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Abstract—The superior (Mann) iteration method has been
used in fractals and chaos. The study iterated the piecewise
logistic map in this research article via a superior iteration
method. The present study has analyzed the superior piecewise
logistic map through the time series plotting method, den-
sity distribution function, Lyapunov function, and bifurcation
diagram to testify that it gives better results than existing
chaotic maps. Parrondo’s paradox concept has also been used
to determine that chaos1 + chaos2 = order or order1 + order2
= chaos.

Index Terms—Piecewise Logistic Map, Time Series Plot,
Parrondo’s Paradox, Lyapunov Exponent, Alternate System,
Periodic Window Glitch, Bifurcation.

I. INTRODUCTION

The iterated logistic map is the foundation of chaos theory.
Controlling the chaotic situation in non-linear models has
been challenging. Parrondos’s paradox [1] suggested iterating
the two logistic maps alternatively, which gave the concept
of “chaos1 + chaos2 = order” (chaos control). Also, the idea
of order1 + order2 = chaos” or “chaos1 + order1 = chaos”
(chaos anti-control) was given [2].

Chaotic maps are used in many places, such as to generate
pseudo-random numbers [3], random bits [17], global search
optimization algorithms for swarm particles [5][6], and in
cryptosystems such as audio encryption [7], video encryption
[8], image encryption [9][10][11][12], text encryption [13],
etc. On the other hand, a piecewise logistic map (PLM), an
enhanced version of the logistic map has better cryptographic
properties like robustness, efficiency, higher entropy, and
higher security than other chaotic maps [14][18].

FAN Jiu-lun and ZHANG Xue-Feng [16] have generated
PLM-based sequences that contain randomness. Further, Ali
Kanso and Nejib Smaoui [17] also used PLM to generate
a binary key stream with an extended period length, better
statistical properties, and high linear complexity, which is
hard to predict.

Yong Wang et al. [18] presented a PLM-based pseudo-
random number generator (PRNG) with enhanced security
as compared to a logistic map. Dragan Lambic [14] analyzed
the security of PLM-based PRNG and proved that PRNG
is unsafe for use in cryptography. Due to the lack of
uniform distribution in PLM, Wang et al. [19] designed
Parameterized Coupled PLM that achieved the uniform
distribution and proposed PRNG. The proposed scheme has
multi-positive Lyapunov exponents, have higher entropy,
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and is more efficient.

To overcome the shortcomings of earlier approaches
specified over real numbers, Sota Eguchi et. al, [20]
investigates a pseudorandom number generator employing
a piecewise logistic map over integers. The range of
control parameters is increased by raising the number of
divisions m, which maintains output variability and improves
unpredictability. It is a good substitute for conventional
logistic maps, as demonstrated by numerical studies that
show enhanced performance in terms of Lyapunov exponent,
period, link length, and NIST test results.

Xiang et al. [21] implemented PLM to perform a chaotic
search with particle swarm optimization known as PW-
LCPSO. This proposed method is compared numerically with
the existing CPSO algorithm and is superior in robustness
and efficiency.

Jia and Wang [22] used PLM in place of the logistic map
in a Globally coupled neural network chaotic map (GCM) is
used to explore chaos control and dynamics mechanisms.
Feedback control controls the specified periodic orbit of
delay coupling or conventional coupling. Using this control-
ling technique, they have shown that the GCM network is
managed successfully.

The paper has implemented a superior iteration of the
PLM of the dynamical system with the control of Parrondo’s
paradox (a switching strategy) used to determine the desired
outcome. Our proposed work may be used in many places,
such as in chaotic cryptography (image encryption, text
encryption, audio encryption, etc.), pseudo-random number
generation, or the multi-scaled population in the superior
orbit.

The organization of the paper is as follows. Section II
has given some definitions of what is used in this article. In
section III, we have done some analysis to check the stability,
periodicity, and instability of SPLM and presented them
graphically. Section IV describes the exception’s existence
in SPLM. Section V contains the details about the density
probability distribution of SPLM. In Section VI, we have
presented the sensitivity of SPLM through the diagram of
parameterized Lyapunov exponents. Section VII shows the
paramterized bifurcation of SPLM. Section VIII provided
chaos control for the SPLM; Section IX presented the
findings of the NIST Test applied to the pseudo-random
number generated by the SPLM, and Section IX marked the
article’s conclusion.

II. PRELIMINARIES

Definition 2.1: Piecewise Logistic Map (PLM) [18]
The Piecewise logistic map is defined as (Equ.-1)
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The function Fc : f(xn, µ) = xn+1 is defined as:

xn+1 =



N2µ
(
xn − i−1

N

)(
i
N − xn

)
, for i−1

N < xn < i
N ,

(1−N)2µ
(
xn − i−1

N

)(
i
N − xn

)
, for i

N < xn < i+1
N ,

xn + 1
100N , for xn = 0, 1

N , 2
N , . . . , N−1

N ,

xn − 1
100N , for xn = 1.

