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Abstract—The use of topological summaries, specifically
persistence diagrams, has seen significant progress in recent
times. However, the computation becomes increasingly intricate
and costly as the size of the data grows larger. The objective of
this article is to determine mathematicaly the effects of stopping
two filtrations at premature death times on the Wasserstein
distance between the corresponding persistence diagrams. The
established results provide a partial answer to a question raised
in a preceding paper.
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1 Introduction

Topological data analysis (TDA) combines algebraic
topology and statistics to study data. It examines the
geometric and topological structure of the underlying space,
such as connected components, loops, and cavities, based
on sampled data. TDA includes diverse techniques such
as clustering, the Mapper algorithm, manifold estimation,
and persistent homology (PH) see [7, 8, 10, 24, 30]. Being
a key tool in TDA, persistent homology is an emerging
method (algorithm) for detecting geometric and topological
properties of a space with a topological structure. PH
summarizes the topological features of the filtered dataset
in a descriptor known as a persistence diagram (PD).
The PD is a multiset in R2 where each point represents
a feature like a connected component, hole, or cavity.
The x and y coordinates of each point in PD indicate the
corresponding inception "birth" and extinction "death"
times during a topological feature’s filtration. One of the
powerful aspects of persistence diagrams is that they form a
metric space through distances like the Wasserstein distance.
This metric provides a means of assessing the similarity
between two persistence diagrams. The notion of persistence
was initially presented by Edelsbrunner, Letscher, and
Zomorodian in [8], then further developed by Carlsson
and Zomorodian in [30]. Subsequently, it has proven
highly beneficial and has found applications in diverse
scientific domains such as biology, image processing, sensor
networks, etc. [24]. However, there are still issues in this
field that require improvements, specifically regarding the
complexity of algorithms used. As the data size increases,
computing this distance becomes more complicated and
resource-intensive. Extensive work has gone into developing
methods to streamline data visualization, reducing the
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complexity of calculations involved. This has resulted in
the exploration of various approaches for simplification
(see for instance the papers and the references within
[4, 5, 12, 15, 18, 19, 20, 21, 22, 25, 26, 27, 29, 31, 32].

In this study, we adopt a different yet complementary
approach by examining the computational efficiency of
PD simplification through modifications in filtration.
Specifically, we explore how changes in the scaling
parameter k affect execution time while maintaining key
topological properties. Our findings reveal that certain values
of k can significantly lower the computational cost without
compromising stability. While [4] emphasizes optimizing
the representation of persistence diagrams for subsequent
tasks, our research offers a systematic assessment of their
computational cost during the construction phase. These two
viewpoints contribute to the overarching goal of enhancing
the efficiency of persistence-based methods in TDA.

In the article [1], an algorithm was developed to decrease
the execution time of the persistence homology algorithm
while maintaining the expected outcome. This entails
stopping filtration upon reaching a threshold selected using
the closeness centrality concept. However, although this
approach has shown effectiveness in decreasing execution
time, demonstrating its ability to retain a substantial portion
of the network’s information has only been done visually,
lacking a mathematical validation (see subsection 2.4 for
the mathematical problem formulation). The article mainly
focusses on some specific thresholds. In particular, we will
study the interrelations between the Wasserstein distances
of global persistence diagrams (obtained from complete
filtrations) and those arising from such persistence diagrams
stemming from filtrations sttoped early at a given scale. The
rest of the paper is organized as follows:

• Section 2 presents the preliminaries and notations used
in this paper. Moreover, it also sets up the problem in a
mathematical way.

• Section 3 presents the two main theorems of this
paper. Theorems 3.1 and 3.2 reveal a mathematical
connection between the Wasserstein distances of Rips
persistence diagrams that come from two distinct types
of filtrations. One of these filtrations is complete, taking
into account all the topological links, while the other is
a filtration that stops prematurely at a certain threshold.
This threshold is defined by real parameters α and k,
as explained in Theorem 3.1, and it depends on the
maximum and the second largest values from one of the
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persistence diagrams, as described in Theorem 3.2.

• Section 4 goes over the key findings, which are
illustrated and clarified through two examples of real
dynamic weighted networks.

• Section 5 dives into how our approach stacks up in
terms of computational efficiency, particularly looking
at how different scaling parameters, used in the
first main theorem, influence running time. It also
compares our method to the auction-based Wasserstein
distance algorithm put forth by Kerber et al. [16],
showcasing the advantages of our approach in cutting
down computation time.

• Finally, Section 6 provides conclusions and 7 outlines
possible future research directions.

2 Preliminaries and mathematical problem
formulation

In this section, we provide a brief overview of fundamental
concepts related to specific simplicial complexes and their
associated persistent homology. For a broader understanding
of persistent homology, refer to [7, 10, 24, 30]. Using the
notations given in this section, we end with a mathematical
formulation of the problem.
A vector spaces considered in this paper are over F2, the field
with two elements {0,1}.

2.1 Simplicial complex and simplicial homology
groups

In this subsection, we recall some fundamental aspects of
simplicial complexes and their related homology groups
which are very significant in the field of TDA.

Given a finite set V , a simplicial complex with the vertex set
V is a set K of finite subsets of V such that the elements
of V belong to K and for any σ ∈ K, any subset of σ
belongs to K. The elements of K are called the simplices of
K. The dimension of a simplex of K is just its cardinality
minus 1. A p-simplex is a simplex σ with dimension p.
The dimension of the simplicial complex K is the largest
dimension of its simplices [24]. To illustrate this definition,
consider the following example which describes a simplicial
complex commonly used in TDA.

Example 2.1 (Vietoris-Rips complex). [24] Given a finite
set of points X in a metric space (M,d) and a real number
α ≥ 0. The Vietoris-Rips complex VRα(X), (Rips in short),
is a simplicial complex whose simplices are sets {x0, . . . ,xk}
such that d(xi,xj) ≤ α for all 0 ≤ i, j ≤ k.

