
 

  
Abstract—In train dispatching, risk identification plays a 

crucial role in ensuring both system safety and operational 
efficiency. This study addresses two key issues: the imbalance in 
risk level data and the excessive number of risk factors 
influencing train dispatching, both of which lead to suboptimal 
risk prediction performance. To tackle these challenges, a novel 
risk identification model for train dispatching is proposed. The 
identified risk factors are classified into four main categories: 
human factors, equipment factors, train factors, and 
environmental factors. A Conditional Generative Adversarial 
Network (CGAN) is employed to generate samples for 
underrepresented risk levels, mitigating data imbalance. 
Subsequently, Kernel Principal Component Analysis (KPCA) is 
employed for feature dimensionality reduction. Finally, this 
study employs the Least Squares Support Vector Machine 
(LSSVM) algorithm combined with Bayesian optimization 
(BO-LSSVM) for risk level identification. The case study shows 
that the proposed CGAN-KPCA-BO-LSSVM model improves 
identification accuracy by 8.54% compared to the standard 
LSSVM algorithm. 
 

Index Terms—train dispatching; risk identification; CGAN; 
kernel principal component analysis; BO-LSSVM algorithm 

I. INTRODUCTION 
N modern railway transportation systems, the safety and 
efficiency of the dispatching process are paramount. 

Railway transportation dispatching is a complex process that 
involves the coordinated interaction of multiple factors, 
including human operations, equipment conditions, and 
environmental factors. Any failure or malfunction in any of 
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these aspects may lead to serious consequences, such as train 
delays, traffic accidents, or even casualties. Among the 
various components of the railway dispatching system, train 
dispatching is particularly critical, as it directly influences the 
safe and efficient operation of trains. However, the 
dispatching process is susceptible to risks arising from 
equipment failures, human errors, and dynamic 
environmental changes[1]. These risks not only threaten the 
safety of train operations but also have the potential to trigger 
significant social and economic repercussions. Consequently, 
the systematic identification and assessment of risks in the 
train dispatching process are essential to ensure the reliability 
and sustainability of railway transportation systems. 

As the importance of risk management in railway systems 
continues to grow, numerous methods have been applied to 
risk identification research in railway transportation[2]. 
Traditional approaches, such as Fault Tree Analysis (FTA) 
and Event Tree Analysis (ETA), largely rely on statistical 
analysis and expert judgment, focusing on the classification 
and assessment of risk factors. Bohus Leitner developed a 
risk assessment model for railway systems, evaluating the 
frequency of hazardous events based on historical accident 
data and employing safety techniques such as fault tree 
analysis and event tree analysis for structured expert 
judgment[3]. Jun Lai et al. proposed a fault probability 
assessment method that integrates Integrated Fault Tree and 
Fault Event Tree Analysis (IFFTA) with Networked 
Bayesian Networks (NGBN) to quantify derailment risk in 
rail transport (RT). This approach provides a comprehensive 
evaluation of derailment risk and effectively identifies key 
contributing factors[4]. However, as the complexity of 
railway systems increases, these traditional methods face 
limitations in addressing nonlinear relationships and 
multi-factor risks. In particular, when dealing with 
large-scale data and complex environments, traditional 
models often struggle to accurately capture the intricate 
relationships between risk factors. To overcome these 
challenges, some researchers have turned to artificial 
intelligence (AI) technologies for risk identification[5]. Hui 
Peng Liu et al. proposed a novel aviation safety risk level 
identification model, employing Generative Adversarial 
Networks (GANs) to generate underrepresented class 
samples from ASRS (Aviation Safety Reporting System) 
data. The integration of Bayesian optimization algorithms for 
hyperparameter tuning further improved the model's 
performance in risk identification[6]. Jicheng Liu et al. 
proposed a risk assessment model based on the Kernel 
Principal Component Analysis-Tunicate Swarm 
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Optimization-Least Squares Support Vector Machine 
(KPCA-TSO-LSSVM) algorithm. This model uses KPCA 
for dimensionality reduction of the original data, thereby 
improving the classification accuracy of the model[7]. 
Keyang Liu et al. developed an automated risk identification 
method combining machine learning, deep learning, and 
natural language processing technologies, utilizing identified 
risk factors for data-driven risk assessment[8]. In railway 
transportation, Wencheng Huang et al. employed enhanced 
Support Vector Machine (SVM) methods, including Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and 
Gradient Search (GS), to identify risks in the hazardous 
goods transportation system, with the assessment scores of 
each sub-risk factor represented in interval numbers[9]. 
Sadiq Khan et al. used a semi-quantitative risk matrix method, 
combining historical accident data and expert experience, to 
perform a comprehensive risk assessment of Pakistan 
Railways[10]. Yujie Huang developed a new causal 
modeling framework for studying railway intrusion risks, 
based on text mining technology and fuzzy rule modeling[11]. 
Chang Liu et al. constructed a hazard and accident 
knowledge graph using text mining technology, applying it to 
railway hazard identification and risk assessment[12]. 
Keping Li et al. proposed a complex network-based risk 
monitoring model for identifying accident causal factors and 
analyzing their interactions[13]. Jun Liu et al. proposed an 
AI-driven railway control and scheduling system, utilizing 
large model technologies with advanced learning capabilities, 
efficient associative abilities, and linkage analysis 
features[14]. Although these studies have made significant 
strides in railway transportation and risk identification, 
research specifically focused on risk identification in railway 
dispatching, particularly concerning train dispatch risks, 
remains relatively limited. 

