
 

 

Abstract— Monitoring PM2.5 concentrations is indeed a 

crucial thing to be concerned about due to its significant 

impact on environmental quality and public health 

measurement. PM2.5 in its high levels is considered a hazardous 

air pollutant that can lead to respiratory and cardiovascular 

diseases, making reliable estimations of the pollutant essential 

for policymaking and public awareness. Despite how important 

it is, the sparse distribution of monitoring stations often leads 

to data gaps, particularly in urban areas like Jakarta, 

Indonesia, where air pollution is a serious matter. Traditional 

interpolation methods such as Inverse Distance Weighting 

(IDW) and kriging are acknowledged to have limitations in 

capturing the complex spatiotemporal dynamics of PM2.5 

concentrations and fail to incorporate secondary variables that 

influence air pollution. Therefore, this study proposes a 

spatiotemporal cokriging model to estimate PM2.5 

concentrations in Jakarta by integrating temporal variations 

and environmental factors, including rainfall, relative 

humidity, wind speed, and nitrogen dioxide (NO2) 

concentrations. Using data from 29 monitoring stations 

(January–December 2023), the sum-metric semivariogram 

model was the best fit for spatiotemporal variability due to its 

ability to show more precise cokriging weight calculations. The 

proposed model achieved high predictive accuracy, with a 

Mean Absolute Percentage Error (MAPE) of 0.659% and a 

Root Mean Square Error (RMSE) of 0.384. Results revealed 

seasonal trends, with higher PM2.5 levels during the dry season 

and lower levels during the rainy season. Spatially, the 

northern and southern Jakarta exhibit elevated concentrations 

due to industrial activities and vehicular emissions. Thus, these 

findings underscore the model's effectiveness in improving air 

pollution predictions and provide a robust framework for 

policymakers to design targeted mitigation strategies in urban 

settings. 

 
Index Terms— Air Quality, Jakarta, PM2.5, Spatiotemporal 

Cokriging 

 

I. INTRODUCTION 

IR pollution is a significant environmental issue faced 

by densely populated cities, particularly those that 

serve as centers for economic and industrial activities, such 
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as Jakarta, the capital of Indonesia. Air pollution in Jakarta 

largely stems from energy consumption, fossil fuel use, 

household activities, and industrial processes [1]. Among air 

pollutants, particulate matter 2.5 (PM2.5) poses a critical 

threat to human health due to its small size (≤ 2.5 

micrometer, abbreviated as µm), which allows it to penetrate 

deep into the respiratory system [2]. Recognizing the 

danger, the Government of Indonesia has set the healthy 

threshold for PM2.5 at 50 µg/m3 (micrograms per cubic 

meter) [3]. Therefore, reliable information on PM2.5 

concentrations is essential for policymakers to devise 

mitigation strategies and for the public to protect themselves 

from exposure. 

Despite its importance, monitoring PM2.5 concentrations 

is often limited by the availability of the monitoring 

equipment, resulting in data gaps across regions. To address 

this, interpolation methods are needed to estimate pollutant 

concentrations at unmonitored locations. The commonly 

used interpolation methods include Inverse Distance 

Weighting (IDW) and kriging.  

IDW estimates values at unknown points based solely on 

their distances from known locations, assigning higher 

weights to closer points. However, IDW does not account 

for spatial dependencies or underlying variability patterns, 

and it cannot incorporate additional predictor variables, 

which limits its ability to provide accurate estimates in 

complex environmental systems.  

Kriging improves upon IDW by utilizing spatial 

dependencies through modeling a semivariogram, which 

captures the relationship between variability and distance 

among observed locations. This results in more accurate 

predictions than IDW, particularly in regions with 

significant spatial autocorrelation. However, like IDW, 

kriging does not allow for including predictor variables and 

does not explicitly consider temporal dependencies.  

Air pollution, however, is influenced by a combination of 

spatial and temporal factors and secondary variables such as 

rainfall, relative humidity, wind speed, and NO2 

concentrations. To overcome these limitations, 

spatiotemporal cokriging is employed as it integrates both 

spatial and temporal dependencies into the model while 

allowing for the inclusion of secondary variables as 

predictors. This approach enables a more comprehensive 

analysis of pollutant distribution patterns and improves 

prediction accuracy by incorporating the influence of 

additional environmental factors alongside PM2.5 

concentrations. 

Given this context, incorporating spatial-temporal 
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dependencies and additional environmental variables into a 

cokriging model is expected to enhance the accuracy of 

PM2.5 concentrations estimates. This study aims to develop a 

spatiotemporal cokriging model to provide more precise 

predictions of PM2.5 concentrations in Jakarta. By including 

rainfall, relative humidity, wind speed, and NO2 

concentrations as secondary variables, the proposed model 

seeks to capture spatial and temporal variations more 

effectively, ultimately delivering more accurate estimations 

that reflect pollution dynamics. 

II. DATA 

This study was carried out in the Jakarta Province area, 

which includes the administrative areas of Central, North, 

West, South, and East Jakarta City (Fig. 1). 

 

 
Fig. 1.  Study Area. The map highlights the administrative boundaries of 

Jakarta, the focus region of the study, along with its surrounding areas, 

including Tangerang, Depok, and Bekasi 

 

As the capital of the country, Jakarta is experiencing rapid 

industrialization and urbanization [1]. This contributes to an 

increase in the number of motor vehicles, industrial 

activities, and infrastructure development. The dense 

activity and mobilization cause an increase in air pollutant 

emissions. In August 2024, the concentrations of pollutants 

in Jakarta will be the highest in the world [2]. IQAir also 

noted that Jakarta is often one of the cities with the worst air 

quality in the world [3]. 

