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Abstract—This research presents a continuous mathematical
model, called PLSCQ, aimed at simulating the behavior of
fast-food consumers influenced by public and private addiction
treatment centers. The analysis focuses on the model’s key
features, including the basic reproduction number R0, which
assesses the potential spread of fast-food addiction within a
population. A sensitivity analysis highlights the parameters with
the most significant impact on R0. Stability analysis shows that
the system is asymptotically stable, both locally and globally, at
the consumption-free equilibrium E0 when R0 ≤ 1, indicating
controlled consumption levels. Conversely, when R0 > 1, a
new equilibrium E∗ with ongoing consumption emerges, where
the system remains asymptotically stable. This model provides
valuable insights into the influence of addiction treatment
centers on fast-food consumption dynamics and identifies key
factors for effective addiction management.

Index Terms—Mathematical Model, Fast Food, Optimal Con-
trol, Lyapunov function.

I. INTRODUCTION

FOOD consumption has significantly increased, largely
driven by the convenience and popularity of fast

foods, particularly among younger generations influenced
by modern, fast-paced lifestyles. Despite their accessibility,
these foods pose addictive tendencies and serious health
risks, which many families and children tend to over-
look.According to the World Health Organization [1], over
1.9 billion adults were overweight, with 650 million classi-
fied as obese, marking a nearly threefold increase in global
obesity rates since 1975. Additionally, approximately 41
million children under the age of five and more than 340
million individuals aged 5 to 19 are overweight or obese.
Rapid increases have been observed in urban areas of low-
and middle-income countries, particularly in Africa and Asia.
Currently, obesity-related deaths surpass those caused by un-
dernutrition worldwide, although this trend varies by region
[2].In the United States, 39.8% of adults were classified as
obese during the 2015-2016 period, which equates to ap-
proximately 93.3 million people. Obesity was more prevalent
among individuals aged 40-59 (42.8%) than those aged 20-
39 (35.7%). However, there was no significant difference
in obesity rates between older adults and younger groups.
Although obesity rates showed a significant increase from
1999-2000 to 2015-2016, the rise between 2013-2014 and
2015-2016 was not statistically significant for either adults
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or youth [2]. In 2014, Morocco reported that approximately
7 million people were overweight or obese, a trend that
aligns with the global rise in obesity rates [4].The Food
and Agriculture Organization (FAO) highlights particularly
high obesity rates in certain Pacific island nations, where
fast food consumption is widespread [5]. For instance, more
than 30% of the populations in Fiji and American Samoa
are overweight. In ten other Pacific islands, more than half
of the population is affected. Globally, around 2.6 billion
people are overweight, and obesity rates increased from
11.7% in 2012 to 13.2% in 2016. In response, the FAO
encourages governments to promote local diets, especially
in schools, as this would not only improve public health
but also stimulate local economies [6].This study employs
an advanced mathematical model to analyze fast food con-
sumption behaviors, integrating several factors: a continuous-
time model, a variable representing the number of overweight
individuals, a mortality rate (δ1) linked to excessive fast food
consumption, and another rate (δ2) associated with obesity-
related diseases. Numerous social and psychological studies
have also addressed these issues [7].For example, Aldila [7]
applied an ecological framework to study university students’
eating behaviors and observed a rise in obesity rates along
with negative health effects. Chunyoung Oh [8] analyzed
obesity dynamics using a mathematical model, showing
that when the reproduction number R0 exceeds 1, obesity
becomes persistent. Simulations suggest that limiting social
interactions between overweight individuals can enhance
the effectiveness of educational programs, which should be
tailored to the local context.N. H. Shah [9] developed a
model examining the impact of obesity on infertility, demon-
strating that women consuming a calorie-rich diet have a
17% increased risk of infertility. This research highlights the
importance of maintaining a healthy weight through regular
physical activity.Other studies, such as those by D. Aldila et
al. [7], have tested the effectiveness of intervention programs
aimed at modifying the eating behaviors of overweight and
obese individuals. These studies indicate that well-designed
interventions [10], [11], [12], based on optimal control and
educational strategies, can significantly reduce obesity rates
and their associated consequences. The PLSCQ model
categorizes fast-food consumers into five compartments:

• Potential consumers of fast food (P),
• Moderate consumers of fast food (L),
• Excessive consumers of fast food (S),
• Obese individuals (C),
• Individuals who have quit fast food (Q).