Based on this foundation, this paper proposes a systematic 
method for identifying risk levels in train dispatching. The 
method categorizes risk factors into four groups: personnel, 
equipment, train, and environmental factors. To address 
data-related challenges, the proposed approach employs 
CGANs for data augmentation and KPCA for feature 
selection and dimensionality reduction. These preprocessing 
steps enhance the quality and reliability of the dataset, 
thereby improving the accuracy of risk assessment. 
Furthermore, the paper introduces an optimized Least 
Squares Support Vector Machine (LSSVM) algorithm for 
risk level identification. To optimize model performance, 
Bayesian optimization is employed to fine-tune the 
hyperparameters of the LSSVM model. This integrated 
approach not only enhances the accuracy of risk 
identification but also strengthens the robustness and 
generalizability of the proposed method. 

II. ANALYSIS OF FACTORS FOR IDENTIFYING SAFETY 
RISKS IN TRAIN DISPATCHING 

A. Composition of risk factors 
The train dispatching process is a complex and crucial 

component influenced by numerous factors. Several potential 
risk factors can affect the normal operation of train 
dispatching, thereby impacting the safety, efficiency, and 
reliability of the railway system [15][16]. To accurately 

identify the influence of various risk factors on accidents 
during railway traffic scheduling, this paper establishes a set 
of potential risk factors based on historical data analysis. In 
general, the primary risk factors encountered during train 
dispatching can be classified into three broad categories: 
human, equipment, and environmental factors. However, due 
to the significant impact of train-related factors on train 
dispatching, this paper further divides the risk factors into 
four categories: personnel factors, equipment factors, train 
factors, and environmental factors. Each category is then 
subdivided into specific risk indicators, as shown in Table Ⅰ. 

B. Data preprocessing 
This study analyzes historical risk events and daily train 

dispatch records, identifying key hazard factors that 
influence system safety based on statistical data. The data is 
then subjected to specific processing and preprocessing steps 
to ensure its compatibility with machine learning algorithms 
for effective risk identification.  

The data is categorized into discrete and continuous  types. 
To reduce the uncertainty and ambiguity of risk factors that 
may influence risk prediction, continuous data is represented 
as intervals. For integer-valued data, it is indicated that 

0a
ijkx = 0b

ijkx . 0 00 [ , ]= a b
ijk ijk ijkx x x represents the data value 

corresponding to the  j-th  risk in the i-th risk element of the 
k-th incident, where 0a

ijkx  and 0b
ijkx  denote the lower and upper 

bounds of the interval data, respectively, 
satisfying 0 00≤ ≤a b

ijk ijk ijkx x x . First, the obtained data is 

normalized. Let 0
ijkx  represent the original data, and 

let a
ijkx , b

ijkx  denote the lower and upper bounds of the data 

after normalization. Here, min
ijkx represents the minimum data 

value corresponding to the j-th risk within the i-th risk 
element of the k-th incident, while max

ijkx represents the 
maximum data value for the same risk element. The 
normalization method for continuous data is as follows: 

 
0 min

max min

a a
ijk ijka

ijk a a
ijk ijk

x x
x

x x
−

=
−

 (1) 

 
0 min

max min

b b
ijk ijkb

ijk b b
ijk ijk

x x
x

x x
−

=
−

 (2) 

Finally, the normalized risk data is obtained as 
[ , ]=c a b

ijk ijk ijkx x x ,where 0 1≤ ≤a
ijkx , 0 1≤ ≤b

ijkx . 
Discrete data refers to values that can only take specific, 

fixed categories. For instance, in this study, train type is 
classified into three distinct categories: passenger train, 
freight train, and mixed passenger-freight train. The 
normalization method for discrete data is defined as follows: 

 min

max min

d
ijk

x xx
x x

−
=

−
 (3) 

Where x  represents the original data; maxx and minx denote 
the corresponding maximum and minimum data values, 
respectively; d

ijkx represents the normalized result of discrete 
data. 