 
TABLE I 

THE VARIABLES USED IN SPATIOTEMPORAL MODEL 

Variable Data Source Description Unita 

PM2.5 

concentration 

PT Nafas 

Aplikasi 

Indonesia 

The concentrations of 

PM2.5 particles in the air 
µg/m3 

NO2 

concentration 

Jakarta 

Environment 
Agency 

(https://satudata.

jakarta.go.id/) 

The concentrations of 

nitrogen dioxide in the air µg/m3 

Rainfall 

BMKG 

(https://dataonli
ne.bmkg.go.id/) 

Indicates the total amount 

of rainfall over a one-
month period 

mm 

Relative 
Humidity 

BMKG 

(https://dataonli

ne.bmkg.go.id/) 

The percentage of water 
vapor content in the air 

% 

Wind Speed 
BMKG 

(https://dataonli

ne.bmkg.go.id/) 

The speed of air 

movement 
m/s 

aThe standard unit based on the data source 

Notes: µg/m3 = micrometers per cubic meter; mm = milimeter; m/s = meters 

per second 

This study uses PM2.5 data and secondary variables, 

including rainfall, relative humidity, wind speed, and NO₂ 

concentrations (Table I). Rainfall, relative humidity, and 

wind speed were chosen because several studies [4], [5], [6], 

[7] prove that these variables affect PM2.5 concentration. 

Meanwhile, the variable NO2 was chosen as a proxy for 

population density because it generally comes from human 

activities such as industry, power generation, and the use of 

motor vehicles [8], [9]. 

Data were collected in 12 monthly periods throughout 

2023, with a total of 29 observation points in the study area 

with the distribution of points (Fig. 2). From a total sample 

of 29 point; the data will be divided into 80% training data 

(23 points) and test data as much as 20% (6 points). 

 

 
Fig. 2.  Sample Point Distribution 

III. METHODS 

A. Variogram 

A variogram is a function that describes dependencies in 

a regional variable. Variograms are used to show the 

differences between random variables, while the covariance 

function is used to show similarities between [10]. 

Meanwhile, a semivariogram is half the quantity of a 

variogram. Empirical semivariogram refer to semivariogram 

calculated from sample data. An empirical semivariogram is 

calculated by (1). 

 2

( , ),( , ) ( , )

1
( , ) ( ( , ) ( , ))

(#2 , )
i j

i j

t t N u

u Z t Z t
N u


 

= −
s s h

h s s
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 (1) 

Refer to (1), ( , )u h expresses a spatiotemporal 

semivariogram as well as 

( )( ) ( , ) , , ' : 'i j i jN u t t and t t u= − = − =h s s s s h  

is a set of pairs in spatial distance h and temporal lag u and 

# is a notation that expresses the cardinality of the set or the 

number of elements in the set. Next, ( ),i ts  and ( ),j ts is a 

pair of points with spatial distance h and temporal lag u for 

, 1,...,i j n=  and , 1,...,12t t =  because the data consist 

of 12 monthly periods, where n represents the number of 

spatial locations in the training data. 
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Empirical semivariogram cannot be used directly to 

obtain kriging predictions because they are only defined for 

a set of lag distances calculated based on sample data. To 

overcome these limitations, empirical semivariogram need 

to be fitted to a continuous mathematical model, which is 

then called a theoretical semivariogram. A theoretical 

semivariogram is needed as a function that generates the 

value of the semivariogram in the calculation of kriging 

prediction. The function of the theoretical semivariogram 

allows for continuous and consistent depiction of 

dependency patterns at various distances between 

observation points. This function also simplifies the random 

fluctuations or variations that may be encountered in 

empirical semivariogram.  In spatiotemporal analysis, the 

covariance function model can be categorized as separable 

and non-separable. The separable model assumes that the 

spatial and temporal components of the covariance or 

semivariogram function can be separated and modeled 

independently [11]. In contrast, the non-separable model 

assumes that the spatial and temporal components in a 

variogram model or covariance function must be modeled 

together. The following is the spatiotemporal covariance 

model used in this study [12]. 

1) Product covariance model 

This model assumes that the function of spatiotemporal 

covariance can be represented by the multiplication of the 

spatial and temporal covariance functions. 

 ( , ) ( ) ( ) (0) ( ) ( ) ( )sep s t t s s tu C u C u    = + −h 0 h h  (2) 

Refer to (2), i j= −h s s  and u t t= −  represent 

distances in space and time, respectively, with is  and js  

being the coordinates of the locations, and t  and t  being 

the observation periods. Consequently, ( , )sep u h denotes 

the semivariogram of the product model, ( )sC 0 and 

(0)tC is the sill of the spatial and temporal components 

whose values are known, ( )s h and ( )t u consecutively is 

the spatial and temporal semivariogram. 

2) Product-sum covariance model 

This model is defined in (3). 

 
( , ) ( )(1 . (0))

( )(1 . ( )) . ( ) ( )

ps s t

t s s t

u c C

u c C c u

 

  

= + +

+ −

h h

0 h
  (3) 

Refer to (3), i j= −h s s  and u t t= −  represent 

distances in space and time, respectively, with is  and js  

being the coordinates of the locations, and t  and t  being 

the observation periods. Consequently, ( , )ps u h denotes 

the semivariogram of the product-sum model, ( )sC 0 and 

(0)sC  each of which is sequentially a sill of ( )s h and 

( )s u  which is consecutively a spatial and temporal 

semivariogram, and 0c   is a constant that guarantees the 

positive definite properties of the semivariogram. 

3) Metric covariance model 

The metric model is also referred to as the combined 

distance model. The hypothesis underlying this model is that 

the spatiotemporal covariance has a uniform structure in 

both the spatial domain and the temporal domain. 

 
( )

( )

2 2 2

2 2 2

( , ) || ||

( ,0) || ||

m u u

C C u
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

= +

= − +

h h

0 h

 (4) 

Referring to (4), i j= −h s s  and u t t= −  represent 

distances in space and time, respectively, with is  and js  

being the coordinates of the locations, t  and t  being the 

observation periods, ( , )m u h is the semivariogram of the 

metric model, and ( ,0)C 0 is the sill whose value is known. 