(1)

Definition 2.2: Peano-Picard Iteration [23]
Let R be a non-empty subset of real numbers on a metric
space, and R : X → X . For a point x0 in X , the Picard
orbit (generally called the orbit) of f is the set of all iterates
of the point x0, that is:

O(f, x0) = {xn : xn = f(xn−1), n = 1, 2, 3, . . . }

The orbit of f at the initial point x0, O(f, x0), is the
sequence {fn(x0)}.

Definition 2.3: Superior (Mann) Iteration [24]
Let X be a linear space, T a convex subset of X , and let
X : T → T be a mapping and x1 ∈ C, arbitrary. Let A =
[ajn] be an infinite real matrix satisfying:
(A1) ajn ≥ 0 for all n, j and ajn = 0 for j > n;
(A2)

∑n
j=1 ajn = 1 for all n ≥ 1;

(A3) limn→∞ ajn = 0 for all j ≥ 1.
The sequence {xn}∞n=1 defined by

xn+1 = X(vn), where vn =
n∑

j=1

ajnxj ,

is called the Mann iterative process or, simply, the Mann
iteration.

Definition 2.4: Lyapunov Exponent [25, p. 171]
Lyapunov states that we may take two points close to each
other, like x0 and x0 + ϵ. If the system is chaotic, then one
would follow some trajectories. Still, the second point would
diverge exponentially from the first point, which means
both points would evolve in two different ways, and their
separation of trajectories will increase in a bounded phase,
as we may see in Fig. 1.

The distance between {x0, x0+ϵ} and {f(x0), f(x0+ϵ)}
is given by:

d(x0, x0 + ϵ) = d(f(x0), f(x0 + ϵ)).

The exponential increment in separation is based on several
iterations:

d(f(x0), f(x0 + ϵ)) = eλd(f(x0), f(x0 + ϵ)),

For the second iteration:

d(f2(x0), f
2(x0 + ϵ)) = e2λd(f(x0), f(x0 + ϵ)),

...
For the nth iteration:

d(fn(x0), f
n(x0 + ϵ)) = enλd(f(x0), f(x0 + ϵ)).

Fig. 1: Lyapunov exponent methodology

Image 1
We may write it as:

λ =
1

n
ln

(
d(fn(x0), f(x0 + ϵ))

ϵ

)

Suppose the Lyapunov values are favorable for any system.
In that case, a chaotic system is considered. If any system
contains a maximal Lyapunov exponent, then it is believed
it as the map system is better sensitive to dependence than
a chaotic map.

Definition 2.5: Alternate System
Let us consider two different discrete dynamical systems D1

and D2 such as,

x0 x1 x2 x3, . . .
Dk0 Dk1 Dk2

Where x0 denotes the initial condition value of the phys-
ical system, and k is a random or deterministic law that
assigns values as 1 or 2 to each number of the sequences
{0, 1, 2, 3, . . . }, and {x1, x2, x3, . . . } are the results or values
of the variable x [2]. An alternate combination of the dynam-
ics D1 and D2 are chaotic, but the one that results from a
periodic change D1D2D1D2D1D2 = (D1D2) is ordered in
a clear sense and is depicted as “Chaos1 + Chaos2 = Order”
[2]. Originally, the alternate system is called Parrondo’s
Paradox [1]. We can use the above sequence in the following
method:

Dk1k2
:

{
x2
n + k1, if n is odd,

x2
n + k2, if n is even.

Where k is deterministic dynamical laws, and x is a real
number.
Definition 2.6: Probability Density Function [26, p. 256]
Let f(x) be a probability function in the interval [a, b] then the
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probability that the variate value x to lie within the interval
[a, b] is given by

P (a ≤ x ≤ b) =

∫ b

a

f(x) dx

The function f(x) has some important properties such as:
1) f(x) ≥ 0 for all x.
2) The integral of the probability density function over its

entire domain equals 1:∫ b

a

f(x) dx = 1.

3) For any value of x, the PDF would be 0 for a
continuous random variable, i.e., P (X = x) = 0.

III. PROPOSED WORK

We have proposed The Piecewise Logistic Map with a
superior iteration method is defined as (Equ.-2).

Superior (Mann) iteration method (def. 2.3) has been used
to transform the mathematical equation of PLM. Following
this transformation, we applied alternate (def. 3.2) switching
to the resulting equation.

IV. EXPERIMENTAL RESULTS

This section is divided into two parts. The first part
presents the analysis of the stability, periodic, and instability
behavior of SPLM by using a time series plot. The second
part contains the exception in the behavior of SPLM for
various numbers of segments (N) with parameters like β and
µ. The piecewise logistic map (PLM), which is derived by
iterating through the superior orbit (s.o.) using the Mann
iteration method, is known as the superior piecewise logistic
map (SPLM).