[ , ]=c a b
ijk ijk ijkx x x represents the normalized continuous risk 

assessment data. By solving the following equation, the 
actual assessment data for each risk factor can be derived: 
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Where
( )

( )

2

min

0
2

ε
 +
 < ≤
 −
 

a b
ijk ijk

a b
ijk ijk

x x

x x
, , ,∀i j k . ε is the penalty 

factor for decision-makers,
2
+a b

ijk ijkx x
represents the midpoint        

value of c
ijkx [9]. 

After normalization, discrete data does not require further 
processing, and the actual evaluation data is obtained, where  

d
ijkx = d

ijkx . 
In summary, the normalized actual evaluation data is 

{ },= c d
ijk ijk ijkx x x . 

 
TABLE Ⅰ 

 STATISTICS OF RISK FACTOR INDICATORS 
Risk factors Sub-indicators Specific risk factor details Explanation  

 
 
 
 
 
 
 
 
 

H  

11n  Average years of experience 
of the dispatcher 

The average years of experience of the 
dispatcher are retained to one decimal 
place. 

 

12n  Dispatcher's experience and 
skills 

The dispatcher's experience and skills 
can be represented by work 
performance records, categorized into 5 
levels, ranging from 1 to 5. 

 

13n  Statistics of train driver 
operational errors 

The statistics of train driver operational 
errors can be obtained through driving 
record devices and records from the 
dispatch center. 

Personnel factors 

 

14n  Train driver emergency 
response ability 

The data on train driver emergency 
response ability is expressed in interval 
form and can be assessed based on 
driving data, represented by score 
results. 

 

 
15n  Train driver years of 

experience 
The train driver's years of experience 
are retained to one decimal place. 

 

 
 

21n  Track condition 

Track condition is assessed through 
track inspection data and 
sensor-recorded data, classified into 
five levels from 1 to 5. 

 

22n  Signal equipment condition 
The status of signaling equipment is 
classified into two categories: normal 
and abnormal. 

 

1M  

23n  Mobile Signaling Equipment 
Failure Frequency 

Mobile signaling equipment failure 
frequency represents the number of 
failures occurring in all mobile 
signaling equipment within a year. 

Equipment factors 

24n  Switch operating condition 

Switch condition is assessed through 
switch inspection data and 
sensor-recorded data, classified into 
five levels from 1 to 5. 

 
 
 

 
 

2M  

31n  Train type 

This paper categorizes trains based on 
their transport types into passenger 
trains, freight trains, and mixed 
passenger-freight trains. 

 
 

 
 

 
Train factors 32n  Train running speed Running speed is expressed in interval 

form. 

33n  Train total weight 
Different types of trains have different 
total weights, with the train total weight 
expressed in interval form. 

34n  Statistics of train failure 
occurrences 

The number of train failures can 
directly reflect the presence of safety 
hazards. 

 
 

 
 

E  

41n  Weather condition Including clear, cloudy, heavy rain, fog, 
snow, and other weather conditions. 

 
 
 

 
natural environmental factors 

42n  Temperature condition Both excessively low and high 
temperatures can affect train operation. 

43n  Humidity condition 

Excessively high humidity may affect 
the normal operation of railway 
equipment, potentially leading to safety 
hazards. 

44n  Visibility condition Visibility data is expressed in interval 
form. 
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Fig.1. Implementation process of Conditional Generative Adversarial Networks (CGAN) 

 
1) Handling imbalanced data 

Through the analysis of historical accident data in railway 
transportation dispatching, it was found that high-risk data 
samples constitute a very small proportion of the dataset, 
leading to an imbalance. This imbalance may undermine the 
model's ability to accurately identify these high-risk samples 
during the risk identification process. To address this issue, 
the study employs CGANs to generate additional samples for 
the underrepresented classes, thereby improving data 
diversity and mitigating the risk of overfitting[17][18][19]. 