Then, 
2 =h h h represents the squared norm of the 

spatial distance vector, and   is the anisotropy correction 

coefficient used to align the scales of the spatial and 

temporal dimensions. 

4) Sum-metric covariance model 

Sum-metric models are formed by summing the spatial 

covariance function, the temporal covariance function and 

the metric covariance function. 

 

( )2 2 2

) ) )

|| ||

sm s tu u

u

  

 

(  = ( + (

+ +

h h

h
 (5) 

Refer to (5), i j= −h s s  and u t t= −  represent 

distances in space and time, respectively, with is  and js  

being the coordinates of the locations, t  and t  being the 

observation periods,  )sm u ( h stating the sum-metric 

model spatiotemporal semivariogram, )s (h is a spatial 

semivariogram, )t u ( is a temporal semivariogram. Then, 

2 =h h h represents the squared norm of the spatial 

distance vector, and   is the anisotropy correction 

coefficient used to align the scales of the spatial and 

temporal dimensions. 

5) Simple sum-metric covariance model 

The simple-sum metric model adds a spatiotemporal 

nugget component so that it will have a semivariogram 

formulated as follows. 

 

|| || 0

2 2 2

, ) .1

) || || )

ssm h s

t

u nug

u u

 
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( = + ( )

+ ( + ( +

h h

h
 (6) 

In (6), i j= −h s s  and u t t= −  represent distances in 

space and time, respectively, with is  and js  being the 

coordinates of the locations, t  and t  being the observation 

periods. Therefore, || || 0.1 hnug  means that the nugget 
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effect will be included in the semivariogram calculation 

when the spatial distance 0= h h h , and   is the 

anisotropy correction coefficient. 

In the theoretical semivariogram models, the functions of 

the spatial and temporal variograms ( )s h  and ( )t u  are 

respectively referred as marginal semivariograms. The 

spatial and temporal marginal semivariogram models do not 

have to be identical. Marginal semivariograms can be 

constructed from three frequently used function models, 

namely spherical, exponential, and Gaussian semivariogram 

functions. 

B. Cross-Variogram 

In contrast to a semivariogram, a cross-variogram refers to a 

variogram that is used to describe the relationship between 

the main variable and the secondary variable. In this study, 

 1 5( , ) ( , ), , ( , )i i it Z t Z t=Z s s s  with 1, ,i n= and 

1,...,12t = , which is the realization of a multivariable 

spatial process, the cross-variograms can be estimated by (7) 

[13]. 

 

( )
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( ) ( ) ( )
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1
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2# ( , )
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ab a i
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u Z t
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Z t Z t Z t


 

=

 − −


s s h

h s
h

s s s

 (7) 

Where ( , )ab u h  is the cross-variogram between the 

variable aZ  and bZ  where, , 1, ,5a b =  and 

( )( ) ( , ) , , :i j i jN u t t and t t u = − = − =h s s s s h  

with , 1, ,i j n=  and , 1,...,12t t = , is the set of pairs of 

points in distance h and time interval u. The # notation 

expresses the cardinality of the set or the number of 

elements in the set. 

C. Spatiotemporal Cokriging 

Once the semivariogram and cross-variograms models are 

obtained, the next step is to form a spatiotemporal cokriging 

model. To make it easier to mention, starting from this 

section onwards, the spatiotemporal location ( , )i ts  will be 

referred to as itx , so that the unobserved location 0( , )ts  

will be referred to as 0tx  . Furthermore, 1 2 3 4, , ,Z Z Z Z  and 

5Z  represent the concentrations of PM2.5, NO2, rainfall, 

relative humidity, and wind speed, respectively. Among 

these, 1Z  serves as the primary variable to be predicted, 

while 1 2 3 4, , ,Z Z Z Z  and 5Z  are used as secondary 

variables. 
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 (8) 

The cokriging predictor for 
1 0( )tZ x   is given by (8). By 

( )1 0,tZ x   being a prediction  of cokriging for the 

concentrations of PM2.5 the location 0,tx  , 
1

, ,i t m  is the 

cokriging weight for the m-th variable at the spatiotemporal 

location ,i tx  by taking into account the influence of the 

concentrations of PM2.5 ( )1Z , and ( ),m i tZ x  is the 

observation value of the m-th variable at the spatiotemporal 

location ,i tx . Equation (8), in its matrix form, is written as 

(9) [14]. 
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( )

( )

1 1,1
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1 1 1 1
1 0 1,1,1 ,12,1 1,1,5 ,12,5

5 1
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n
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n
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   

 
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 
 
 
 =
 
 
 
 
 
 

 (9) 

The Λ  matrix, which contains the cokriging weights 

, ,

k

i t m , is obtained by solving (10) [15]. 

 
T
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Λ  

With 
1 2,m mΓ  of size (n×12)×(n×12), containing the 

semivariogram values if 1 2m m= , which represents the 

variogram between the same variables at observed locations, 

or the cross-variogram between variables 1m  and 2m  at 

observed locations in the training data (if 1 2m m ). 

Subsequently, ( )1, ,1


=1  is a vector of  size (n×12)×1, 

Δ  is a matrix of size (5×5) containing the Lagrange 

multiplier, and I  is the identity matrix. The semivariogram 
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vector for variable 
1m  (if 

1 2m m= ) or the cross-variogram 

between variables 
1m  and 

2m  (if 
1 2m m ) is defines as 

( )2 2 2

1 1 11,1, 1,12,, ,
m m m

m m m  


=  , where 2

1, ,

m

i t m  represents the 

variogram between location 0,tx   and the observed location i 

for time period t, with 1, , ,i n=  , 1,...,12,t t =  and 

1 2, 1,...,5m m = . 