This study aims to identify the most effective strategies
for reducing the number of obese individuals and ex-

cessive fast-food consumers, while increasing the proportion
of individuals who successfully lose weight in a healthy
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Fig. 1: Trends in the Age-Adjusted Obesity Prevalence in Adults 20and Over and Youth 2-19 Years in the United States:
1999–2000 to2015–2016 [3]

manner or prevent obesity. Our objectives are to pinpoint
the key factors contributing to these issues and to design
both preventive and corrective strategies. To achieve these
goals, we propose three main control strategies: promoting a
balanced diet, raising awareness about the risks of excessive
fast-food consumption, and providing appropriate support for
overweight individuals. Section 2 explores the interactions
between different types of fast-food consumers. The optimal
control problem for the model is addressed in Sections 3 and
4, where we discuss the existence of optimal controls and
their evaluation using the Pontryagin Maximum Principle.
Numerical simulations are presented in Section 5, with the
conclusion in Section 6.

II. MODEL FORMULATION

A. Model Description

We present a continuous model, PLSCQ, to represent
fast-food consumption behavior in a population. This popu-
lation is divided into five compartments, labeled P , L, S, C,
and Q.
A graphical illustration of the proposed model is shown in
Figure 2.

The mathematical formulation of the model consists of a
system of non-linear differential equations:

dP (t)
dt = b − β1

P (t)L(t)
N − µP (t)

dL(t)
dt = β1

P (t)L(t)
N − (µ + β2)L(t)

dS(t)
dt = β2L(t) − (µ + δ1 + α1 + α2)S(t)

dC(t)
dt = α1S(t) − (µ + γ + δ2)C(t)

dQ(t)
dt = α2S(t) + γC(t) − µQ(t)

(1)

where P0 ≥ 0, L0 ≥ 0, S0 ≥ 0, C0 ≥ 0, and Q0 ≥ 0.

FAST-FOOD CONSUMPTION MODEL

Compartment P : This compartment includes individuals
who are strongly inclined towards fast food consumption.
The population in P grows at a rate b, largely driven by social
factors such as family habits, peer groups, advertising, and
television. It decreases at a rate β1, influenced by changes in
eating behaviors and natural deaths. Social events, such as
year-end celebrations, weddings, or parties, play a significant
role in either maintaining or adopting these eating habits.
The adoption of fast food as a regular habit can be seen as
a contagious process, similar to acquiring an illness, where
eating behaviors spread and reinforce within social groups.
Compartment L: This group includes individuals who en-
gage in moderate fast-food consumption, either occasionally
or in a manner that does not stand out in their social
environment. The population in L increases when individuals
shift from minimal to moderate consumption at a rate of β1.
Conversely, it decreases when moderate consumers escalate
to excessive consumption at a rate of β2, in addition to
natural deaths occurring at a rate µ.
Compartment S: This group consists of individuals who en-
gage in excessive fast-food consumption. The population in
S increases at a rate β2 as more individuals adopt excessive
consumption. The population decreases at a rate α2 when
some individuals stop consuming fast food. Additionally, the
population in S diminishes at a rate α1 due to the transition
from excessive consumption to obesity (compartment C).
The group also experiences a decline at a rate µ due to
natural deaths, and at a rate δ1 due to diseases associated
with excessive fast-food consumption.
Compartment C: This group represents individuals who are
obese. The population in C increases at a rate α1, reflecting
the transition from excessive fast-food consumption to obe-
sity. The rate γ indicates the proportion of obese individuals
who cease fast-food consumption. Additionally, the popula-

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2280-2290

 
______________________________________________________________________________________ 



Fig. 2: Schematic diagram of the five consumer classes within the fast food consumption model(1).

tion in C declines at a combined rate of µ + δ2, accounting
for deaths due to obesity-related diseases resulting from
excessive fast-food intake.
Compartment Q: This group consists of individuals who
have stopped consuming fast food. The population in Q
decreases at a rate µ, but increases at rates γ and α2,
reflecting the individuals who cease obesity or excessive fast-
food consumption. The total population at time t, denoted by
Nt, is the sum of all compartments:

Nt = Pt + Lt + St + Ct + Qt,

and it is assumed to remain constant.

B. Basic Properties

1) Invariant Region: We need to show that all solutions
of system (1) with positive initial data will remain positive
for t > 0. The following lemma will prove this.
Lemma 1: All feasible solutions P (t), L(t), S(t), C(t),
and Q(t) of the system equation (1) are bounded within the
region:

Ω =
{

(P, L, S, C, Q) ∈ R5
+ : P + L + S + C + Q ≤ b

µ

}
(2)

Proof: From system equation (1),

dN(t)
dt

= dP (t)
dt

+ dL(t)
dt

+ dS(t)
dt

+ dC(t)
dt

+ dQ(t)
dt

(3)

dN(t)
dt

= b − µN(t) − δ1S(t) − δ2C(t) (4)

This suggests that

dN(t)
dt

≤ b − µN(t) (5)

It follows that:

N(t) ≤ b

µ
+ N(0)e−µt (6)

where N(0) is the initial value of the total population [13].
Thus,

lim
t→+∞

sup N(t) ≤ b

µ
(7)

Then,

P (t) + L(t) + S(t) + C(t) + Q(t) ≤ b

µ
(8)

Thus, for model (1), we obtain the region defined by the set:

Ω =
{

(P, L, S, C, Q) ∈ R5
+ : P + L + S + C + Q ≤ b

µ

}
(9)

This is a positively invariant set for (1); thus, the system
dynamics (1) only need to be considered within the non-
negative set of solutions Ω.