A. Behavior Analysis of SPLM via Time Series Plot

While chaotic maps are unpredictable due to sensitivity to
initial conditions, mathematical techniques like nonlinear sta-
bility analysis allows studying their stability and periodicity
by numerically simulating their behavior across parameters.
The piecewise logistic map’s nonlinear discontinuous form
enables applying nonlinear analysis to examine its stability.
The Time series of nonlinearity has also been explained by
Mujiarto et. al. [27].
From Table I, we can see that ∀x ∈ [0, 1] and N = 4

TABLE I: Behavior of PLM in S.O. at N = 4

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.77 0.77 < µ ≤ 0.98 0.98 < µ ≤ 2.34
0.8 0.0 < µ ≤ 0.84 0.84 < µ ≤ 1.05 1.05 < µ ≤ 2.55
0.7 0.0 < µ ≤ 0.91 0.91 < µ ≤ 1.17 1.17 < µ ≤ 2.86
0.6 0.0 < µ ≤ 1.04 1.04 < µ ≤ 1.31 1.31 < µ ≤ 3.26
0.5 0.0 < µ ≤ 1.20 1.20 < µ ≤ 1.47 1.47 < µ ≤ 3.82
0.4 0.0 < µ ≤ 1.43 1.43 < µ ≤ 1.66 1.66 < µ ≤ 4.67
0.3 0.0 < µ ≤ 1.80 1.80 < µ ≤ 2.02 2.02 < µ ≤ 6.08
0.2 0.0 < µ ≤ 2.59 2.59 < µ ≤ 2.81 2.81 < µ ≤ 8.91
0.1 0.0 < µ ≤ 4.84 4.84 < µ ≤ 5.29 5.29 < µ ≤ 17.39

at β = 0.9; if we put 0 ≤ µ ≤ 0.77, then the trajectory
of SPLM converges to a fixed point, and this convergent
behavior is represented by (Fig. 2). After increasing the µ

value from 1.21 to 1.47 (i.e., 1.20 < µ ≤ 1.47) for β = 0.5,
its behavior changes from convergent to periodic (see Fig. 3).
Similarly, if we increase the µ value from 5.30 to 17.39 for
β = 0.1, its behavior changes from periodicity to instability,
as illustrated in Fig. 4.
From Table IV, we can see that ∀x ∈ [0, 1] and N = 5

TABLE II: Behavior of PLM in S.O. at N = 5

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.60 0.60 < µ ≤ 0.77 0.77 < µ ≤ 1.10
0.8 0.0 < µ ≤ 0.66 0.66 < µ ≤ 0.85 0.85 < µ ≤ 1.21
0.7 0.0 < µ ≤ 0.74 0.74 < µ ≤ 0.93 0.93 < µ ≤ 1.37
0.6 0.0 < µ ≤ 0.83 0.83 < µ ≤ 1.06 1.06 < µ ≤ 1.60
0.5 0.0 < µ ≤ 0.95 0.95 < µ ≤ 1.21 1.21 < µ ≤ 1.97
0.4 0.0 < µ ≤ 1.10 1.10 < µ ≤ 1.41 1.41 < µ ≤ 2.58
0.3 0.0 < µ ≤ 1.46 1.46 < µ ≤ 1.68 1.68 < µ ≤ 3.53
0.2 0.0 < µ ≤ 2.10 2.10 < µ ≤ 2.26 2.26 < µ ≤ 5.51
0.1 0.0 < µ ≤ 4.02 4.02 < µ ≤ 4.23 4.23 < µ ≤ 10.76

at β = 0.9, if we put 0 ≤ µ ≤ 0.62, then the trajectory
of SPLM converges to a fixed. After decreasing the β value
from 0.9 to 0.5 and increasing the µ value from 0.95 till
1.24 (i.e., 0.95 ≤ µ ≤ 1.24), then its behavior is three-step
periodic. Again, if decreasing the β value from 0.5 to 0.1 and
increasing the µ value from 2.24 to 10.76, then its behavior
is unstable.
From Table III, we can see that ∀x ∈ [0, 1] and N = 10 at

TABLE III: Behavior of PLM in S.O. at N = 10

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.30 0.30 < µ ≤ 0.38 0.38 < µ ≤ 0.92
0.8 0.0 < µ ≤ 0.32 0.32 < µ ≤ 0.42 0.42 < µ ≤ 1.03
0.7 0.0 < µ ≤ 0.37 0.37 < µ ≤ 0.49 0.49 < µ ≤ 1.14
0.6 0.0 < µ ≤ 0.41 0.41 < µ ≤ 0.52 0.52 < µ ≤ 1.34
0.5 0.0 < µ ≤ 0.47 0.47 < µ ≤ 0.59 0.59 < µ ≤ 1.53
0.4 0.0 < µ ≤ 0.57 0.57 < µ ≤ 0.66 0.66 < µ ≤ 1.86
0.3 0.0 < µ ≤ 0.74 0.74 < µ ≤ 0.80 0.80 < µ ≤ 2.43
0.2 0.0 < µ ≤ 1.06 1.06 < µ ≤ 1.13 1.13 < µ ≤ 3.56
0.1 0.0 < µ ≤ 1.98 1.98 < µ ≤ 2.12 2.12 < µ ≤ 6.96

β = 0.9, the convergent range exists between the range of µ
is 0 ≤ µ ≤ 0.31 (Fig. 8), periodic behavior (Fig. 9) range of
µ is 0.47 ≤ µ ≤ 0.58 with the β value is 0.5, and unstable
range is 0.46 ≤ µ ≤ 0.48 with β value is 0.3 (Fig. 10).