D. Prediction Evaluation 

After obtaining weights Λ  for the PM2.5 concentrations 

cokriging prediction model, the next step is to evaluate the 

accuracy of the model in predicting PM2.5 concentrations at 

unobserved regional points. Model evaluation will be 

conducted using test data by treating it as unobserved data. 

In this study, two measures of error will be used, namely 

RMSE (Root Mean Squared Error) and MAPE (Mean 

Absolute Percentage Error). RMSE and MAPE values can 

be calculated using the following formula. 

 ( ) ( )( )
12

, ,

1 1

1

12

testn

i t i t

t itest

RMSE Z x Z x
n = =

= −


  (11) 
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| |1
100%

12
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n Z x= =

−
= 


  (12) 

Where testn  represents the number of points used as test 

data, ( )1 ,i tZ x  is the actual value of PM2.5 concentrations at 

the spatiotemporal location ,i tx , and ( )1 ,i tZ x  is the 

prediction value of PM2.5 concentrations for the 

spatiotemporal location ,i tx . 

 

IV. RESULTS 

A. Descriptive Statistics 

First, a descriptive statistical analysis was conducted on 

the research variables without considering the time period. 

The results of the maximum, minimum, mean, and standard 

deviation calculations are presented in Table II. 

 
TABLE II 

DESCRIPTIVE STATISTICS 

Variable Min Max Mean SD 

PM2.5 

concentration 
14.56 68.83 39.57 11.69 

NO2 concentration 3.90 29.97 19.37 5.83 

Rainfall 0 558.83 139.82 137.78 

Relative Humidity 67.70 89.79 78.40 4.82 
Wind Speed 2.14 6.22 3.79 0.87 

Notes: Min = Minimum; Max = Maximum; SD = standard deviation 

 

The PM2.5 concentrations exhibited variation 

throughout the year, as indicated by a standard deviation of 

11.69 µg/m³. This value suggests that the PM2.5 

concentrations deviate by 11.69 µg/m³ from the mean. The 

minimum PM2.5 concentrations occurred in February, with a 

value of 14.56 µg/m³, while the maximum concentrations 

was recorded in August, reaching 68.83 µg/m³. The lowest 

NO2 concentrations was 3.9 µg/m³, which occurred in 

December, whereas the highest concentration, also recorded 

in December but at a different location, was 29.97 µg/m³. 

Rainfall demonstrated higher variability compared to the 

other variables, as reflected in a standard deviation of 

137.78 mm. The minimum rainfall in Jakarta during the 

2023 period was 0 mm, indicating that no rain fell for an 

entire month, whereas the maximum rainfall reached 558.83 

mm. The relative humidity and wind speed variables 

exhibited relatively homogeneous values across locations 

and time periods, with standard deviations of 4.82% and 

0.87 m/s, respectively. 

Table III presents the minimum, mean, maximum, and 

standard deviation of PM2.5 concentrations recorded across 

the study area over 12 months. The minimum concentrations 

of 14.56 µg/m³ was observed in February, while the 

maximum concentrations of 68.83 µg/m³ occurred in 

August. The overall mean concentrations ranged from 21.59 

µg/m³ (in February) to 50.15 µg/m³ (in October). The 

highest standard deviation was recorded in May (8.40 

µg/m³), indicating significant variability in PM2.5 

concentrations during this period. Notably, the dry season 

months of July and August exhibited elevated mean 

concentrations of 49.27 µg/m³ and 49.82 µg/m³, 

respectively. 

 
TABLE III 

TEMPORAL CHARACTERISTICS OF THE MONTHLY PM2.5 CONCENTRATION 

Month Min Max Mean SD 

January 17.01 38.08 24.83 5.12 

February 14.56 29.68 21.59 3.71 

March 23.83 48.57 33.85 6.56 

April 22.79 41.02 29.20 4.77 
May 32.01 64.90 45.99 8.40 

June 34.65 61.65 45.12 7.09 

July 37.95 67.43 49.27 7.89 

August 37.54 68.83 49.82 8.37 

September 35.40 62.53 45.43 7.10 
October 40.12 68.15 50.15 7.75 

November 30.90 54.38 41.93 6.49 

December 27.71 51.49 37.72 5.96 

 

In the cokriging analysis to be carried out, the value of 

a variable will be estimated using information from other 

variables. Two approaches are employed to examine the 

relationships between variables: trend visualization and 

Pearson's correlation coefficients. Fig. 3 visualizes the 

trends in the mean values of PM2.5, relative humidity, 

precipitation, NO2, and wind speed throughout the year, 

providing insights into their temporal relationships through 

parallel or contrasting patterns of movement. Meanwhile, 

the Pearson correlation coefficients, shown in Table IV, 

quantify the linear relationships between these variables. 

Fig. 3 shows trends from the mean of PM2.5 

concentrations values, relative humidity, rainfall, NO2, and 

wind speed throughout the year. Fig. 3 shows that PM2.5 and 

NO2 tend to increase from January to August and decrease 

from September to December. The lowest PM2.5 

concentrations occurred in February, while the highest value 

occurred in August. In contrast, the variables of relative 

humidity, rainfall, and wind speed tend to decrease from 

March to September and increase from October to February. 

The highest values of rainfall and relative humidity are 

achieved in February, while the lowest values are in 
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September. 

 
Fig. 3.  Mean Trend of The Variables 

 

This trend indicates an inverse relationship between 

PM2.5 and NO2 concentrations with meteorological variables 

such as rainfall, relative humidity, and wind speed. During 

the rainy season (January–February and October–

December), higher rainfall and relative humidity levels 

contribute to pollutant dispersion and removal, resulting in 

lower PM2.5 concentration. In contrast, during the dry season 

(March–September), reduced rainfall and lower relative 

humidity levels allow for pollutant accumulation, which is 

further exacerbated by lower wind speeds, limiting air 

circulation. 