The CGAN is a deep learning model rooted in game theory. 
It extends the GAN by incorporating additional conditional 
information to guide the data generation process[20][21]. 
The model employs adversarial training, where a generator 
and a discriminator compete against each other to produce 
realistic data samples. The generator takes random noise as 
input and creates synthetic samples that mimic the 
distribution of real data. In contrast, the discriminator 
receives both real data and the synthetic samples produced by 
the generator, outputting a probability that indicates the 
likelihood that the input data is real. 

In this study, the conditional variable  is set as the risk level, 
and the objective function constructed is as follows: 

 
( ) ( )

( ) ( )( )( )
~

~

min max ( , ) log ,

log 1 , ,

 =  

 + − 

ijk ijk

b ijk

G D ijkx pdata x

b p x

V D G E D x c

E D G b c c
 (5) 

Where ( ) ( )~
log ,  ijk ijk

ijkx pdata x
E D x c  is the prediction result of 

the discriminator for real data, 

( ) ( )( )( )~
log 1 , , − b ijkb p x

E D G b c c is the prediction result of 

the discriminator for generated data, ( ),G b c represents the 

generator, and ( )x ,ijkD c represents the discriminator, ijkx  

represents preprocessed data, b  represents the noise vector 
input to the generator, c  is the conditional variable, 
representing the risk level ks . 

The primary role of the discriminator is to distinguish 
between real samples and generated samples. Guided by its 

loss function, the discriminator aims to maximize the 
accurate classification of real samples while minimizing the 
misclassification of generated ones. The corresponding loss 
function is defined as follows: 

 
( ) ( )

( ) ( )( )( )
~

~

log |

log 1 | |

 Γ =  

 + − 

ijk ijk

b ijk

D ijkx pdata x

b p x

E D x c

E D G b c c
 (6) 

Where ΓD is the loss function of the discriminator, 

ijkx represents the preprocessed data, and ( )ijkpdata x is the 
distribution of ijkx  real data. 

The generator’s role is to generate realistic sample data 
with the goal of convincing the discriminator that these 
samples are authentic. Its loss function directs the generator 
to produce more realistic samples, and is expressed as 
follows: 
 ( ) ( )( )( )~

log 1 | | Γ = − b ijk
G b p x

E D G b c c  (7) 

Where ΓG  represents the loss function of the generator, 
~ ( )b ijkb p x  is a noise vector randomly sampled from the 

( )b ijkp x  noise distribution. 
Through alternating training of the generator and 

discriminator, both models enhance their capabilities via 
continuous adversarial learning, ultimately leading to the 
generation of highly realistic sample data. The steps of the 
algorithm implementation are illustrated in Fig. 1, where 'N  
represents the sum of the four types of risk factors 

1 2, , ,H M M E , with 1 to N representing discrete risk factors 
and 1N + to 'N representing continuous risk factors. 
2) Feature selection 

Due to the numerous risk factors affecting the safety of 
train scheduling and the high dimensionality of feature data, 
there is a risk that excessively high dimensions could lead to 
increased model complexity and potential overfitting. To 
mitigate this risk, this paper employs Kernel Principal 
Component Analysis (KPCA) for dimensionality reduction, 
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thereby improving the model's generalization and predictive 
capabilities[22][23]. 

KPCA is a nonlinear extension of traditional PCA, which 
uses the kernel trick to map data into a higher-dimensional 
feature space before performing linear dimensionality 
reduction[24][25][26]. This allows it to effectively capture 
the nonlinear relationships within the data. The 
implementation of KPCA is as follows: 

 1 2

1 2

2

2( , ) exp( )
2

k k
k k

x x
K x x

σ

−
= −  (8) 

Where 
1 2k kx x−  represents the Euclidean distance between 

samples 
1kx and 

2kx , and σ denotes the parameter of the 

kernel function. 
Next, a kernel matrix K is constructed between the samples, 

where each element 
1 2

( , )k kk x x represents the similarity 

between data points 
1kx and 

2kx . 

To eliminate any data bias, the kernel matrix K needs to be 
centered. The centralized kernel matrix can be computed 
using the following formula: 
 1 1 1 1centered n n n nK K K K K= − − +  (9) 
Where 1n  is an n n×  matrix of ones, and this step ensures 
that the mean of each data point is zero, thereby eliminating 
any global bias. 

The eigenvalue decomposition is performed on the 
centered kernel matrix centeredK , yielding eigenvalues 

1λ , 2λ , … , nλ , and their corresponding eigenvectors 

1v , 2v ,… , nv , which satisfy the following eigen equation: 
 ( 1, 2, , )centered i i iK v v i nλ= =   (10) 
Where the eigenvalues iλ  represent the importance of the 
data along each direction, while the eigenvectors iv  describe 
the distribution of the data along these directions. 