By following the explanation of Table I, II, and II, it can
be said that for Table IV, i.e., ∀x ∈ [0, 1] and N = 16 at
β = 0.9, if we put 0 ≤ µ ≤ 0.19, then the SPLM represents
the convergent behavior which is characterized by (Fig. 5).
It shows periodic behavior of N = 16 at β = 0.5 if µ
value is from 0.30 to 0.36 (i.e., 0.30 ≤ µ ≤ 0.36), which
is represented by (Fig. 6). Again, if we increase the µ value
from 1.35 to 4.35, then its behavior changes from periodicity
to instability, which can be seen in (Fig. 7).
From Table III, we may say that ∀x ∈ [0, 1] and N = 32 at
β = 0.9; if we put 0 < µ ≤ 0.09, then the SPLM represents
the convergent behavior (Fig. 8). It shows periodic behavior
at N = 32 and β = 0.5 if the µ value is from 0.16 till 0.18
(i.e., 0.15 < µ ≤ 0.18 (Fig. 9)). Again, if we increase the µ
value from 0.68 to 2.17 at β = 0.1, then its behavior changes
from periodicity to instability (Fig. 10).

From Table IV, it is visible that for all x ∈ [0, 1] and
N = 64 at β = 0.9, the convergent range exists between
the range of 0 < µ ≤ 0.04 (see Fig. 11), periodic behavior
(see Fig. 12) occurs in the range of 0.07 ≤ µ ≤ 0.09 with

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2258-2268

 
______________________________________________________________________________________ 



Fc : f(xn, µ) = xn+1 =



N2µβ(xn − i−1
N )( i

N − xn) + (1− β)(xn − i−1
N ), for i−1

N < xn < i
N

1−N2µβ(xn − i−1
N )( i

N − xn) + (1− β)(xn − i−1
N ), for i

N < xn < i+1
N

(xn + 1
100N ) + (1− β)xn, for xn = 0, 1

N , 2
N , 3

N , ..., N−1
N

(xn − 1
100N )− (1− β)xn, for xn = 1

(2)

Fig. 2: Convergent time series plot for N = 4, β = 0.9, and
µ = 0.77

Fig. 3: Periodic time series plot for N = 4, β = 0.5, and µ = 1.47

Fig. 4: Unstable time series plot for N = 4, β = 0.1, and
µ = 17.39

β = 0.5, and the unstable range is 0.36 ≤ µ ≤ 1.08 with
β = 0.1. Fig. 13 is the graphical representation of erratic
behavior.

B. Exception in the Behavior of SPLM

The current study has used the N (number of segments)
values as 4, 16, 32, and 64 iterated using the superior iteration

TABLE IV: Behavior of PLM in S.O. at N = 16

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.19 0.19 < µ ≤ 0.24 0.24 < µ ≤ 0.81
0.8 0.0 < µ ≤ 0.21 0.21 < µ ≤ 0.26 0.26 < µ ≤ 0.63
0.7 0.0 < µ ≤ 0.23 0.23 < µ ≤ 0.29 0.29 < µ ≤ 0.71
0.6 0.0 < µ ≤ 0.26 0.26 < µ ≤ 0.32 0.32 < µ ≤ 0.81
0.5 0.0 < µ ≤ 0.29 0.29 < µ ≤ 0.33 0.36 < µ ≤ 0.95
0.4 0.0 < µ ≤ 0.36 0.36 < µ ≤ 0.41 0.41 < µ ≤ 1.16
0.3 0.0 < µ ≤ 0.46 0.46 < µ ≤ 0.50 0.50 < µ ≤ 1.52
0.2 0.0 < µ ≤ 0.64 0.64 < µ ≤ 0.70 0.70 < µ ≤ 2.23
0.1 0.0 < µ ≤ 1.26 1.26 < µ ≤ 1.34 1.34 < µ ≤ 4.35

