equation (3) when
λ = 1 and α = 1. Similarly, the integer-order KdV equation
(3) can be reformulated into a dynamical system that mirrors
the structure of system (14).

du

dη
= Ψ,

dΨ
dη = c̃u− b̃

p+1u
p+1 + δ̃,

(37)

where c̃ = l
µ , b̃ = β

µ , δ = ã
µ ,and ã is arbitrary constants.

(a) Kink wave of (14)

(b) Exact solutions of (4)

Fig. 3: Kink wave of system (14) and graph of solutions for
(4) with α = 1

2 , λ = 1
3 , p = 2, b = −3, c = −3, δ = 0.

Subsequently, let us investigate the distinctions between
the STFKdV equation and the integer-order KdV equation. In
systems (14) and (37), letting c̃ = c, b̃ = b, δ = δ, provides
us with a result that the newly derived dynamical system
(37) and the Hamiltonian system (14) possess identical phase
portraits (see Fig. 1). Consequently, As a result, it becomes
evident that the integer-order KdV equation (3) includes a
spectrum of solutions such as kink waves, periodic waves,
dark solitary waves, bright solitary waves, and further kink
wave solutions. Herein, we shall exemplify a case for each
category of traveling wave solution to facilitate a comparative
examination. In alignment with the green curve shown in Fig.
1(d), we derive a periodic wave solution, as depicted in Fig.
4(c)

ũ(x, t) =
ξ3(ξ1 − ξ2)sn2( 1g

√
b
3 (x− lt), k)− ξ1ξ2 + ξ2ξ3

(ξ1 − ξ2)sn2( 1g

√
b
3 (x− lt), k)− ξ1 + ξ3

.

(38)
For the blue curve in Fig. 1(d), a bright solitary wave solu-
tion of Eq. (3), as illustrated in Fig. 4(f), can be formulated
as:

ũ(x, t) = ξ1 − [
eρ(x−lt) − 1

eρ(x−lt) + 1
]2(ξ1 − ξ2). (39)

And considering the blue curve in Fig. 1(j), we can get a
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kink wave solution (Fig. 5(c)) for KdV equation (3)

ũ(x, t) =
ξ1e

(ξ1−ξ2)
√

− b
6 (x−lt) + ξ2

1 + e(ξ1−ξ2)
√

− b
6 (x−lt)

. (40)

The solutions denoted as Eq. (38), Eq. (39) and Eq. (40)are
respectively equivalent to the solutions designated as Eq.
(24), Eq. (27) and Eq. (36). By observing the preceding
formulas, one can discern that the structures of the solutions
for the STFKdV equation and the integer-order KdV equation
are quite similar. However, the graphical representations
exhibit considerable differences. By observing Fig. 4 and
Fig. 5, the following conclusions can be drawn:

1. The solutions of the integer-order KdV equation (3)
display a highly regular pattern in their graphical depiction.

2. The graphical representation of the solutions for the
fractional-order KdV equation (5) in terms of t closely
resembles that of the integer-order KdV equation, with only
a slight distortion.

3. The graphical representation of the STFKdV equation
(4) concerning both x and t is significantly distorted.

Based on the preceding discussions, we are also able to
establish the following theorem:

Theorem V.1. From a theoretical standpoint, the methodol-
ogy we have developed is capable of addressing the solution
of the entire spectrum of fractional-order KdV equations (4)
and (5) under the condition that p is a positive integer.

Subsequently, we will examine the relationship between
the fractional-order KdV equation and the integer-order KdV
equation.When α = 1 and λ = 1, then STFKdV equation (4)
becomes the integer-order KdV equation (3). It is straight-
forward to arrive at the following theorem:

Theorem V.2. The methodology we have developed is ca-
pable of addressing the solution of the entire spectrum of
integer-order KdV equations (3) under the condition that p
is a positive integer.

VI. CONCLUSION

In this study, we investigated the space-time fractional-
order Korteweg-de Vries (STFKdV) equation using dy-
namical systems and bifurcation theory. By employing the
traveling wave transformation η = xλ − ltα, the original
fractional-order equation was reduced to a Hamiltonian sys-
tem, enabling the derivation of exact parametric expressions
for traveling wave solutions. Key contributions of this work
include:

1) Analytical Solutions: Exact solutions such as periodic
waves, bright/dark solitary waves, and kink waves were
obtained for both fractional-order (0 < α, λ < 1) and
integer-order (α = λ = 1) cases. These solutions were
expressed in terms of Jacobian elliptic functions and
exponential expressions (e.g., Eqs. (24), (27), (36)),
demonstrating the structural similarities and graphical
differences influenced by fractional parameters.

2) Phase Portrait Analysis: A systematic classification of
equilibrium points and bifurcation conditions (e.g., odd
vs. even p) was provided, revealing richer dynami-
cal behaviors in fractional-order systems compared to
integer-order counterparts (Section III).

(a) Kink wave solution of (4) with α = 1
2

, λ = 1
3

(b) Kink wave solution of (5) with α = 1
2

, λ = 1

(c) Kink wave solution of (3) with α = λ = 1

Fig. 5: Graphs of solutions for (3), (4) and (5) p = 2, b = −3,
c = −3, δ = 0.

3) Comparative Study: By contrasting the STFKdV equa-
tion with the classical KdV equation, we highlighted
how fractional parameters α and λ distort wave profiles
while preserving solution structures (Section V).

While this study successfully derived analytical solutions
and explored bifurcation mechanisms, several aspects require
further investigation:

• Parameter Sensitivity Analysis: A systematic numerical
evaluation of how fractional parameters (α, λ) and non-
linearity index p quantitatively affect wave amplitude,
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(a) Periodic wave solution of (4) with α = 1
2

,
λ = 1

3

(b) Periodic wave solution of (5) with α = 1
2

,
λ = 1

(c) Periodic wave solution of (3) with α = λ =
1

(d) Bright solitary wave solution of (4) with α =
1
2

, λ = 1
3

(e) Bright solitary wave solution of (5) with α =
1
2

, λ = 1
(f) Bright solitary wave solution of (3) with α =
λ = 1

Fig. 4: Graphs of solutions for (3), (4) and (5) with p = 1, b = 3, c = 3, δ = 2.

width, and stability would strengthen the physical rele-
vance of the results.

• Generalization to Higher Dimensions: Extending the
methodology to multi-dimensional fractional PDEs
(e.g., Kadomtsev-Petviashvili equations) could broaden
its applicability.

• Experimental/Numerical Validation: Incorporating nu-
merical simulations (e.g., finite difference methods) or
experimental data would validate the derived solutions
and enhance practical utility.
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