Finally, the risk factors that contribute significantly to the 
data variation are selected based on the magnitude of the 
eigenvalues, resulting in the number of risk feature factors 
used for risk identification as U. 

The number of risk feature factors after dimensionality 
reduction is determined by the cumulative contribution rate: 

 ( ) 1

1

u

i
i
N

j
j

C u T
λ

λ

=

=

= ≥
∑

∑
 (11) 

Where T is a constant, and ( )C u  represents the cumulative 
contribution rate. 
3) Constructing a risk matrix 

First, by processing the feature data of various risk factors, 
the initial risk matrix can be obtained. 

 

11 21 1

12 22 2
1 2

1 2

, { , , , }

 
 
 = ∀ ∈
 
 
 





   



i i im

i i im
i

i K i K imK

x x x
x x x

R i H M M E

x x x

 (12) 

Next, each risk event is assigned a comprehensive risk 
score based on its severity and expert recommendations. The 
obtained scores are then classified into different risk levels 

according to established risk classification standards. Let 
ks ={1,2,3,4,5} represent the risk levels of the various risk 

events, with each ks  corresponding to a kv . 
In summary, the overall risk matrix can be represented as 

follows: 
 

1 2

*
H M M ER R R R R S =    (13) 

Where 

1

2

 
 
 =
 
 
 



k

s
s

S

s

.  

After data augmentation using the CGAN and feature 
selection through the KPCA method[27][28], the final risk 
matrix is derived as follows: 

 

' ' ' '

11 12 1 1

21 22 2 2

1 2

 
 
 =  
 
  





    



U

U

K K K U K

z z z s
z z z s

R

z z z s

 (14) 

Where U  represents the number of new features after 
feature selection, and 'k u

z  denotes the risk assessment data 

for the u -th new feature in the 'k -th train dispatching risk 
event, 'K  represent the number of samples after data 
augmentation. 

III. BO-LSSVM ALGORITHM FOR RISK IDENTIFICATION 
MODEL 

A. Model selection and construction 
The risk level identification problem in train dispatching 

involves systematically identifying, documenting, and 
analyzing potential risks that could arise during the railway 
scheduling process. The goal is to prevent and mitigate 
accidents, delays, and other adverse impacts. 

In this study, the BO-LSSVM algorithm is employed for 
risk identification, utilizing a multi-classification approach to 
assess the risk levels of various factors. Based on the 
identification results, the severity of each risk event can be 
evaluated, allowing for the implementation of targeted 
railway accident prevention measures[29][30]. This method 
adopts an RBF kernel function, with Bayesian optimization 
applied to determine the optimal parameters c  and γ  for the 
RBF kernel. 

The Least Squares Support Vector Machine (LSSVM) is a 
variant of the Support Vector Machine (SVM) that leverages 
the least squares method to optimize computation. Its core 
principle is to determine the decision hyperplane by 
minimizing the squared error, thereby effectively 
distinguishing different classes of samples. Compared to 
traditional SVMs, LSSVM reformulates the original 
quadratic programming problem into a linear system of 
equations, significantly improving computational 
efficiency[31]. The implementation steps of this algorithm 
are outlined as follows: 

Step 1: For a given training dataset( ' ',
k u k

z s ), where 'k  

represents the risk events, {1,2, }∈ u U , ' '{1, 2, }∈ k K , 

'k u
z  denotes the input feature vectors, ' {1, 2,3, 4,5}∈

k
s  
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denotes the output labels, LSSVM seeks the decision 
hyperplane by solving the following optimization problem: 

 '
2

1

1min
2 2

γ
=

= + ∑
n

T
k u

i
z w w e  (15) 

 ' ' '
' '( ( ) ) 1 , 1, 2φ + = − = 

T
ik k u k u

s w z b e k K  (16) 

Where w  is the weight vector, b  is the bias, 'k u
e  is the error 

variable, γ  is the regularization parameter, and '( )φ
k u

z  is the 

nonlinear mapping of the input features. 
Step 2：By applying the Lagrange multiplier method, the 

above problem can be transformed into a dual problem: 

 
'

' ' ' '

2

1

1

1( , , , )
2 2

( ( ) ) 1

n
T

k u
i

n
T

k u k u k u k u
i

L w b e a w w e

s w z b e

γ

α φ

=

=

= +

 − + − + 

∑

∑
 (17) 

Step 3：By taking the partial derivatives of w , b , e  and 
setting them to zero, we obtain the following system of linear 
equations: 

 1

00 1
1

T b
sI αγ −

     
=     Ω +     

 (18) 

Where Ω  represents the kernel matrix, which denotes the 
similarity matrix between the training set sample, I  
represents the identity matrix, α represents the Lagrange 
multiplier vector. 