Fig. 5: Convergent time series plot for N = 16, β = 0.9, and
µ = 0.19

Fig. 6: Periodic time series plot for N = 16, β = 0.5, and
µ = 0.33

TABLE V: Behavior of PLM in S.O. at N = 32

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.09 0.09 < µ ≤ 0.13 0.13 < µ ≤ 0.39
0.8 0.0 < µ ≤ 0.10 0.10 < µ ≤ 0.13 0.13 < µ ≤ 0.31
0.7 0.0 < µ ≤ 0.11 0.11 < µ ≤ 0.14 0.14 < µ ≤ 0.35
0.6 0.0 < µ ≤ 0.12 0.12 < µ ≤ 0.16 0.16 < µ ≤ 0.40
0.5 0.0 < µ ≤ 0.15 0.15 < µ ≤ 0.18 0.18 < µ ≤ 0.47
0.4 0.0 < µ ≤ 0.18 0.18 < µ ≤ 0.20 0.20 < µ ≤ 0.58
0.3 0.0 < µ ≤ 0.23 0.23 < µ ≤ 0.25 0.25 < µ ≤ 0.76
0.2 0.0 < µ ≤ 0.33 0.33 < µ ≤ 0.35 0.35 < µ ≤ 1.11
0.1 0.0 < µ ≤ 0.63 0.63 < µ ≤ 0.67 0.67 < µ ≤ 2.17
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Fig. 7: Unstable time series plot for N = 16, β = 0.1, and
µ = 4.35

Fig. 8: Convergent time series plot for N = 32, β = 0.9, and
µ = 0.09

Fig. 9: Periodic time series plot for N = 32, β = 0.5, and
µ = 0.18

Fig. 10: Unstable time series plot for N = 32, β = 0.1, and
µ = 2.17

TABLE VI: Behavior of PLM in S.O. at N = 64

β
Convergent

behavior for µ
Periodic

behavior for µ
Unstable

behavior for µ
0.9 0.0 < µ ≤ 0.04 0.04 < µ ≤ 0.06 0.06 < µ ≤ 0.24
0.8 0.0 < µ ≤ 0.05 µ = 0.06 0.06 < µ ≤ 0.15
0.7 0.0 < µ ≤ 0.05 0.05 < µ ≤ 0.07 0.07 < µ ≤ 0.17
0.6 0.0 < µ ≤ 0.06 0.06 < µ ≤ 0.08 0.08 < µ ≤ 0.20
0.5 0.0 < µ ≤ 0.07 0.07 < µ ≤ 0.09 0.09 < µ ≤ 0.23
0.4 0.0 < µ ≤ 0.09 µ = 0.10 0.10 < µ ≤ 0.29
0.3 0.0 < µ ≤ 0.11 µ = 0.12 0.12 < µ ≤ 0.38
0.2 0.06 < µ ≤ 0.16 µ = 0.17 0.17 < µ ≤ 0.55
0.1 0.06 < µ ≤ 0.31 0.31 < µ ≤ 0.36 0.36 < µ ≤ 1.08

Fig. 11: Convergent time series plot for N = 64, β = 0.9, and
µ = 0.04

Fig. 12: Periodic time series plot for N = 64, β = 0.5, and
µ = 0.09

Fig. 13: Unstable time series plot for N = 64, β = 0.1, and
µ = 1.08
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method for all N values and x ∈ [0, 1] at 0 < β ≤ 0.9. In
this entire calculation, many exceptions stand out (Table VII);
for example, when N = 4, β = 0.9, the instability range is
from 0.99 to 2.34, but the µ values like 1.04, 1.10, 1.14, 1.20
to 1.24, 1.74 to 1.85, and 2.24 exhibiting periodic behavior,
and 1.58 to 1.73 exhibiting convergent behavior. For N = 4,
β = 0.8, the instability range is from 1.08 to 2.55, but among
this range, the µ values like 1.30 to 1.34, 1.44, 1.52, 1.91
to 2.05, 2.10, 2.32, and 2.46 represent the periodic behavior,
and 1.72 to 1.90 represent convergent behavior. Similarly,
if we set N = 16, 32, and 64 for all β ∈ [0.1, 0.9] and
x ∈ [0, 1], then convergent and periodic behavior falls at
many points among the range of instability of µ.

TABLE VII: Exception in behavior of SPLM with all of segments

S. No N = 4 N = 16 N = 32 N = 64
1 0.308 0.221 0.111 0.227
2 0.883 0.978 0.491 0.210
3 2.030 0.642 0.320 0.185
4 3.922 0.439 0.220 0.119
5 0.176 0.348 0.138
6 2.561 0.273 0.119
7 1.750 0.234 0.101
8 0.333 0.199 0.090
9 0.122 0.178
10 0.159
11 0.142
12 0.132
13 0.123
14 0.109
15 0.103
16 0.094

Total
Gaps 9 16 8 3

V. THE DENSITY PROBABILITY DISTRIBUTION
OF SPLM

There are three different parameters in SPLM, i.e., N is
used for several segments in the SPLM map, β (beta) is used
for superior iteration, and µ (mu) is used for the growth rate.
Sometimes, this µ is denoted as r, known as biotic potential.
The probability distribution (you may see Def. 2.6) illustrates
equal results in the given range, and here, the uniformity of
the state value of SPLM will be evaluated with the help of the
above three different parameters (N, β, µ). If β = 1 is used
in Equ. 1, the equation will work like a piecewise logistic
map, and the iteration will become Picard. Still, we should
use superior iteration on this piecewise logistic map for our
objective. So, the above method has been used to analyze
the density probability distribution in SPLM.