Table IV below shows that there is a negative 

correlation between rainfall, relative humidity, and wind 

speed to PM2.5 concentration. When relative humidity, wind 

speed, and rainfall increase, PM2.5 concentrations tend to 

fall. In contrast, NO2 has a positive correlation with PM2.5. 

This means that PM2.5 concentrations will also increase as 

NO2 increases. 

 
TABLE IV 

PEARSON CORRELATION COEFFICIENT 

 PM2.5 NO2 Rainfall 
Relative 

Humidity 

Wind 

Speed 

PM2.5 1     

NO2 0.31 1    

Rainfall -0.58 -0.34 1   

Relative 
Humidity 

-0.13 -0.43 0.73 1  

Wind Speed -0.75 -0.19 0.54 0.04 1 

B. Spatiotemporal Semivariogram 

 Fig. 4 illustrates the empirical semivariogram alongside 

the theoretical semivariogram model. The empirical 

semivariogram was generated using training data 

comprising 23 location points over a 12-month period. The 

spatial component of the empirical semivariogram shows 

minimal variation in gamma values as spatial distance 

increases, indicating limited spatial variability within the 

observed range. Conversely, gamma values exhibit a clear

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 Fig. 4.  Empirical Semivariogram and Theoretical Semivariograms Model, where (a): Empirical Semivariogram; (b): Separable; (c): Product-Sum;  

(d): Metric; (e): Sum-Metric; (f): Simple Sum-Metric 
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increase as the time lag grows, reflecting greater variability 

over time. Interestingly, a decline in gamma values is 

observed at the largest time lag, suggesting potential 

smoothing effects or reduced temporal correlation at longer 

intervals. 

The empirical semivariogram is further modeled using 

various theoretical semivariograms. By combining three 

marginal semivariogram models (spherical, exponential, and 

Gaussian) for spatial, temporal, and joint (spatial) 

components, a total of 9 separable models, 9 product-sum 

models, 3 metric models, 27 sum-metric models, and 27 

simple sum-metric models were evaluated. Fig. 4 illustrates 

the spatiotemporal semivariogram shapes derived from the 

best-performing combination in each theoretical model 

category. This modeling process aims to determine which 

theoretical semivariogram most accurately captures the 

spatiotemporal variability patterns observed in the empirical 

semivariogram. The color gradient in each plot represents 

the semivariance (gamma) values, which describe the 

variability between data points as a function of spatial 

distance and time lag. In all models, lower semivariance 

values are represented by darker colors (blue), indicating a 

strong correlation between data points over shorter spatial 

and temporal distances. 
Table V summarizes the best combination of theoretical 

models based on the mean squared error (MSE) criterion, 

providing insight into the most suitable model for 

representing the data. The theoretical semivariogram with 

the lowest MSE indicates its ability to explain the variability 

pattern observed in the empirical semivariogram. Therefore, 

the theoretical semivariogram with the lowest MSE will be 

used to generate the gamma matrix in the cokriging 

prediction equation. 
 

TABLE V 
COMPARISONS OF MSE VALUES FOR EACH THEORETICAL 

SEMIVARIOGRAMS 

Model Spatial Temporal Joint MSE 

Separable Exp Exp - 465.59 

Product-Sum Gau Gau - 8,906,309 

Metric - - Gau 300.29 
Sum-Metric Gau Exp Sph 292.15 

Simple Sum-Metric Gau Gau Exp 538.85 

Notes: Exp is Exponential; Gau is Gaussian; Sph is Spherical 

 

Based on the results in Table V above, the theoretical 

model with the lowest MSE is the sum-metric model with an 

MSE of 292.15. In addition, it is also evident that the sum-

metric semivariogram (Fig. 4e) exhibits the pattern most 

similar to the empirical semivariogram (Fig. 4a). Thus, the 

sum-metric model will be used to generate the gamma 

matrix (Γ) for the subsequent calculation of the cokriging 

weight. 

A. Semivariogram Parameter Estimation 

Furthermore, fitting of the empirical semivariogram using 

the model will be carried out. This fitting process will 

produce semivariogram parameters for spatial, temporal, 

and joint (spatiotemporal) dimensions. Table VI displays the 

parameters of the semivariogram of the sum-metric model 

fitting results against the empirical semivariogram. 

The sill indicates the maximum variability that can be 

explained by a semivariogram. In the spatial dimension, 

when the distance between points reaches 30,762.69 m 

(spatial range), the variability that occurs is 13.76 (sill). This 

indicates that the spatial dependency between the data is still 

significant up to such a distance, while the distance greater 

than that no longer shows any dependency. 

 
TABLE VI 

SEMIVARIOGRAM PARAMETERS ESTIMATES 

Component Parameter Estimate 

Spatial 

Sill 13.76 

Range 30,762.69 m 

Nugget 0.00 

Temporal 
Sill 43.72 

Range 177.95 days 

Nugget 0.00 

Joint 

Sill 13.67 

Range 19,662.36 m 

Nugget 0.00 

 

Meanwhile, in the temporal dimension, when the time lag 

between observations reaches 177.95 days (temporal range), 

the sill is 43.72. This shows that the temporal relationship 

between the data up to a time interval of 6 months, while the 

time lag greater than that no longer shows a temporal 

relationship. A zero nugget value in a semivariogram 

indicates that the variability in the data is fully explained by 

the semivariogram model through its parameters, such as sill 

and range. This suggests that there is no unexplained 

variability or random noise at very short distances or time 

lags, and the data transitions smoothly without abrupt 

changes. 

B. Cross-variogram Parameter Estimation 

The fitting process is also applied to the cross-variogram 

between PM2.5 and predictor variables following the same 

steps as the semivariogram fitting. This process aims to 

estimate the cross-variogram parameters by minimizing the 

difference between empirical and theoretical values. The 

result is a continuous function that serves as the basis for 

generating cross-variogram values. 