For a given simplicial complexK, we denote the vector space
generated by the p-simplices of K as Cp(K). This space
comprises all finite formal sums of p-simplices, referred to
as p-chains. In other words, an element c belongs to Cp(K)
if it can be expressed as c =

∑
j γjσj for scalars γj ∈ F2 and

a family (σj)j of p-simplices.
For a positive integer p, we consider the linear map ∂p :
Cp(K) → Cp−1(K), known as the boundary map and
defined on p-simplices as follows: for every p-simplex σ,

∂p(σ) is the formal sum of the (p − 1)-dimensional faces,
i.e., the subsets of σ with cardinality p. An element in the
image of ∂p is called a boundary. The boundary ∂p(c) of a
chain c =

∑
j γjσj is calculated by linearly extending ∂p, as

follows:
∂p(c) =

∑
j

γj∂p(σj).

The p-chains with a boundary of 0 are referred to as p-cycles
and collectively form a subspace Zp(K) of Cp(K). On
the other hand, p-chains that are the boundaries of (p +
1)-chains are termed p-boundaries, constituting a subspace
Bp(K) of Cp(K). It is noteworthy, though not challenging
to demonstrate, that ∂p ◦ ∂p+1 = 0, which is equivalent
to Bp(K) ⊆ Zp(K). Consider the quotient vector space
Zp(K)/Bp(K), where p-boundaries that are not p-cycles
have been annihilated. It is proved that the dimension of
the vector space B1(K)/Z1(K) represents the number of
“holes" in the simplicial complex K, and the dimension
of the vector space B0(K)/Z0(K) corresponds to the
number of connected components of K. The vector space
Bp(K)/Zp(K), denoted as Hp(K), is a key concept in
algebraic topology, often called the p-th simplicial homology
group ofK. Its elements are recognized as homology classes.

2.2 Persistence diagrams

When a simplicial complex K can be expressed as the
union of nested sequence subcomplexes, it often reveals
deeper structural information about K. By examining how
the homology groups evolve across this sequence, we gain
insight into the topological features of K that persist across
different scales. This idea forms the foundation of persistent
homology, a key tool in TDA.
Consider the following chain of simplicial subcomplexes of
a complex K, referred to as a filtration of K:

F : ∅ ⊆ K0 ⊆ K1 ⊆ ·· · ⊆ Kp = K

The filtration provides insights into K by inducing a
homomorphism on nth simplicial homology groups for each
dimension, through the inclusion map Ki → Kj . The n-th
persistent Betti number βn

i,j represents the rank of the vector
space:

βn
i,j = rankIm(fni,j).

Persistent Betti numbers quantify the number of homology
classes of dimension n that persist through the transition from
Ki to Kj . A homology class α ∈ Hn(Ki) is said to be
born upon entering Ki if α does not come from a previous
subcomplex, i.e., α /∈ Im(f i−1,i

n ). Similarly, if α is born
in Ki, it dies upon entering Kj if the image of the map
induced by Ki−1 ⊆ Kj−1 does not contain the image of α,
but the image of the map induced by Ki−1 ⊆ Kj does. In
this case, the persistence of α is j − i. The birth-death pair
of a homology class can be represented as coordinates of a
point in the plane. Since several homology classes may share
the same birth-death pair, the collected data of birth-death
pairs or all homology classes can be presented as a multiset
of points, where the coordinates are birth-death pairs. In fact,
the coordinates of a pointA can represent the birth-death pair
of more than one homology class. The number of homology
classes represented by A is the multiplicity of A and denoted
by m(A). For computational reasons (see [17]), the multiset
is considered together with the diagonal ∆ of points (x,x)
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with infinite multiplicity. This extended structure is called
the persistence diagram of the filtration F .

In this paper, we focus on filtrations of the form

∅ ⊆ K0 ⊆ K1 ⊆ ·· · ⊆ Kp = K

, where each Ki corresponds to the Rips complex VRαi(X)
constructed from a finite set of points X in a metric space
(M,d), and a sequence of scales

0 = α0 < α1 < α2 < · · · < αn

. This type of filtration, known as the Vietoris-Rips filtration
(or simply Rips filtration), is a fundamental tool in persistent
homology. It builds simplicial complexes by connecting
points in X based on their pairwise distances, with the
parameter αi controlling the scale at which these connections
are made. We denote this filtration by F(X) (see, for
example, Figure 1).

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=0

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=0.2

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=0.4

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=0.6

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=0.8

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=1

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=1.2

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=1.4

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=1.6

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=1.8

0.0 1.0 2.0

0
.0

1
.0

2
.0

r=2

Figure 1: A Rips filtration composed of a total of eleven
simplicial complexes. All connected components merge into
a single entity for the first time at a scale of r = 1.4.

The persistence diagram Dgmp(F(X)) associated with
F(X) is known as a Vietoris-Rips (Rips in short) persistence
diagram, where p is the dimension of the homology classes
represented in Dgmp(F(X)). To simplify notation, the
Rips persistence diagram Dgmp(F(X)) will be denoted
by Dp(X). In our study, we deal only with D0(X), the
persistence diagram of the birth and death dates of connected
components. Then, in this case, D0(X) is the union of the
two multisets D̃0(X) and ∆, where D̃0(X) is the multiset of
off-diagonal points with finite multiplicity; that is, the points
(0,aiX) with aiX ∈ R+ ∪ {∞} and m(0,aiX) <∞, and ∆ is
the diagonal of point (x,x) with infinite multiplicity. Denote
by D0(X) the underlying set of D̃0(X).

When a threshold value αi is reached, the filtration process
halts, resulting in a sub-filtration, which we denote as
Fαi

(X). The persistence diagram that represents the
connected components related to this sub-filtration is referred
to as D0,αi

(X).

The persistence diagrams play an important role in assessing
the level of similarity among complexes since the space of
persistence diagrams is provided with a range of metrics. In
this paper, we consider the so-called p-Wasserstein distance
where p is a positive integer. The p-Wasserstein distance
Wp(D0(X),D0(Y)) is given by:

Wp(D0(X),D0(Y)) = inf
ϕ

 ∑
x∈D0(X)

∥x− ϕ(x)∥p∞

1/p

where ϕ runs over all bijections between D0(X) and D0(Y)
and ∥(a,b)∥∞ = max{|a|, |b|}.