By solving these equations, the values of the model 
parameters α  and b  can be obtained. With these parameter 
values, the weight vector w  and the bias b  can then be 
calculated. 

Step 4：To address nonlinear problems, a kernel function is 
introduced to map the data into a high-dimensional feature 
space. Intelligent algorithms are then utilized to optimize the 
parameters c  and γ  within the kernel function. Here, c  
represents the regularization parameter, and γ  denotes the 
kernel parameter, which controls the width of the kernel 
function. The most common kernel functions include those 
listed in Table Ⅱ. 

This paper selects the Gaussian Radial Basis Function 
kernel for computation and utilizes Bayesian optimization to 
optimize the parameters c  and γ [32]. The structural 
framework of the LSSVM is shown in Fig. 2. 

Step 5: For a new sample 'z , compute the predicted value: 

 ( )
'

' '

1
( ) ,α

=

= +∑
K

i i
i

f z K z z b  (19) 

The classification result can be determined based on the 
sign of the predicted value '( )f z . This paper addresses a 
multi-class classification problem and employs a one-vs-one 
strategy for classification[33][34]. 

The flowchart of the BO-LSSVM algorithm 
implementation is shown in Fig. 3. 

 
Table Ⅱ 

 THE DISTRIBUTION OF COMMON KERNEL FUNCTIONS INCLUDES 
Name Expression Applicable Scope 

Linear Kernel Function ( ),i j i jK z z z z= ⋅  Suitable for linearly separable data 

Polynomial Kernel Function ( ) ( )( ),
d

i j i jK z z z z rγ= ⋅ +  Suitable for data where there are polynomial relationships between features 

Gaussian Radial Basis Function 
(RBF) Kernel ( ) ( )2

, expi j i jK z z z zγ= − −  Suitable for nonlinear data and data with high feature dimensions 

Tanh Kernel Function ( ) ( )( ), tanhi j i jK z z z z rγ= ⋅ +  
Performs well when the data exhibits a nonlinear relationship similar to neural 

network activation functions 

 

 
Fig. 2. LSSVM structural framework 
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Fig. 3. Steps for risk identification based on the BO-LSSVM algorithm 

 

B. Model evaluation and validation 
After solving the algorithm, it is crucial to evaluate and 

validate the model’s performance to ensure its effectiveness 
and generalization in practical applications. In this study, 
evaluation metrics include accuracy, precision, recall, F1 
score, and the AUC-ROC curve. Accuracy, precision, recall, 
and F1 score are computed based on four key indicators: True 
Positives (TP), True Negatives (TN), False Positives (FP), 
and False Negatives (FN). Additionally, macro-averaging is 
employed to calculate precision, recall, and F1 score. 

 +
=

+ + +
TP TNAccuracy

TP TN FP FN
 (20) 

 =
+

TPPrecision
TP FP
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Where TN represents the number of correctly identified 
negative labels, TP represents the number of correctly 
identified positive labels, FP represents the number of 
incorrectly identified negative labels, and FN represents the 
number of incorrectly identified positive labels. N represents 
the number of risk levels, and ijMetric  represents the j-th 
evaluation metric (e.g. Precision, Recall, F1-score) for the 
i-th risk category. 

The AUC-ROC (Area Under the Receiver Operating 
Characteristic Curve) is a widely used metric for evaluating 
the performance of binary classification models. The ROC 
curve illustrates the model’s performance across different 
threshold settings, while the AUC value quantifies the area 
under the curve, ranging from 0 to 1. A higher AUC value 
indicates better classification performance[35]. 

To evaluate the model's generalization ability, this study 
employs k-fold cross-validation to assess its stability and 
robustness. The dataset is partitioned into k subsets, where 
each subset serves as the validation set while the remaining 
subsets are used for training. This process is repeated k times, 
and the final evaluation metrics are obtained by averaging the 
results from all iterations. 