1) Cross-variogram of PM2.5 and NO2 

In the cross-variogram fitting process for PM2.5 and NO2 

concentrations, the sum-metric model yielded the lowest 

mean squared error (MSE) compared to other models. In 

this fitting, the spatial marginal semivariogram function is 

represented by the Gaussian model, the temporal marginal 

function by the spherical model, and the joint component by 

the exponential function.  

 
TABLE VII 

ESTIMATION OF CROSS-VARIOGRAM PARAMETERS  

BETWEEN PM2.5 AND NO2 

Component Parameter Estimate 

Spatial 
Sill 13.76 

Range 30,762.69 m 

Nugget 0 

Temporal 

Sill 43.72 

Range 280.97 days 

Nugget 2.83 

Joint 

Sill 13.67 

Range 21,954.45 m 

Nugget 0.56 

 

The sum-metric model, with its specified arrangement of 

marginal functions, provides parameter estimates for the 

cross-variogram between PM2.5 and NO2 concentrations, as 

presented in Table VII. 
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Fig. 5 presents a comparison between the empirical cross-

variogram of PM2.5 and NO2 concentrations and the 

theoretical cross-variogram based on the sum-metric model. 

 

 
(a) 

 

 
(b) 

Fig. 5. Comparison of (a) the empirical cross-variogram between PM2.5 and 

NO2 and (b) the theoretical cross-variogram based on the sum-metric 

model. 

 

2) Cross-variogram of PM2.5 and Rainfall 

In the fitting process of the cross-variogram between 

PM2.5 concentrations and rainfall, the simple sum-metric 

model achieved the lowest mean squared error (MSE) 

compared to other models. 

This model employs a Gaussian function for the spatial 

component, a spherical function for the temporal 

component, and a Gaussian function for the joint 

component. 

The parameter estimation results indicate a spatial sill 

value of 914.19, a temporal sill of 22,763.12, and a joint sill 

of 6,105.81. Additionally, Fig. 6 shows that gamma reaches 

approximately 40,000, which is significantly higher than the 

sill values observed in the semivariogram and cross-

variogram of other variables. This discrepancy arises due to 

the substantially wider range of rainfall values compared to 

other variables. 

Although the cross-variogram exhibits extreme values, it 

does not affect the unbiased nature of PM2.5 concentrations 

estimation. The extreme values only influence the 

magnitude of the Lagrange multiplier, which does not 

contribute to cokriging estimation. Consequently, the 

cokriging estimation results remain unbiased despite the 

presence of extreme cross-variogram values. 

The simple sum-metric model provides parameter 

estimates for the cross-variogram between PM2.5 

concentrations and rainfall variables, as shown in Table 

VIII. 

TABLE VIII 

ESTIMATION OF CROSS-VARIOGRAM PARAMETERS  

BETWEEN PM2.5 AND RAINFALL 

Component Parameter Estimate 

Spatial 
Sill 914.19 

Range 15,879.99 m 

Temporal 
Sill 22,763.12 

Range 120.76 days 

Joint 

Sill 6,105.81 

Range 31,469.09 m 
Nugget 13.67 

 

Fig. 6 presents a comparison between the empirical cross-

variogram of PM2.5 concentrations and rainfall with the 

theoretical cross-variogram obtained from the simple sum-

metric model. 

 

 
(a) 

 

 
(b) 

Fig. 6. Comparison of (a) the empirical cross-variogram between PM2.5 and 

rainfall and (b) the theoretical cross-variogram based on the simple sum-
metric model. 

 

3) Cross-variogram of PM2.5 and Humidity 

The cross-variogram fitting results for PM2.5 

concentrations and humidity indicate that the metric model 

with a Gaussian function achieves the lowest mean squared 

error (MSE) compared to other models. The estimated 

semivariogram parameters for this model are presented in 

Table IX. 

 
TABLE IX 

ESTIMATION OF CROSS-VARIOGRAM PARAMETERS  

BETWEEN PM2.5 AND HUMIDITY 

Component Parameter Estimate 

Joint 

Sill 24.43 

Range 22,603.55 m 

Nugget 6.31 

 

Fig. 7 presents a comparison between the empirical cross-

variogram of PM2.5 concentration and humidity and the 

theoretical cross-variogram based on the metric model. 
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(a) 

 

 
(b) 

Fig. 7. Comparison of (a) the empirical cross-variogram between PM2.5 

concentrations and humidity and (b) the theoretical cross-variogram based 

on the metric model. 

 

4) Cross-variogram of PM2.5 and Wind Speed 

The cross-variogram fitting between PM2.5 concentration 

and wind speed identified the sum-metric model as the one 

achieving the lowest mean squared error (MSE) compared 

to other models. This model employs the Gaussian function 

for the spatial, temporal, and joint components. The 

estimated parameters for the cross-variogram between PM2.5 

concentration and wind speed are presented in Table X. 

 
TABLE X 

ESTIMATION OF CROSS-VARIOGRAM PARAMETERS  
BETWEEN PM2.5 AND WIND SPEED 

Component Parameter Estimate 

Spatial 

Sill 1 

Range 30,762.69 m 

Nugget 0 

Temporal 

Sill 1.88 

Range 341 days 

Nugget 0.22 

Joint 

Sill 1 

Range 26,843.34 m 
Nugget 0 

 

The parameter estimation of the cross-variogram for wind 

speed yields sill values for all three components. It is 

evident that these sill values are significantly lower than 

those observed in the semivariogram and cross-variogram of 

other variables. This difference is also illustrated in Figure 

8, where the gamma values range from 0 to approximately 

2.5. This occurs because the range of wind speed data is 

considerably smaller compared to other variables. 