2.3 The Wasserstein distance computation

In this subsection, we describe an algorithm wich allows
to compute the p-Wasserstein distance, see [16] for more
details. The calculation of the p-Wasserstein distance is
based on concepts from graph theory, especially bipartite
weighted graphs.
Let us recall what a bipartite weighted graph is. It is a graph,
denoted as G = (V,E,ω), where the vertex set V can be
split into two nonempty groups, A and B. This means that
when you combine A and B, you get all of V , and they don’t
overlap at all. Each edge in this graph connects a point from
A to a point in B. The way we divide V into A and B is
known as a bipartition of G, and ω : E → R+ represents
its weight function. Now, if two edges in G don’t share
any endpoints, we call them independent. A collection of
these independent edges is referred to as a matching. If this
matching M includes every vertex in V exactly once, we
call it a perfect matching. Essentially, a perfect matching
in our bipartite graph G creates a one-to-one correspondence
between two separate subsets of V .
The p−Wasserstein cost of a perfect matching M is defined
as (

∑
e∈E ω(e)

p)
1
p . An optimal matching of G is a perfect

matching whose cost is minimal among all perfect matchings
of G.
Given two persistence diagrams D0(X) and D0(Y) with
off-diagonal point sets D0(X) and D0(Y) respectively. Let
D′

0(X) and D′
0(Y) be the sets of orthogonal projections, on

the diagonal ∆, of D0(X) and D0(Y), respectively. Then we
can define a bipartite weighted graph G = (A∪B,A×B,c)
where A = D0(X)∪D′

0(Y) and B = D0(Y)∪D′
0(X) (see

[16]).

Persistence diagrams include points on the diagonal ∆
with infinite multiplicity, which makes it possible to define
bijections. The weights of the graph G are defined by the
function:

c(a,b) =

{
∥a− b∥∞ if a ∈ D0(X) or b ∈ D0(Y)
0 otherwise

These weights come purely from the persistence diagrams.
The Wasserstein distance Wp(X,Y ) is defined as the cost
of the graph G according to the Reduction Lemma in [7]. In
[16], it was shown that no skew edge ever altered the minimal
cost for optimal matching. An edge (a,b) ∈ A×B is said to
be skew if one of the following conditions holds:

1. a is in D0(X), b is in D′
0(X), and b is not equal to a

′
,

where a
′
is the orthogonal projection of a on ∆.
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2. b is in D0(Y), a is in D′
0(Y), and a is not equal to b

′
,

the orthogonal projection of b on ∆.

More precisely, they defined the bipartite graph

G̃ = (A ∪B,A×B, c̃)

which does not contain skew edges and where the cost
function c̃ is defined by:

c̃(a,b) =


∥a− b∥∞ if a ∈ D0(X) or b ∈ D0(Y)
∥a− a′∥∞ if a ∈ D0(X) or b ∈ D′

0(X)
∥b− b′∥∞ if a ∈ D′

0(Y) or b ∈ D0(Y)
0 otherwise

They proved that G and G̃ have the same Wasserstein cost.

2.4 Formulation of the problem

Now, using the notations introduced in Subsection 2.3,
we reformulate mathematically the problem mentioned in
the introduction. The question explored in this paper, as
introduced before, was implied in the paper [1]. To articulate
it clearly, we suggest revisiting the original context.

In [11], Gidea used TDA to study a dynamic weighted
financial network where the weights are determined by
correlations between nodes representing stocks. Explicitly,
for each stock i and a day t, the daily return xi(t) was
calculated based on the adjusted closing prices Si(t)

using the formula xi(t) = Si(t+1)−Si(t)
Si(t)

. The correlation
coefficient Ci,j(t) between nodes xi(t) and xj(t) over the
interval [t−T,t] (where T > 0) was used to define a distance
function d(i, j)(t) =

√
2(1− Ci,j(t)) between nodes i and

j. This distance metric allows the network to be seen as
a time-evolving weighted network, or a (dynamic) graph
Gt(V,Et,ωt), where V represents stocks and the weight
function ωt at time t assigns to each edge e = (i, j) the
distance d(i, j)(t). In this scenario, we can think of the set of
nodes V as a point cloud, and we denote D0(V ) by D0(Gt).
By fixing a persistence diagram D0(Gt0) at an initial time
t0, the time series (Xt)t := (W 2

2 (D0(Gt),D0(Gt0))t
reflects the topological changes in the financial network over
time. This can potentially detect significant changes in the
network’s topological structure before critical transitions,
such as the peak of a financial crisis, indicating major shifts
in stock correlations. This approach applies to other contexts,
but for large networks, its execution time becomes very high.
In the article [1], the study focused on the impact of early
algorithm termination and only considering sub-filtrations
upon reaching a threshold. It is shown that beyond a specific
threshold determined by certain considerations, the new
time series resembles the original and exhibits similar
behavior (see Figures in [1]). The strength of the proposed
methods lies in both suggesting an algorithmic approach
for selecting this threshold and offering improved time
efficiency compared to some existing simplification methods
(see [1, Subsection 5.4]). Still, we haven’t fully cracked
the mathematical reasoning behind this result, and that’s
something we need to tackle. This paper aims to offer some
positive initial insights in specific situations. Using notations

mentioned in Subsection 2.2, the main question is stated as
follows:

Question 1. Consider two persistence diagrams D0(X) and
D0(Y). Let r and s be two thresholds of the corresponding
filtrations respectively.
What relationship exists between W p

p (D0,r(X),D0,s(Y))
and W p

p (D0(X),D0(Y))?

In [1], it is observed through various examples that
W p

p (D0,r(X),D0,s(Y)) and W p
p (D0(X),D0(Y)) show

a strong linear relationship. This observation was also
supported by the adjusted R-squared. Additionally, at
specific thresholds, this linear relationship exhibits a slope
near 1, resembling a translation.
Based on this observation, the question can be rephrased as
follows:

Question 2. Is there a straight-line connection between
W p

p (D0,r(X),D0,s(Y)) and W p
p (D0(X),D0(Y)) when we

consider certain thresholds?

The purpose of this paper is to provide a positive answer to
this question for two particular cases.

3 Main results

Before giving the first main result, we introduce some
notations for the sake of simplification.
Since we deal with the connected components of the Rips
persistence diagrams, all connected components appear at the
time t = 0. Then, the coordinates of the off-diagonal points
in the persistence diagram are of the form (0,aiX), where aiX
is the death time of a connected component. After the death
time mX := max(aiX) < ∞, all of these components merge
into one that continues to infinity. Let us set α+ := mX + α
for some real number α ≥ 0.
Now we are in position to set and prove the first main result.
This theorem outlines a mathematical connection between
the Wasserstein distances of persistence diagrams that come
from two distinct types of filtrations. One is a complete
filtration that takes into account all topological connections,
while the other is a prematurely stopped filtration, which cuts
off at a threshold set by α and a real number k.