When the Picard iteration method is used, its behavior
shows the uniform distribution for any N value; please refer
to [24] for more details. Let us consider Table III for N = 32
at β = 0.1 and µ = 39.45, and Table IV for N = 64 at β =
0.1 and µ = 39.73, which also show uniform distribution (see
Fig. 14, Fig. 15). The SPLM is iterated with N = 32 and
N = 64 over 100,000 iterations, with the interval [0, 1] being
partitioned into 1250 subintervals. The density distribution
is created by calculating the likelihood that state values will
occur within each sub-interval. The distribution that results
is consistent over a range of N values and closely matches
the traditional piecewise logistic map.

Fig. 14: SPLM density probability distribution at N = 32,
β = 0.1, and µ = 39.45

Fig. 15: SPLM density probability distribution at N = 64,
β = 0.1, and µ = 39.73

VI. LYAPUNOV EXPONENTS PARAMETERIZED
DIAGRAM OF SPLM

There are two ways to characterize chaotic orbits and
non-chaotic orbits: 1) (a) Box counting direction, (b)
correlation dimension, and 2) Lyapunov exponent. The
box-counting direction and correlation dimension are used
to quantify how distributed the points of the orbits are;
they do not quantify precisely the sensitive dependence
on the initial condition, and this quantification is used in
both continuous time dynamical systems and discrete-time
dynamical systems for more details [28][29].

When we keep N = 4 and β = 0.1 (Table I), the
logarithmic transformation of the Lyapunov exponent
increased to 20.0µ (Fig. 16). It attains state values ranging
from 0 to 0.68, demonstrating sensitivity to initial conditions;
yet, its results also reveal a mixture of stable (trending
negative), neutral (values at 0), and chaotic (unpredictable)
states.

After increasing the value of N from 4 to 5 at β = 0.1
(Table II), the logarithmic transformation reached its highest
value of 1.11 with µ = 36.32, and the intensity of the
chaotic numbers increased compared to N = 4 (Fig. 17).
Similarly, when the value of N was further increased from 5
to 10 at β = 0.1 (Table III), the logarithmic transformation
improved to 2.04, and the intensity of chaotic numbers
increased compared to N = 5 (Fig. 18).
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Fig. 16: Lyapunov exponent for N = 4, β = 0.1, and µ = 20

Fig. 17: Lyapunov exponent for N = 5, β = 0.1, and µ = 36.32

When we increase the N value from 10 to N = 16 at
β = 0.1 (Table IV), the logarithmic transformation of the
Lyapunov exponent increased from 0.68 to 2.84 (Fig. 17)
and its sensitivity to initial conditions has increased but with
the mixture of less stable, less neutral, and highly chaotic
states. The same thing happened as the intensity increased.
The logarithmic transformation remains the same when
taking N = 32 for β = 0.1 (Table V). Here, the state value
increased from 2.84 to more than 3.84 (Fig. 18), and the
intensity of the chaotic number series increased compared
to all previous segments (N = 4, and 16).

When N = 64 and β = 0.1 (Table VI), the logarithmic
transformation goes up to 39.78 µ by containing the property
of sensitivity to initial conditions with higher sensitivity.
Here, the state value increased from 3.84 to 4.57 (Fig.
19). Intensity was achieved at its highest (for comparative
analysis, you may refer to [30][31][32], including all the
values of the tables.

VII. PARAMETERIZED TIME SERIES
PLOT-BASED BIFURCATION DIAGRAM OF SPLM

In the bifurcation diagram of the PLM with N and β
values, simulations has been performed. With the help of the
given tables, it is known that the logarithmic transformation
limit r varies by increasing N values and decreasing β
values. Bifurcation diagrams based on different N and β
parameters have been provided. The common problem in all
basic maps is the periodic window glitch, which presents
the exception for the range of chaotic values.

Fig. 18: Lyapunov exponent for N = 10, β = 0.1, and µ = 38.25

Fig. 19: Lyapunov exponent for N = 16, β = 0.1, and µ = 38.93

Fig. 20: Lyapunov exponent for N = 32, β = 0.1, and µ = 39.52

Fig. 21: Lyapunov exponent for N = 64, β = 0.1, and µ = 39.82

The PLM removed this problem after increasing the N
values. However, the logarithmic transformation value is
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still as it is in the logistic map (for more instances), i.e.,
µ = 4 [35]. But when we applied superior iteration on this
PLM, the logarithmic transformation increased till more or
less µ = 40. It is found that as the number of segments (N)
and decrease the values of β, the chaotic limit increases,
and the convergence limit decreases. Possible long-term
state values of the PLM are depicted on the vertical axis,
with control parameters on the horizontal axis.