Similar to the case of rainfall, the sill and gamma values in 

this cross-variogram do not affect the kriging weights or the 

estimation results of PM2.5 concentration. 

Fig. 8 presents a comparison between the empirical cross-

variogram of PM2.5 concentrations and wind speed and the 

theoretical cross-variogram based on the sum-metric model. 

 

 
(a) 

 

 
(b) 

Fig. 8. Comparison of (a) the empirical cross-variogram between PM2.5 
concentrations and wind speed and (b) the theoretical cross-variogram 

based on the sum-metric model. 

C. Comparison of Spatiotemporal Ordinary Kriging and 

Spatiotemporal Cokriging 

As a baseline comparison, we implement spatiotemporal 

(ST) ordinary kriging, which does not incorporate additional 

predictor information. This method relies solely on the 

spatial and temporal correlations of the primary variable 

without utilizing secondary data sources. By comparing 

these two approaches, we aim to highlight the potential 

advantages of incorporating auxiliary information in 

spatiotemporal modeling and assess the extent to which 

cokriging enhances prediction accuracy. 

To quantitatively evaluate the differences between these 

methods, Table XI presents a comparison of the Mean 

Absolute Percentage Error (MAPE) and Root Mean Squared 

Error (RMSE). 

 
TABLE XI 

COMPARISON OF ERROR ANALYSIS BETWEEN SPATIOTEMPORAL ORDINARY 

KRIGING AND SPATIOTEMPORAL COKRIGING 

Model RMSE MAPE 

ST Ordinary Kriging 9.63 18.31% 
ST Cokriging 0.38 0.66% 

 

The results presented in Table XI indicate a significant 

improvement in prediction accuracy when using 

spatiotemporal cokriging compared to spatiotemporal 

ordinary kriging. The RMSE for ordinary kriging is 9.63, 

whereas for cokriging, it is substantially lower at 0.38, 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2246-2257

 
______________________________________________________________________________________ 



 

demonstrating that cokriging yields predictions much closer 

to the actual values. Similarly, the MAPE for ordinary 

kriging is 18.31%, while for cokriging, it is only 0.66%, 

highlighting a substantial reduction in relative error. 

 

 
Fig. 9.  Residual distributions of (a) the spatiotemporal ordinary kriging 

model and (b) the spatiotemporal cokriging model compared to the normal 

distribution. 

 

In Fig. 9a, which represents the residuals from 

spatiotemporal ordinary kriging, substantial deviations from 

the reference line indicate non-normality in the residuals. 

Specifically, the presence of heavy tails at both ends 

suggests that the model struggles to capture extreme values, 

leading to skewed predictions and potential underestimation 

or overestimation in certain regions.  

In contrast, Fig. 9b, which illustrates the residuals from 

spatiotemporal cokriging, shows a much closer alignment 

with the reference line, particularly in the middle quantiles. 

The overall pattern suggests that cokriging produces 

residuals that are more normally distributed and less prone 

to extreme prediction errors. This improved normality 

implies a better model fit and greater predictive reliability, 

reinforcing the advantage of incorporating auxiliary 

variables in spatiotemporal interpolation. 

These findings indicate that integrating additional 

predictor variables in cokriging leads to a notable 

enhancement in model performance. Unlike ordinary 

kriging, which relies solely on the spatial and temporal 

correlations of the primary variable, cokriging utilizes 

auxiliary information, resulting in significantly improved 

accuracy. This demonstrates the advantage of leveraging 

secondary data sources in spatiotemporal modeling. The 

substantial reduction in error suggests that spatiotemporal 

cokriging is a more reliable method when relevant 

secondary variables are available, making it a preferred 

choice over ordinary kriging for applications requiring 

enhanced predictive accuracy. 

D. Prediction 

The spatiotemporal cokriging method was employed to 

estimate five variables: PM2.5 concentration, NO2 

concentration, relative humidity, rainfall, and wind speed. 

The estimation process utilized cokriging weights, which 

were derived (10) based on the Γ matrix. The Γ matrix was 

generated using the sum-metric semivariogram function 

with parameters specified in Table III. 

 

  

 
Fig. 10. Comparison of prediction maps at different resolutions: (a) 5 km, 

(b) 1 km, (c) 0.5 km. 

 

In spatiotemporal cokriging, resolution primarily 

influences the smoothness of the prediction map rather than 

the accuracy of the estimates. Fig. 10a shows the predicted 

PM2.5 concentrations at a coarse resolution of 5 km × 5 km, 

where the spatial pattern appears more fragmented. In 

contrast, Fig. 10c presents predictions at a finer resolution of 

0.5 km × 0.5 km, offering slightly more detail but without 

substantial differences compared to the 1 km × 1 km 

resolution in Fig. 10b.  

The 1 km × 1 km resolution provides a smoother 

representation of PM2.5 distribution compared to 5 km × 5 

km, while maintaining a level of detail comparable to the 

0.5 km × 0.5 km resolution. Therefore, 1 km × 1 km was 

selected as the optimal resolution to balance smoothness and 

computational efficiency. 

Using the same variogram model, PM2.5 concentrations 

were mapped to analyze their spatial distribution across 

Jakarta. Fig. 11 presents the predicted PM2.5 concentrations 

for 646 grids, each measuring 1 km × 1 km, regularly 

distributed across the DKI Jakarta region from January to 

December 2023. 

The grayscale gradient represents PM2.5 levels, where 

darker shades indicates lower concentrations (20–30 µg/m³), 

medium gray shades represents moderate concentrations 

(40–50 µg/m³), and lighter shades indicates high 

concentrations (above 50 µg/m³). The map reveals lower 

PM2.5 concentrations during the beginning of the year 

(January–April) and the end of the year (November–

December), coinciding with the rainy season. In contrast, 

higher PM2.5 concentrations are observed during the mid-

year period (May–October), corresponding to the dry 

season. 