Theorem 3.1. Let D0(X) and D0(Y) be persistence Rips
diagrams such that mX ≤ mY.
For β = k(mY −mX) + α, where α ≥ 0 and 1 ≤ k ≤ 2,

W p
p

(
D0,β+(X),D0,α+(Y)

)
=W p

p

(
D0(X),D0(Y)

)
+ (k − 1)p

(
mY −mX

)p
Proof. Let ϕ0 be a bijection from D0(X) to D0(Y) where the
minimum cost is reached, i.e.,

W p
p (D0(X),D0(Y)) =

∑
x∈D0(X)

∥x− ϕ0(x)∥p∞
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. The bijection ϕ0 can be extended to D0,β+(X) by assigning
the new points (0,mX + β) and (mY+α

2 , mY+α
2 ). Thus, there

are two cases:

• Case 1: ϕ0((0,mX + β)) = (mX+β
2 , mX+β

2 ) and
ϕ0((

mY+α
2 , mY+α

2 )) = (0,mY + α)

• Case 2: ϕ0((0,mX + β)) = (0,mY + α) and
ϕ0((

mY+α
2 , mY+α

2 )) = (mX+β
2 , mX+β

2 )

So, the additional cost associated to the new extension ϕ0 for
each one of the two cases will be, respectively, as follows:

C1 = ||ϕ0((0,mX + β))− (0,mX + β)||p∞+

||ϕ0

((mY + α

2
,
mY + α

2

))
−

(mY + α

2
,
mY + α

2

)
||p∞

= ||
(
mX + β

2
,
mX + β

2

)
− (0,mX + β)||p∞+

||(0,mY + α)−
(mY + α

2
,
mY + α

2

)
||p∞

=

(
mX + β

2

)p

+
(mY + α

2

)p

=

(
(1− k)mX + kmY + α

2

)p

+

(
1

2
mY +

1

2
α

)p

And

C2 = ||ϕ0((0,mX + β))− (0,mX + β)||p∞+

||ϕ0

((mY + α

2
,
mY + α

2

))
−

(mY + α

2
,
mY + α

2

)
||p∞

= ||(0,mY + α)− (0,mX + β)||p∞+

||
(
mX + β

2
,
mX + β

2

)
−

(mY + α

2
,
mY + α

2

)
||p∞︸ ︷︷ ︸

0

= ||(0,mY + α)− (0,(1− k)mX + kmY + α)||p∞
= [(k − 1)(mY −mX)]

p

Clearly C2 < C1, so

W p
p

(
D0,β+(X),D0,α+(Y)

)
≤W p

p

(
D0(X),D0(Y)

)
+
[
(k − 1)(mY −mX)

]p
(1)

It remains to prove the converse inequality. Consider a
bijection ψ : D0,β+(X) −→ D0,α+(Y).
If ψ({(0,mX + β); (mY+α

2 , mY+α
2 )}) = {(0,mY +

α); (mX+β
2 , mX+β

2 )}, then using the restriction η of ψ on
D0(X), we get:
C+ = C0 + C, where C+ =

∑
x∈D0,β+ (X) ∥x − ψ(x)∥p∞

, C0 =
∑

x∈D0(X) ∥x − η(x)∥
p
∞ and C is either C1 or C2.

Hence, the desired inequality holds.

Now, suppose that

ψ((0,mX + β)) ̸= (0,mY + α), i.e., ψ((0,mX + β) =
(0,aiY)), where aiY < mY. So there exists (0,aiX) ∈ D0(X)
such that ψ((0,aiX)) = (0,mY + α).
Consider the bijection η defined by:

η(x) = ψ(x), if x ∈ D0(X) and ψ(x) ∈ D0(Y) and
η((0,aiX)) = (0,aiY). We have

C+ =
∑

x∈D0(X)

∥x− ψ(x)∥p∞ + ∥ψ((0,mX + β))− (0,mX + β)∥p∞

+ ∥ψ((mY + α

2
,
mY + α

2
))− (

mY + α

2
,
mY + α

2
)∥p∞

=
∑

x∈D0(X)

∥x− η(x)∥p∞ + ∥ψ((0,aiX))− (0,aiX)∥p∞+

∥ψ((0,mX + β))− (0,mX + β)∥p∞+

∥ψ((mY + α

2
,
mY + α

2
))− (

mY + α

2
,
mY + α

2
)∥p∞−

∥η((0,aiX))− (0,aiX)∥p∞
≥

∑
x∈D0(X)

∥x− η(x)∥p∞ + ∥(0,mY + α)− (0,aiX)∥p∞+

∥(0,aiY)− (0,mX + β)∥p∞ − ∥(0,aiY)− (0,aiX)∥p∞
≥

∑
x∈D0(X)

∥x− ϕ0(x)∥p∞ + |mY + α− aiX |p+

|mX + β − aiY |p − |aiY − aiX |p

One can show that

|mY + α− aiX |p + |mX + β − aiY |p − |aiY − aiX |p ≥ C2

Therefore, the converse inequality of (1) holds. ■

Now we give the second main theorem. It involves the
value proceeding the largest value of the ordinates of the
off-diagonal points of the persistence diagrams. For this,
additional notations must be introduced.
First, recall the notation of the underlying set
D0(X)={(0,aiX)|aiX ∈ R+} of a persistence Rips diagram
D0(X). We denote nX the maximum of values aiX such that
(0,aiX) ∈ D0(X)− {(0,mX)}.

This theorem allows us to compute the Wasserstein distance
by taking into account the maximum and the second largest
values from one of the persistence diagrams. The output
provides a quantification of the error in two situations that
happen when the filtrations are truncated too early.

Theorem 3.2. Let D0(X) and D0(Y) be persistence Rips
diagrams. Assume that mX < mY and that |D0(Y)| ≥ 2.
Then, for every α ≥ mY − nY,
W p

p (D0,α+ (X),D0,α+ (Y)) = W p
p (D0(X),D0(Y)) + (mY −mX)

p

when mX >
mY+nY

2 .
Otherwise,

W p
p (D0,β+ (X),D0,α+ (Y)) = W p

p (D0(X),D0(Y)) + (
mY − nY

2
)p

where β = mY+nY
2 −mX + α.