2) Positivity of the Model’s Solutions: .
Theorem 1: Suppose P (0) ≥ 0, L(0) ≥ 0, S(0) ≥ 0,
C(0) ≥ 0, and Q(0) ≥ 0 are non-negative initial conditions.
Then, the solutions of system equation (1) remain positive
for all t > 0.

Proof: From the first equation of system (1), we obtain:

dP (t)
dt

= b −
(

β1
L(t)
N

+ µ

)
P (t) (10)

Let us define:
A(t) = β1

L(t)
N

+ µ (11)

Now, multiply equation (8) by exp
(∫ t

0 A(s) ds
)

,
yielding:

dP (t)
dt exp

(∫ t

0 A(s)ds
)

=

= (b − A(t)P (t)) exp
(∫ t

0 A(s)ds
) (12)

This simplifies to:

exp
(∫ t

0 A(s)ds
) (

dP (t)
dt + A(t)P (t)

)
=

= b exp
(∫ t

0 A(s)ds
) (13)
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Finally, we obtain:

dP (t)
dt

+ A(t)P (t) = b (14)

Thus, we have:

d

dt

[
P (t) · exp

(∫ t

0
A(s) ds

)]
= b · exp

(∫ t

0
A(s) ds

)
(15)

By integrating from 0 to t with respect to s, we get:

P (t) · exp
(∫ t

0 A(s)ds
)

− P (0) =
= b

∫ t

0 exp
(∫ w

0 A(s)ds
)

dw
(16)

Multiplying equation (16) by exp
(

−
∫ t

0 A(s) ds
)

, we ob-
tain:

P (t) − P (0) exp
(

−
∫ t

0 A(s)ds
)

=

= b
∫ t

0 exp
(

−
∫ t

w
A(s)ds

)
dw

(17)

Thus, we can express P (t) as:

P (t) =

= P (0) exp
(

−
∫ t

0 A(s)ds
)

+ b
∫ t

0 exp
(

−
∫ t

w
A(s)ds

)
dw

(18)
Therefore, we obtain:

P (t) = P (0) exp
(

−
∫ t

0
A(s) ds

)
+

b

∫ t

0
exp

(
−

∫ t

w

A(s) ds

)
dw ≥ 0

Thus, P (t) is a positive solution. Similarly, from the second

equation of system (1), we have:

L(t) ≥ L(0) exp
(

−
∫ t

0
B(s) ds

)
≥ 0 (19)

where

B(t) = β1
P (t)
N

− (µ + β2) (20)

Furthermore, from the third, fourth, and fifth equations of
system (1), we get:

S(t) ≥ S(0) exp (−(µ + δ1 + α1 + α2)t) ≥ 0,

C(t) ≥ C(0) exp (−(µ + γ + δ2)t) ≥ 0,

Q(t) ≥ Q(0) exp (−(µ + θ)t) ≥ 0.

(21)

Therefore, we conclude that P (0) ≥ 0, L(0) ≥ 0, S(0) ≥ 0,
C(0) ≥ 0, and Q(0) ≥ 0 for t > 0, which completes the
proof. The first three equations of system (1) are independent
of C and Q. Thus, the dynamics of system (1) can be
analyzed through a reduced system structure:

dP (t)
dt = b − β1

P (t)L(t)
N − µP (t),

dL(t)
dt = β1

P (t)L(t)
N − (µ + β2)L(t),

dS(t)
dt = β2L(t) − (µ + δ1 + α1 + α2)S(t).

(22)

III. ANALYSIS OF EQUILIBRIA AND THEIR STABILITY

A. Equilibrium Points

We apply the standard approach for analyzing the system
in equations (22). There are two equilibrium points in this
model: one where there is no consumption and another
where consumption is present. To identify these equilibrium
points, we set the right-hand sides of equations (1)–(3) to
zero.The consumption-free equilibrium occurs when there
is no consumption (L = S = 0), and it is denoted by
E0

(
b
µ , 0, 0

)
. The consumption-present equilibrium, denoted

E∗(P ∗, L∗, S∗), occurs when both L ̸= 0 and S ̸= 0,
indicating the presence of consumers. The equilibrium values
for this point are:

P ∗ = b
µR0

,

L∗ = b(R0−1)
β1

,

S∗ = bβ2(R0−1)
β1(µ+δ1+α1+α2) ,

R0 = β1
µ+β2

.