PLM, an enhanced version of the logistic map, exhibits
bifurcation patterns similar to the logistic map, specifically,
flip (periodic-doubling) based bifurcation [33]. A chaotic
regime occurs when bifurcation cascades due to an
increment of control parameters. After applying the superior
iteration on PLM, its logarithmic transformation increases.
Whenever we increase the N value and decrease the β
value, its convergent area decreases, and the chaotic region
increments. This superior iteration method not only increases
the chaotic region but also removes the earlier window
glitch in the logistics map and provides one of the best
chaotic maps, which contains the highest chaotic range.

When we consider N = 4 and β = 0.1 in the SPLM
function defined in (def. 3.1), then the range of its logarithmic
transformation goes up to 35.35 µ, and we have a count that
there are nine window glitches in total (Fig. 24) which are
represented as a numeric form in the upper side of images.
After incrementing the N value from 4 to 16, 32, and then
64, their transformation ranges are 38.86 (Fig. 25), 39.43
(Fig. 26), and 39.72 (Fig. 27), respectively. There are 9, 16,
8, and 4 window glitches. We can see that at N = 64, the
logarithmic transformation range will be approximately 40 µ
(Fig. 27). Still, if we talk about the pure chaotic range, which
has the highest intensity of chaotic values, it is from 20 µ
to 39.72 (Fig. 24). The length of all these window glitches
is shown in Table V.

VIII. ALTERNATE SUPERIOR ORBIT WITH
DIFFERENT µ

The alternate system [1] represents a variant of Parrondo’s
paradox, also known as the switching strategy. In Parrondo’s
paradox, combining two distinct complex systems may yield
a more straightforward system, such as chaos1 + chaos2,
resulting in order, or two simple systems combining to form a
complex system, like Order1 + Order2, leading to chaos. We
applied this methodology to SPLM, utilizing two constants,
µ, and β, and iterating through the process.

Found order values in the periodic form by taking the two
chaotic values. Fig. 20 shows that the system converts to the
periodic form when we take two different µ from the chaotic
range and alternately iterate µ1 = 12.5056 and µ2 = 17.3900
at N = 4, β = 0.1. Similarly, when we set N = 16, 32,
and 64 with [3.9960, 4.3500] µ (Fig. 21), [1.5994, 2.4100] µ
(Fig. 22) and [0.3770, 1.1200] µ (Fig. 23) represent periodic
convergent.

IX. NIST (RANDOMNESS) TEST

Statistical randomness is a fundamental requirement
for various applications, especially in cryptography and
simulation. The NIST SP 800-22 test suite [19][14] is widely

Fig. 22: SPLM alternate time series plot for N = 4, β = 0.1,
µ1 = 12.5056, and µ2 = 17.3900

Fig. 23: SPLM alternate time series plot for N = 16, β = 0.1,
µ1 = 3.9960, and µ2 = 4.3500

Fig. 24: SPLM alternate time series plot for N = 32, β = 0.1,
µ1 = 1.5994, and µ2 = 2.4100

regarded as a standard tool for assessing the randomness
of binary sequences. This test suite includes 15 distinct
statistical tests of which we have included only 13 that
designed to detect deviations from random behavior. The
results of these tests help determine whether a sequence
exhibits the properties of randomness.

Although the NIST SP 800-22 test suite is a robust tool for
randomness evaluation[34], it does not guarantee absolute
statistical strength. New tests may reveal weaknesses in
the generator under examination. Therefore, comprehensive
evaluation using multiple statistical approaches remains
crucial for validating randomness.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2258-2268

 
______________________________________________________________________________________ 



Fig. 25: SPLM alternate time series plot for N = 64, β = 0.1,
µ1 = 0.3770, and µ2 = 1.2000

Fig. 26: SPLM bifurcation for N = 4, β = 0.1, and µ = 35.35

Fig. 27: SPLM bifurcation for N = 16, β = 0.1, and µ = 38.86

Fig. 28: SPLM bifurcation for N = 32, β = 0.1, and µ = 39.43

The results of the NIST test (Table VIII) evaluation
highlight the strengths and weaknesses of the random

Fig. 29: SPLM bifurcation for N = 64, β = 0.1, and µ = 39.72

TABLE VIII: Results of NIST SP 800-22 Test Suite

Test Name Proportion P-Value Result
Frequency 10/10 0.534146 Pass
BlockFrequency 10/10 0.911413 Pass
CumulativeSums 10/10 0.534146 Pass
Runs 10/10 0.213309 Pass
LongestRun 10/10 0.350485 Pass
Rank 10/10 0.122325 Pass
FFT 10/10 0.350485 Pass
NonOverlappingTemplate 10/10 0.911413 Pass
Universal 10/10 0.000000 Fail
ApproximateEntropy 3/10 0.000000 Fail
Serial 10/10 0.911413 Pass
Serial 10/10 0.122325 Pass
LinearComplexity 10/10 0.739918 Pass

number generator through the chaotic maps [35]. Out of 13
tests, the system successfully passed 11, achieving perfect
10/10 proportions and maintaining p-values above 0.01.
Notable strengths were observed in the Frequency, Block
Frequency, Runs, and Linear Complexity tests, which reflect
the generator’s capability to produce sequences with solid
fundamental randomness.