Proof. 1) Assume that mX >
mY+nY

2 . Let ϕ0 be the bijection
from D0(X) to D0(Y) where the minimum cost is reached.
We extend ϕ0 to

D0(X) ∪ D′
0(Y) ∪ {(0,mX + α),(

mY + α

2
,
mY + α

2
)}

so that the resulting cost remains minimal. The bijection ϕ0
can be extended in two ways:

• Case 1.1:

ϕ0((0,mX + α)) = (
mX + α

2
,
mX + α

2
)
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and

ϕ0((
mY + α

2
,
mY + α

2
)) = (0,mY + α)

• Case 2.1:

ϕ0((0,mX + α)) = (0,mY + α)

and

ϕ0((
mY + α

2
,
mY + α

2
)) = (

mX + α

2
,
mX + α

2
)

As done in the proof of Theorem 3.1, we will show that the
additional cost

C = ||ϕ0((0,mX + α))− (0,mX + α)||p∞

+ ||ϕ0((
mY + α

2
,
mY + α

2
))− (

mY + α

2
,
mY + α

2
)|p∞

is minimum for the second case.

• Case 1.1: We have,

C1.1 =
∥∥ϕ0((0,mX + α)

)
− (0,mX + α)

∥∥p
∞

+
∥∥ϕ0 (mY+α

2 , mY+α
2

)
−
(
mY+α

2 , mY+α
2

)∥∥p
∞

=
∥∥(mX+α

2 , mX+α
2

)
− (0,mX + α)

∥∥p
∞

+
∥∥(0,mY + α)−

(
mY+α

2 , mY+α
2

)∥∥p
∞

=
(
mX+α

2

)p
+
(
mY+α

2

)p
• Case 2.1:

C2.1 =
∥∥ϕ0((0,mX + α)

)
− (0,mX + α)

∥∥p
∞

+
∥∥ϕ0 (mY+α

2 , mY+α
2

)
−
(
mY+α

2 , mY+α
2

)∥∥p
∞

= ∥(0,mY + α)− (0,mX + α)∥p∞
+
∥∥(mY+α

2 , mY+α
2

)
−
(
mX+α

2 , mX+α
2

)∥∥p
∞︸ ︷︷ ︸

0

= (mY −mX)
p

Let us show that C2.1 < C1.1.
Using the hypothesis mX >

mY+nY
2 , we get

(mY −mX)
p < (

mY + α

2
)p

and since mY+α
2 is a positive real, we conclude that

C2.1 < C1.1. Hence,

W p
p

(
D0,α+(X),D0,α+(Y)

)
≤W p

p

(
D0(X),D0(Y)

)
+
(
mY −mX

)p (2)

Now, we proceed in the same way as in the proof of Theorem
3.1 and we keep the same notations of ψ and η. The goal is
to prove that∑
x∈D0,β+ (X)

∥x− ψ(x)∥p∞ ≥
∑

x∈D0(X)

∥x− η(x)∥p∞ + C2.1

≥
∑

x∈D0(X)

∥x− ϕ0(x)∥p∞ + C2.1.

This requires to show that

|mY+α−aiX |p+|mX+α−aiY |p ≥ |aiY−aiX |p+(mY−mX)
p

In fact this follows from the fact that

|mY + α− aiX |p ≥ |aiY − aiX |p

And
|mX + α− aiY |p ≥ (mY −mX)

p

Hence,
W p

p (D0,α+ (X),D0,α+ (Y)) ≥ W p
p (D0(X),D0(Y)) + (mY −mX)

p

(3)

The inequalities (2) and (3) complete the proof of the first
result of this theorem.

2) Now we treat the second case where mX ≤ mY+nY
2 .

There are two cases to discuss:

• Case 1.2: We have,

C1.2 = ||ϕ0((0,mX + β)) − (0,mX + β)||p∞+

||ϕ0

((
mY + α

2
,
mY + α

2

))
−

(
mY + α

2
,
mY + α

2

)
||p∞+

||
(

mX + β

2
,
mX + β

2

)
− (0,mX + β)||p∞+

||(0,mY + α) −
(

mY + α

2
,
mY + α

2

)
||p∞

=

(
mX + β

2

)p

+

(
mY + α

2

)p

+(
mY + nY

4
+

α

2

)p

+

(
mY + α

2

)p

• Case 2.2:
C2.2 = ||ϕ0((0,mX + β)) − (0,mX + β)||p∞+

||ϕ0

((
mY + α

2
,
mY + α

2

))
−

(
mY + α

2
,
mY + α

2

)
||p∞

= ||(0,mY + α) − (0,mX + β)||p∞+

||
(

mX + β

2
,
mX + β

2

)
−

(
mY + α

2
,
mY + α

2

)
||p∞︸ ︷︷ ︸

0

=

(
mY − nY

2

)p

Since
(
mY − nY

2
)p < (

mY + α

2
)p

And
(
mY + nY

4
+
α

2
)p > 0

We conclude that C2.2 < C1.2.
Hence,

W p
p (D0,β+ (X),D0,α+ (Y)) ≤ W p

p (D0(X),D0(Y)) +
(
mY − nY

2

)p

(4)

As before, it remains to show that

|mY+α−aiX |p+|mX+α−aiY |p ≥ |aiY −aiX |p+(mY−nY
2 )p.

This is possible by distinguishing the two cases

aiX < aiY and aiX ≥ aiY and by using the fact that α ≥
mY − nY So,

W p
p (D0,β+ (X),D0,α+ (Y)) ≥ W p

p (D0(X),D0(Y)) +
(
mY − nY

2

)p

(5)
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Inequalities (4) and (5) complete the proof of the second
equality. ■

In the next section, we provide algorithms to implement and
illustrate the theorems. Here, we present a simple example
to better understand the applicability of Theorems 3.1 and
3.2. Specifically, we examine the geometric setting in which
these results hold. Our goal is to describe what types of finite
point clouds in a metric space can give rise to the persistence
diagrams considered in the theorems.