IV. CASE ANALYSIS AND RESULTS DISCUSSION 

A. Sample data processing 
This study simulated potential risk events in train 

dispatching based on recent years' data, developed case 
studies, and assessed the risk identification performance of 
the CGAN-KPCA-BO-LSSVM algorithm. Initially, 1,005 
train dispatching risk events were selected as data samples. 
These included 247 samples classified as risk level 1, 400 
samples as risk level 2, 253 samples as risk level 3, 84 
samples as risk level 4, and 21 samples as risk level 5. To 
mitigate overfitting and enhance sample diversity, the CGAN 
was employed to generate 150 additional samples for risk 
level 4 and 200 for risk level 5. Fig. 4 illustrates the 
performance changes of various models after data 
augmentation using CGANs. After data augmentation, the 
identification performance of each model significantly 
improved for risk levels 4 and 5. However, some models 
exhibited a decline in performance for risk levels 1, 2, and 3. 
One possible explanation is that, during data augmentation 
with CGANs, some noise or bias may have been introduced 
into the feature space, affecting the model’s ability to 
generalize effectively to the non-augmented risk levels. 
Despite the decrease in identification accuracy for risk levels 
1, 2, and 3, the decline was minimal and remained within an 
acceptable range. 

 

 
Fig. 4. Comparison of model identification performance before and after data augmentation 
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Fig. 5. Accuracy curve of the BO-LSSVM algorithm 
 

 
Fig. 6. AUC-ROC curves of the BO-LSSVM algorithm 
 

B. Feature selection processing 
The original feature data in this study consists of 17 

different types of features. Some of these features exhibit 

complex nonlinear relationships, such as weather conditions, 
temperature, humidity, and visibility. The Kernel Principal 
Component Analysis (KPCA) method effectively captures 
these nonlinear relationships while simultaneously reducing 
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the dimensionality of the data. Based on the analysis of these 
factors, this study employs KPCA to fuse the 17 feature types. 
Subsequently, the LSSVM algorithm is used to evaluate the 
effectiveness of the feature fusion process. The fusion results 
for the different feature types are presented in Table Ⅲ. 

 
TABLE Ⅲ 

 FEATURE SELECTION RESULTS 

Number Main risk 
factors Contribution rates % Cumulative 

contribution rates % 

1 24n  13.12 13.12 

2 23n  11.87 24.99 

3 15n  9.75 34.74 

4 21n  6.98 41.72 

5 13n  6.43 48.15 

6 22n  6.21 54.36 

7 14n  6.13 60.49 

8 34n  5.98 66.47 

9 12n  5.66 72.13 

10 11n  5.54 77.67 

11 33n  5.40 83.07 

12 32n  5.27 88.34 

13 44n  4.98 93.32 

14 41n  3.71 97.03 

 
The collected data was subjected to KPCA to calculate the 

contribution rate and cumulative contribution rate of each 
risk feature factor. As shown in Table 3, the cumulative 
contribution rate of the first 14 principal components reached 
97.03%, surpassing the 95% threshold. This suggests that 
these principal components can effectively capture the 

characteristics of the original data. Therefore, the top 14 
primary risk feature factors were selected for subsequent risk 
level identification. 

C. Case study analysis 
The selected Bayesian optimization algorithm parameters 

in this study are as follows: the maximum number of 
iterations is set to 500, the range for parameter c  is (0.01, 
100), and the range for parameter γ  is (0.0001, 10). 20% of 

the dataset is used as the test set, and 5-fold cross-validation 
is employed to evaluate the stability and generalization 
ability of the model. As shown in Fig. 5, with the increase in 
the number of iterations, the optimization process using the 
Bayesian algorithm gradually converges, reaching the 
highest accuracy at the 355th iteration. 

Fig. 6 presents the AUC-ROC curves of the proposed 
CGAN-KPCA-BO-LSSVM based risk identification model, 
illustrating the classifier's performance in distinguishing five 
different risk levels. The True Positive Rate (TPR) represents 
the proportion of correctly identified positive samples among 
all positive cases, while the False Positive Rate (FPR) 
denotes the proportion of negative samples incorrectly 
classified as positive among all negative cases. The five 
distinct colored curves in the figure correspond to the ROC 
curves for each category. Curves positioned closer to the 
top-left corner indicate superior classifier performance, 
demonstrating a stronger ability to differentiate between 
positive and negative cases. Additionally, the Area Under the 
Curve (AUC) serves as a key metric for evaluating classifier 
performance, with values approaching 1 indicating better 
predictive accuracy. As shown in Fig. 6, it can be observed 
that the model exhibits strong discrimination capability for 
risk levels 1 and 5, with AUC values approaching 1. 