Despite these positive outcomes, the generator failed
two critical tests: the Universal test and the Approximate
Entropy test. Both tests yielded p-values of 0.000000,
with the Approximate Entropy test showing a particularly
low proportion of 3/10. These results indicate significant
deficiencies in the sequence’s entropy, raising concerns
about potential predictability.

The Serial test was conducted twice and passed consis-
tently, underscoring robust sequential randomness. While
most of the tests displayed high p-values ranging between
0.122325 and 0.911413, the two failed tests reveal vul-
nerabilities that might render the generator unsuitable for
cryptographic uses without addressing these shortcomings.

X. IMAGE ENCRYPTION WITH THE PROPOSED SPLM

We successfully implemented image encryption by utiliz-
ing our proposed SPLM (as detailed in Algorithm 1) on four
standard images sourced from the SIPI database (refer to
Table IX for more information). The results of the encryption
are presented in Figures 30-33, which illustrate both the orig-
inal and encrypted versions of the images. The procedures for
encryption and decryption are comprehensively outlined in
Algorithms 2-4, providing a clear understanding of the steps
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(a) Original image (b) Encrypted image

Fig. 30: Original and encrypted images of peppers

(a) Original image (b) Encrypted image

Fig. 31: Original and encrypted images of female

(a) Original image (b) Encrypted image

Fig. 32: Original and encrypted images of Mandrill

(a) Original image (b) Encrypted image

Fig. 33: Original and encrypted images of house

involved in these processes. When compared to conventional
encryption methods, the SPLM technique showcases notable
advancements in terms of security, offering enhanced protec-
tion for image data.

TABLE IX: Table of Image Data

Name of Image Dimension Database
Peppers.tiff 512*512 SIPI
Female.tiff 256*256 SIPI
Mandrill.tiff (a.k.a. Baboon) 512*512 SIPI
House.tiff 512*512 SIPI

Algorithm 1 Superior Piecewise Logistic Map (SPLM)
Require: x, N , µ, β
Ensure: Updated x

1: if x ∈ {i/N | i = 0, 1, . . . , N} then
2: if x == 0 or x == 1 then
3: return x± (1/100N) + (1− β)x
4: else
5: return x+ (1/100N) + (1− β)x
6: end if
7: end if
8: for i = 0 to N − 1 do
9: lower bound← i/N

10: upper bound← (i+ 1)/N
11: if lower bound < x < upper bound then
12: if i%2 == 0 then
13: return N2µβ(x −

lower bound)(upper bound − x) + (1 −
β)(x− lower bound)

14: else
15: return 1 − N2µβ(x −

lower bound)(upper bound − x) + (1 −
β)(x− lower bound)

16: end if
17: end if
18: end for
19: return x =0

Algorithm 2 Create Key

Require: width, height, seed, channels
Ensure: Key matrix

1: Initialize parameters: N ← 512, µ← 38.82, β ← 0.1
2: Initialize array x of size width× height× channels
3: x[0]← seed
4: for i = 1 to width× height× channels− 1 do
5: x[i]← SPLM(x[i− 1], N, µ, β)
6: end for
7: return ((x−min(x))× 256/(max(x)−min(x))) =0

Algorithm 3 Create Permutation

Require: length, seed
Ensure: Permutation sequence

1: Initialize parameters: N ← 512, µ← 38.82, β ← 0.1
2: Initialize array x of size length
3: x[0]← seed
4: for i = 1 to length− 1 do
5: x[i]← SPLM(x[i− 1], N, µ, β)
6: end for
7: return argsort(x) =0

Algorithm 4 Encrypt Image

Require: image path, seed
Ensure: Encrypted image, permutation, key

1: Load image from image path
2: Get height, width, channels of image
3: key ← Create Key(width, height, seed, channels)
4: permutation← Create Permutation(height, seed)
5: Apply permutation to rows of image
6: encrypted image← image⊕ key
7: return encrypted image, permutation, key =0
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Algorithm 5 Decrypt Image

Require: encrypted image, permutation, key
Ensure: Decrypted image

1: Compute decrypted image← encrypted image⊕key
2: Compute inverse permutation ←

argsort(permutation)
3: Apply inverse permutation to rows of

decrypted image
4: return decrypted image =0

XI. CONCLUSION

The alternate system [2] represents a variant of Parrondo’s
paradox, also known as the switching strategy. In Parrondo’s
paradox, combining two distinct complex systems may yield
a more straightforward system, such as chaos1 + chaos2,
resulting in order, or two simple systems combining to form
a complex system, like order1 + order2, leading to chaos. We
applied this methodology to SPLM, utilizing two constants,
µ, and β, and iterating through the process.
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