Let Y be a finite point cloud in a metric space (X,d), and
let D0(Y) be its associated persistence diagram capturing
the connected components. For a given α ≥ 0, define the
threshold α+ := mY+α, where mY is the largest death time
in D0(mY). We define the extended set

Yα+ := Y ∪ {x ∈ X | d(x,Y) = α+}.

Any discrete subset of Yα+ that contains Y gives rise to a
Rips persistence diagram in which all connected components
merge precisely at time α+, that is, a diagram of the form
D0,α+(Y).

To illustrate this, consider a point cloud Y formed by three
points in R2, arranged as a right triangle with sides 1, 2, and√
5. For this cloud, we have nY = 1, mY = 2, and Y3+ is

the union of Y with three circular arcs (see Figure 2).

Figure 2: Point cloud Y of three points in the plane and its
extended set Y3+ .

Now consider a second point cloud X, consisting of four
points forming a square of side 1, so that mX = 1. Let
β = 2.5, and define the extended set Xβ+ by adding four arcs
at distance β+ = mX+β = 2.5 (see Figure 3). These values
of α and β follow the assumptions of Theorem 3.2: since
mY = 2, nY = 1, andmX = 1, we chooseα = mY−nY = 1,
and since mX ≤ mY+nY

2 , we compute

β =
mY + nY

2
−mX + α = 1.5.

Figure 3: Point cloud X and its extended set X2.5+ .

Now, let A be a finite point cloud such that X ⊂ A ⊂ Xβ+ ,
and let B be a finite point cloud such that Y ⊂ B ⊂
Yα+ . Let’s take a look at the Rips persistence diagrams
D0(A) and D0(B). Their maximum death times are β+ and
α+, respectively. This means we can apply Theorem 3.2.
Specifically, we have the equation:

W p
p (D0(A),D0(B)) =W p

p (D0(X),D0(Y))+
(
mY − nY

2

)p

It turns out that the quantity W p
p (D0(A),D0(B)) stays the

same for any pair of point clouds A and B selected in the
way we’ve discussed.

4 Implementation and illustration of main
theorems

In this section, we carry out the implementation of Theorems
3.1 and 3.2 via two different algorithms and demonstrate
their applications using real-world instances represented as
weighted networks.

4.1 Implementation of Theorem 3.1

To put Theorem 3.1 to good use, we recommend trying out
the following Algorithm 1. This approach will allow us
to effectively apply Theorem 3.1 to the two real dynamic
networks we talked about at the beginning of Subsection 2.4.

Algorithm 1 Computation of W p
p (D0(X),D0(Y)) with

Theorem 3.1
Require: Rips filtrations F(X) and F(Y).
Ensure: The Wasserstein distance W p

p (D0(X),D0(Y)).
1. Extract mX and mY from the filtrations F(X) and
F(Y).
2. Compare mX and mY.
3. Pick α > 0, 1 ≤ k ≤ 2 and compute β.
4. Add the point (0,mX + α) to the persistence diagram
D0(X) and (0,mY + β) to D0(Y).
5. Compute the distance W p

p (D0,β+(X),D0,α+(Y)).
6. W p

p (D0(X),D0(Y)) = W p
p (D0,β+(X),D0,α+(Y)) −

(1− 1
k )

p(β − α)p
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We use (Xt)t to denote the time series of Wasserstein
distances between persistence diagrams that come from full
filtrations in the dynamic network. Similarly, (X̃t)t will
represent the time series of the Wasserstein distance between
persistence diagrams derived from subfiltrations, when the
thresholds used are unambiguous.

Example 4.1. This example is constructed from the
multivariate time series of the closing prices of the four
cryptocurrencies Bitcoin, Ethereum, Litecoin, and Ripple,
from August 24, 2016, to February 19, 2020. This data is
available on the website www.investing.com

Figure 4 represents three plots of the time series of
2-Wasserstein distances between the persistence diagrams for
1224 instances and the reference diagram for t0 = 1005.
Black, blue, green and red graphs refer to the values of
the parameter k for Thoerem 3.1 of 2, 1.7, 1.5 and 1
respectively. It should be noted that the red graph represents
the Wasserstein distance between diagrams of complete
filtration. Since the factor (k − 1)p(mY − mX)

p is strictly
increasing with respect to the real 1 ≤ k ≤ 2, it follows that
the graph for any value of 1 ≤ k ≤ 2 will lie between the
(red) graph for k = 1 and the (black) one for k = 2.
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Figure 4: The graphs displaying (X̃t)t values for k = 2 (in
black), 1.7 (in blue), k = 1.5 (in green) and k = 1 (in red) .

Time series of the difference (X̃t − Xt)t in the Figure 4
illustrates nothing but the factor (k − 1)p(mY − mX)

p, for
different chosen values of k: the graph corresponding to
k = 2 is drawn in black, for k = 1.7 in blue, and for k = 1.5
in green. According to Theorem 3.1, we have the following
inequalities:

0 ≤ W p
p (D0,β+ (X),D0,α+ (Y))−W p

p (D0(X),D0(Y)) ≤ (mY−mX)
p

The black graph represents the time series of the right-hand
side of this inequality, which is why it appears higher than
the others. Additionally, as k approaches 1, the graph of the
time series (X̃t −Xt)t gets closer to 0.

Now, we explore another kind of weighted networks.

Example 4.2. The Dow Jones Industrial Average (DJIA) is
a stock market index representing 30 major publicly traded
companies in the United States. This second example of
dynamic network is derived from the DJIA stocks listed as of
February 19, 2008, and the data considered corresponds to
the period between January 2004 and September 2008. This
data was studied in [11] and also in Subsection 6.1 of [1].

Time

D
if
fe

re
n

c
e

0 200 400 600 800 1000 1200

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 5: Plots of the time series ((X̃t−Xt)t) for the values
k = 2 (in black), 1.7 (in blue) and 1.5 (in red).

Figure 6 is the superposition of the graphs of the time
series, of the Wasserstein distances between the persistence
diagrams and a reference diagram, (Xt)t.
The graphs depicted correspond to the values: k = 1, k =
1.7 and k = 2 of theorem 3.1.
We notice that the graphs look nearly identical to each other.
This similarity arises because the dead times, mX and mY,
are almost the same for each pair of persistence diagrams.

Figure 6: 2-Wasserstein distances between persistence
diagrams with Rips filtration with k = 2 (in black), k = 1.7
(in blue) and k = 1 (in red).