 
Fig. 7. Performance evaluation before and after algorithm optimization 
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To evaluate the effect of hyperparameter optimization 
using the Bayesian optimization algorithm on the 
performance of the proposed risk identification model, we 
examined the precision metrics for each risk level in the 
validation set. As shown in Fig. 7, after hyperparameter 
optimization, the updated risk identification model exhibits 
improved performance in identifying various risk levels, 
especially for risk levels 4 and 5. 

D. Hyperparameter performance evaluation 
Fig. 8 shows the curves of the accuracy as hyperparameters 

c  and γ  vary after Bayesian optimization. The selected 
parameter ranges are (0.01,100)∈c  and (0.0001,10)γ ∈ . 
The points marked in the figure indicate the points where the 
accuracy is highest. As illustrated, the highest accuracy is 
achieved when c  is 25.0166 and γ is 0.4454. 

V. COMPARATIVE STUDY 
To further validate the risk identification performance of 

the BO-LSSVM algorithm, as well as the effects of data 
augmentation using CGAN and feature selection via KPCA, 
this paper compares the performance of the proposed model 
with that of seven other optimized algorithm models. 
Specifically, the Accuracy, Precision, Recall, and F1-score of 
each model are compared. The results are shown in Table Ⅳ. 

From the prediction results, it is evident that the 
BO-LSSVM algorithm outperforms others across various 
evaluation metrics. Notably, the RBF kernel achieves higher 
scores on all metrics when compared to the Linear LSSVM 

and Polynomial LSSVM algorithms. Furthermore, by 
addressing the data imbalance using CGAN and applying 
feature selection through the KPCA, the accuracy of all 
algorithms showed noticeable improvement. 
 

TABLE Ⅳ 
COMPARISON OF ALGORITHM PREDICTION RESULTS 

 Before Data Processing 

Accuracy macroPrecision  macroRecall  1 macroF Score−  

SVM 76.00% 80.10% 57.67% 58.59% 

GA-SVM 82.00% 87.02% 66.47% 66.66% 

Linear-LSSVM 80.50% 83.99% 65.40% 64.20% 
Polynomial 
-LSSVM 

82.00% 82.84% 79.75% 81.51% 

LSSVM 79.00% 85.12% 75.52% 78.15% 

GA-LSSVM 82.50% 86.35% 68.31% 67.04% 

Our Model 82.51% 84.61% 82.83% 83.52% 

 After Data Processing 

Accuracy macroPrecision  macroRecall  1 macroF Score−  

SVM 79.85% 83.45% 78.89% 80.02% 

GA-SVM 85.21% 86.02% 84.68% 84.82% 

Linear-LSSVM 84.46% 84.32% 83.36% 83.88% 
Polynomial 
-LSSVM 

83.71% 84.63% 83.45% 83.89% 

LSSVM 84.64% 84.32% 83.76% 84.03% 

GA-LSSVM 85.78% 84.52% 83.69% 84.01% 

Our Model 87.54% 87.01% 86.52% 86.67% 

 
Fig. 8. Hyperparameter optimization curves 

Model 

Model 
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VI. CONCLUSION 
This paper proposes a risk identification model based on 

the CGAN-KPCA-BO-LSSVM algorithm to address safety 
issues in railway transportation dispatching. First, by 
analyzing historical risk event data from railway dispatching, 
key risk factors affecting the system were identified, and 
these factors were primarily categorized into personnel, 
equipment, train, and natural environment factors. To address 
data imbalance and high-dimensional feature data issues, 
CGAN and KPCA were employed. The LSSVM algorithm 
was used for classification, with Bayesian optimization 
applied to fine-tune the RBF kernel parameters. 

Through case analysis, the proposed 
CGAN-KPCA-BO-LSSVM algorithm demonstrated an 
11.54% improvement in accuracy compared to the traditional 
SVM algorithm, validating the effectiveness of this method 
in solving the risk level identification problem in train 
dispatching. 

In conclusion, the proposed risk level identification model 
enhances the efficiency of risk identification in railway 
transportation scheduling to some extent, providing a novel 
solution for managing high-dimensional risk feature data in 
this field. It also offers valuable insights for risk assessment 
in other sectors. 

However, despite the positive results in identifying risks 
within railway transportation scheduling, certain aspects 
require further exploration. Due to the limited sample data 
used in this study, the robustness of the model could not be 
fully validated. Future research could introduce more diverse 
sample data and risk factors to further assess the model's 
applicability. Additionally, this paper focuses on 17 
identified risk factors, but future studies may explore 
additional factors that impact railway transportation safety. 
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