The map also highlights regional differences in PM2.5 

concentrations. The northern and southern parts of Jakarta 

consistently exhibit higher PM2.5 levels compared to other 

areas, likely due to a combination of high transportation 

activity, industrial emissions, and population density. 

Additionally, parts of East Jakarta show elevated PM2.5 

concentrations during specific periods, reflecting localized 
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or temporal factors that contribute to air pollution in this 

region. 

 

 
Fig. 11. Prediction Map of Monthly PM2.5 Concentrations in Jakarta 

(2023) 

V. DISCUSSIONS 

This study aims to estimate PM2.5 concentrations in 

Jakarta using the spatiotemporal cokriging method, which 

integrates spatial and temporal dependencies in prediction 

calculations while incorporating rainfall, relative humidity, 

wind speed, and NO2 concentrations as additional variables. 

Predictions are made by accounting for the correlations 

between variables as well as spatial and temporal 

dependencies between locations. The weights assigned to 

each variable and location are calculated based on the 

spatiotemporal semivariogram and cross-variogram, which 

represent the variability structure and relationships across 

spatial and temporal dimensions. 

The empirical semivariogram reveals spatiotemporal 

variability in the sample data. As shown in Fig. 4a, the 

empirical semivariogram for PM2.5 concentrations in Jakarta 

throughout 2023 indicates that temporal variability 

dominates over spatial variability. Gamma values 

consistently increase from the lag of 1 to 9 months, followed 

by a decrease between lags 10 and 12 months. This decrease 

corresponds to seasonal patterns, where PM2.5 

concentrations from October to December exhibit 

similarities with January and February, contrasting with 

mid-year months such as June and July. 

During the semivariogram fitting process, the sum-metric 

model was identified as the best fit for the empirical 

semivariogram pattern, achieving a Mean Squared Error 

(MSE) of 292.15. This model integrates a Gaussian function 

for spatial variability, an exponential function for temporal 

variability, and a spherical function for the spatiotemporal 

dimension. The selection of these functions is justified by 

their compatibility with the observed variability 

characteristics in the data: the Gaussian function effectively 

captures gradual spatial changes, the exponential function 

reflects temporal fluctuations, and the spherical function 

describes linear changes over short spatiotemporal distances 

[16], [17], [18]. 

The sum-metric semivariogram model produced a gamma 

matrix that accurately reflects the data's variability structure, 

enabling the calculation of optimal cokriging weights. Using 

this model, the cokriging predictor achieved high predictive 

accuracy, with a Mean Absolute Percentage Error (MAPE) 

of 0.66% and a Root Mean Square Error (RMSE) of 0.38. 

These results are significantly superior to those obtained 

using spatiotemporal ordinary kriging, demonstrating that 

the spatiotemporal cokriging approach, incorporating 

additional variables, effectively captures the complex 

spatiotemporal dynamics of PM2.5 concentrations in Jakarta. 

Fig. 11 illustrates the estimated PM2.5 concentrations 

across Jakarta from January to December 2023. The spatial 

distribution shows lower PM2.5 levels at the beginning 

(January–April) and end (November–December) of the year, 

with significant increases during the dry season (May–

October). This pattern corresponds to meteorological 

factors, such as increased rainfall during the rainy season 

(late and early in the year), which dissolves and removes 

pollutants, and lower rainfall during the dry season, which 

limits air purification. Additionally, lower wind speeds 

during the dry season contribute to pollutant accumulation 

in localized areas. 

High PM2.5 concentrations are predominantly observed in 

North, Central, and parts of South Jakarta, influenced by 

various factors specific to each region. In North and Central 

Jakarta, the high population density, extensive industrial 

activities, and significant transportation emissions are the 

primary contributors to elevated PM2.5 levels. Fossil fuel 

combustion from motor vehicles and industrial processes 

also increases NO2 concentrations, compounding the air 

pollution in these areas. Meanwhile, high PM2.5 levels in 

South Jakarta are driven by both local and regional sources. 

The region’s proximity to Bogor and Depok, which 

experience substantial urbanization and transportation 

activities, facilitates the transport of pollutants into South 

Jakarta. This phenomenon is particularly evident during the 

dry season, when atmospheric conditions favor the 

dispersion of pollutants from neighboring areas. 

VI. CONCLUSION 

The findings of this study provide valuable insights into 

the distribution of PM2.5 across Jakarta, including regions 

without monitoring equipment. These results can enhance 

public awareness and encourage preventive measures to 

mitigate the health risks associated with PM2.5 exposure. For 

policymakers, the study offers a data-driven foundation for 

air quality management initiatives, such as expanding urban 

green spaces and implementing effective waste management 

policies to address industrial emissions in high-risk areas. 

The lack of green spaces in North, Central, and parts of 

South Jakarta exacerbates the accumulation of pollutants, as 

these areas lack natural mechanisms to absorb or mitigate air 

pollution. The interplay between meteorological factors and 

human activities underscores the necessity for a 

comprehensive air quality management strategy. Such a 

strategy should include controlling transportation emissions, 
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regulating industrial activities, and increasing the 

availability of green spaces in urban areas.  

Future research could focus on developing more flexible 

temporal semivariogram functions to account for seasonal 

patterns. Additionally, incorporating wind direction data 

could improve prediction accuracy, as pollutant distribution 

is not uniform across all directions but is influenced by wind 

patterns. Another critical area for improvement lies in 

addressing the issue of coarse spatial and temporal data 

granularity. If observation points are spaced too far apart, 

localized pollution sources or microclimate effects may not 

be captured. Similarly, if data is collected at long intervals, 

short-term fluctuations could remain undetected. Enhancing 

the spatial and temporal resolution of data collection would 

allow for a more accurate representation of micro-scale 

variability and improve the robustness of semivariogram 

modeling. 
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