4.2 Implementation of Theorem 3.2

We implemented Theorem 3.2 in this subsection by way of
the subsequent Algorithm2.
Algorithm 2 Computation of W p

p (D0(X),D0(Y)) using
Theorem 3.2

.

Require: Rips filtrations F(X) and F(Y).
Ensure: The Wasserstein distance W p

p (D0(X),D0(Y)).
1. Extract mX, mY, nX and nY from the filtrations.
2. α← mX − nX
if mX >

mY+nY
2 then

W p
p (D0(X),D0(Y)) = W p

p (D0,α+(X),D0,α+(Y)) −
(mY −mX)

p

else
β ← mY+nY

2 −mX + α
W p

p (D0(X),D0(Y)) = W p
p (D0,β+(X),D0,α+(Y)) −

(mY−nY
2 )p

end if
2. Return the Wasserstein distance W p

p (D0(X),D0(Y)).
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We illustrate Theorem 3.2 using the same examples of
dynamic networks as in Subsection 4.1.

Example 4.3. In this example, Theorem 3.2 was applied to
the data in Example 4.1.

Figure 7 depicts the time series of 2-Wasserstein distances
related to cryptocurrency data, represented by (Xt) (in blue)
and (X̃t) (in black), following the assumptions made in
theorem 3.2. The visual analysis shows a higher similarity
between the graphs and a smaller discrepancy between them.
Moreover, the representative graph for (Xt) lies below that
for (X̃t).

Figure 7: 2-Wasserstein distances: complete Rips (blue)
vs.early-stopped filtration (black) (Theorem 3.2).

Example 4.4. In this example, we apply Theorem 3.2 to the
data used in Example 4.2.
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Using Theorem 3.2

Figure 8: 2-Wasserstein distances between persistence
diagrams. Complete Rips filtration (black) vs. early sttoped
filtration (blue) computed using Theorem 3.2.

The black graph in Figure 8 corresponds to an interrupted
filtration according to the assumptions of Theorem 3.2.

According to the previous figures, it is clear that the
difference between W p

p (D0,β+(X),D0,α+(Y)) and
W p

p (D0(X),D0(Y)) is smaller under the assumptions
of Theorem 3.2.

The Theorems mentioned above use persistence diagrams as
descriptors of point clouds without mentioning the clouds
themselves. We will now focus on the impact of the previous
theorems on these point clouds.

Following these instances of the Theorems 3.1 and 3.2. The
following section is devoted to establishing the benefit of
using the method described in Theorem 3.1. Indeed, there
is significant savings in running time.

5 Computational Efficiency Analysis

This section deals with the computational gains of the
reduction principle stemming from the two central results,
Theorems 3.1 and 3.2. To investigate the saving brought by
Theorem 3.1, we consider running time for increasing values
of the parameter k, from k = 1 to k = 2. We apply our
approach to the above-mentioned cryptocurrency network.

5.1 Cost reduction with Theorem 3.1

Table 1 summarizes the results, showing the mean execution
time and its standard deviation across multiple repetitions.
The computational gain is expressed as a ratio compared to
the original filtration (k = 1).

Table 1: Mean execution time and standard deviation for
different scaling parameters k. The computational gain is
expressed as a ratio compared to k = 1.

Parameter k Mean time (s) Sd time (s) Ratio
1.0 10.547 4.409 1.00
1.1 6.669 2.180 0.63

1.25 6.619 1.939 0.63
1.3 6.150 2.010 0.58
1.5 6.819 2.540 0.65
1.6 6.590 2.080 0.63
1.7 7.700 2.920 0.73
1.8 7.081 2.470 0.67
1.9 5.990 1.828 0.57
2.0 6.940 2.960 0.66

The results show that increasing the value of k can lead to
a significant reduction in computation time. Specifically,
k = 1.3 and k = 1.9 provide the best balance, cutting the
mean execution time by 42% (Ratio = 0.58) and 43% (Ratio
= 0.57), respectively.

Among these options, k = 1.9 results in the lowest mean
execution time (5.99 s), making it the most efficient choice.
On the other hand, k = 1.3 has a slightly higher mean
execution time (6.15 s) but a lower standard deviation (Sd
= 2.01), which indicates better stability.

Other selected parameter values, such as k = 1.25 and k =
1.6, also provide remarkable computational improvements
(reducing execution time approximately by 37%), but with
less stability compared to k = 1.3 due to somewhat higher
variability.
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Therefore, k = 1.3 is the optimal choice for achieving a
balance between efficiency and stability, while k = 1.9
delivers the fastest computation, albeit with a bit more
variance.
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Figure 9: Execution time vs scaling parameter k.
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Figure 10: Standard deviation of execution time vs scaling
parameter k.
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Figure 11: Boxplot of execution times for different scaling
parameters k.

To analyze how different k values behave, we applied the
k-means clustering algorithm [23]. This clustering focused
on two key features: the average execution time and the

standard deviation for each k.
The Elbow criterion was used to identify the optimal number
of clusters, which relies on a plot of the sum of squared errors
against k (for further discussions, see [14]). The "elbow"
point at k = 3 supports our selection (refer to Figure 13).

The outcomes are illustrated in Figure 12, with a detailed
description of each cluster provided below.

• Cluster 0 (Blue):

– Characteristics: This cluster is characterized by
k = 1 which represents the original persistence
diagrams without any modifications.

– Values of k: k = 1

– Interpretation: The execution times for
k = 1.0 are considerably higher compared to
other configurations. This indicates that using the
original persistence diagrams is computationally
intensive, highlighting the effectiveness of
simplification in lowering computational costs.

• Cluster 1 (Green):

– Characteristics: This cluster shows low execution
times with minimal variability, suggesting high
stability.

– Values of k:. k = 1.3,1.9,2.0

– Interpretation: These values indicate the most
efficient configurations, achieving a great balance
between speed and stability. Their consistently
low execution times make them the top choices for
computational efficiency.

• Cluster 2 (Orange):

– Characteristics: This cluster features moderate
execution times and variability.

– Values of k: k = 1.1,1.25,1.5,1.6,1.7,1.8.

– Interpretation: These configurations provide
intermediate performance, balancing speed and
computational stability. While they are not as
optimal as those in Cluster 1, they still serve as
viable alternatives when needed.

Figure 12: Clustering of k values based on execution times.
Each cluster is represented by a unique color, and centroids
are shown as red crosses.
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Figure 13: Elbow method to determine the optimal number
of clusters.

5.2 Cost reduction with Theorem3.2

In contrast to Theorem 3.1, Theorem 3.2 does not
include scale parameters. In this subsection, we compare
the execution times for calculating Wasserstein distances
between persistence diagrams derived from complete
filtrations and those from truncated filtrations, as outlined in
Theorem 3.2.

To quantify the impact of the simplification method on
computational cost, we measured the execution time, for
the original diagrams, across multiple runs. The results,
before and after applying the simplification, are summarized
in Table 2.

Table 2: Comparison of execution times, for original
diagrams and after applying the Theorem 3.2 .

Mean time (s) Sd time (s)
Original Diagrams 10.547 4.409

After Simplification 5.99 1.399

The results show a 43.22% reduction in execution time,
connecting the simplification process to a significant decrease
in computational load. Additionally, the variability
in execution times was greatly reduced, with values
changing from 4.41 s to 1.4 s, indicating a much tighter
computation. These testing outcomes align with the
theoretical expectations outlined in Theorem 3.2.

5.3 Comparison with the Auction Algorithm for
Wasserstein Distances Method

The Auction Algorithm is an iterative optimal assignment
problem solving algorithm. It frames the assignment problem
as a competitive auction where agents bid on objects based
on how utilitarian the objects are to them. At each round, an
agent selects the object that provides the maximum value,
increases the bid, and assigns the rewarded object to the
current highest bidder. This step is repeated iteratively until
all assignments are found [3].

The method introduced by Kerber et al.[16] is an
auction-based algorithm aimed at optimizing the
computation of Wasserstein distances between persistence
diagrams. Traditional methods typically involve solving
an optimal transport problem, which can be quite
resource-intensive. The auction algorithm redefines
this problem, enabling quicker convergence while still
providing theoretical accuracy guarantees.

This approach has gained popularity in topological data
analysis TDA because of its efficiency in managing
large-scale datasets. However, it is important to note
that while it streamlines the transport computation, it does
not simplify the complexity of the persistence diagrams
themselves.

To evaluate the computational advantages of simplifying
the diagrams, we compare the runtime of the Kerber et al.
method when used on the original persistence diagrams (k =
1) with the standard k = 1 computation. The results show
that:

• The average execution time for Kerber et al.’s method is
9.967 s, with a standard deviation of 4.665 s.

• The average time taken to process persistence diagrams
from complete filtrations (k=1) is 10.547 s, with a
standard deviation of 4.409 s.

This demonstrates that using auction-based optimization
results in a computational improvement of approximately
5.5% when applied to persistence diagrams obtained from
complete filtrations (k = 1).

When k = 1 is exceeded, our method effectively simplifies
the persistence diagrams, leading to lower computational
costs while maintaining important topological features. The
execution times and their standard deviations for various k
values are shown in Table 1.

When k exceeds 1, our method alone greatly reduces
execution time.
- For example, at k = 1.3, the execution time drops to 6.150
s, which is 38.3% faster than Kerber’s method at k = 1.
- At k = 1.9, the time is further reduced to 5.990 s, indicating
a 40% improvement.

Table 3 shows the percentage increase in execution speed for
each k parameter when compared to the auction algorithm
method.

Table 3: Speed improvement compared to the Auction
Algorithm (Kerber et al.[16]).

Parameter k Mean Time (s) Improvement (%)
1.1 6.669 33.06%

1.25 6.619 33.56%
1.3 6.150 38.29%
1.5 6.819 31.54%
1.6 6.590 33.85%
1.7 7.700 22.73%
1.8 7.081 28.94%
1.9 5.990 39.87%
2.0 6.940 30.35%

Thus, for large-scale computations, simplifying the
persistence diagrams (using Theorm 3.1) is a more
effective strategy than relying on auction-based Wasserstein
optimization alone.
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6 Conclusions

This paper examines the relationship between Wasserstein
distances of Rips persistence diagrams from complete
filtrations and those from early-stopped filtrations. Theorems
3.1 and 3.2 establish the relationships between these two
distances. Theorem 3.1 suggests a whole range of thresholds
corresponding to real numbers k between 1 and 2. The
difference between the two Wasssetin distances depends on
the instants at which all the connected components merge
into one in each of the two filtrations, and the two Wasserstein
distances coincide when k = 1. Theorem 3.2 involves
the first and second largest finite values of one of the two
persistence diagrams studied. Both theorems have been
illustrated using time series from real data.
In addition to our theoretical findings, we assessed the
computational efficiency of simplifying persistence diagrams
with various values of k. Our experimental results indicate
that:

• Increasing k leads to a significant reduction in the
computational cost of Wasserstein distance calculations,
achieving up to a 39.87% speed improvement compared
to the original persistence diagrams (k = 1).

• The most favorable trade-offs are found at k = 1.3 and
k = 1.9, where execution times decrease by 38.29%
and 39.87%, respectively.

• Theorem 3.2 resulted in a savings of 43.22% in
execution time.

Moreover, we compared our method to the auction-based
Wasserstein distance algorithm proposed by Kerber et al.
[16], which enhances Wasserstein computation without
altering the diagrams. Our results show that:

• The auction algorithm reduces computation time by
5.5% for k = 1, but it does not achieve the efficiency
improvements seen with diagram simplification.

• For values of k ≥ 1.3, the computational benefits
from simplification alone exceed those provided by the
auction algorithm at k = 1.

• The variability in execution time is generally lower
for certain values of k, suggesting both stability and
efficiency.

7 Future Work

This paper primarily examines Rips persistence diagrams,
but a promising direction for future research is to
explore whether similar computational improvements can be
achieved with other types of persistence diagrams, like alpha
complexes or witness complexes. Additionally, integrating
diagram simplification with auction-based optimization
could yield further computational benefits, especially when
dealing with very large datasets. Another key area
to investigate is identifying the optimal thresholds that
maximize the benefits outlined in Theorem 3.1. Applying
the findings from this work to other fields may also uncover
broader implications and insights. Lastly, conducting a more

in-depth statistical analysis to assess the trade-offs between
computation time and accuracy loss across various filtration
techniques could be valuable.
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