(23)

The basic reproduction number R0 represents the average
number of new consumers that a single consumer generates
within a population of potential consumers. This value helps
determine whether the consumption behavior will spread like
an epidemic. To calculate R0, the next-generation matrix
method can be employed, as described in [14].

B. Local Stability Analysis

The stability behavior of the equilibria E0 and E∗ is now
studied.

1) Consumption-Free Equilibrium: In this section, we
examine the local stability of the equilibrium where there is
no fast food consumption.
Theorem 2: For R0 < 1 and R0 > 1, the consumption-free
equilibrium E0

(
b
µ , 0, 0

)
of system (22) is asymptotically

unstable.
Proof. The Jacobian matrix at E0 is:

J(E) =

 −β1
L
N − µ −β1

P
N 0

β1
L
N β1

P
N − (µ + β2) 0

0 β2 X


X = −(µ + δ1 + α1 + α2)

(24)

For the consumption-free equilibrium, the Jacobian matrix is
given by:

J(E0) =

 −µ −β1 0
0 β1 − (µ + β2) 0
0 β2 X

 (25)

where P0 = b
µ = N .The characteristic equation of this

matrix is given by det(J(E0) − λI3) = 0, where I3 is
a 3 × 3 identity matrix. Therefore, the eigenvalues of the
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characteristic equation of J(E0) are:

λ1 = −µ,

λ2 = −(µ + β2 − β1) = −(µ + β2)
(

1 − β1
µ+β2

)
,

λ3 = −(µ + δ1 + α1 + α2),

R0 = β1
µ+β2

.

(26)

Consequently, each eigenvalue of the characteristic equation
of J(E0) is real and negative if R0 < 1. We deduce that the
consumption-free equilibrium is locally asymptotically stable
if R0 < 1; however, it is unstable if R0 > 1.

2) Equilibrium with Fast Food Consumption Present: In
this section, we analyze the local stability of the equilibrium
where fast food consumption is present. Assuming that at
least one of the compartments with consumers is nonzero,
we set dP (t)

dt = 0, dL(t)
dt = 0, and dS(t)

dt = 0 to determine
the equilibrium state of the system described by equation
(21). By setting the right-hand side of the system’s equations
to zero and solving for P ∗, L∗, and S∗, we can evaluate
the equilibrium of system (22). Applying this to the second
equation of the system, we proceed as follows. From the
initial equation in system (22), we have:

L∗ = b(R0 − 1)
β1

(27)

Also, equation (3) in system (19) gives:

S∗ = bβ2(R0 − 1)
β1(µ + δ1 + α1 + α2) (28)

Let us now examine the local stability using the following
theorem:
Theorem 3. If R0 > 1, the consumption-present equilibrium
E∗ is locally asymptotically stable; otherwise, it is unstable
[15].
Proof. We denote E∗(P ∗, L∗, S∗) as the consumption-
present equilibrium of system (22), with P ∗ ̸= 0, L∗ ̸= 0,
and S∗ ̸= 0. The Jacobian matrix at E∗ is given by:

J(E∗) =

 −β1
L∗

N − µ −β1
P ∗

N 0
β1

L∗

N β1
P ∗

N − (µ + β2) 0
0 β2 X


(29)

where
P ∗ = b

µR0
,

L∗ = b(R0−1)
β1

,

S∗ = bβ2(R0−1)
β1(µ+δ1+α1+α2) .

(30)

We observe that the characteristic equation P (λ) of the
Jacobian matrix J(E∗) has an eigenvalue λ1 = −(µ +
δ1 + α1 + α2), where the real part is negative. To assess
the stability of the equilibrium with fast food consumption
present in model (29), we analyze the roots of the following
equation φ(λ):

φ(λ) = λ2 + a1λ + a2 (31)

where
a1 = β1

L∗

N + µ ≻ 0,

a2 = β2
1

P ∗

N
L∗

N ≻ 0.

(32)

According to the Routh-Hurwitz criterion, system (22) is lo-
cally asymptotically stable if a1 > 0 and a2 > 0. Therefore,
the equilibrium with fast food consumption present, E∗, in
system (20) is locally asymptotically stable.

IV. GLOBAL STABILITY

A. Global Stability of the Consumption-Free Equilibrium
To establish the global asymptotic stability of the system at

equilibrium, we apply Lyapunov function theory for both the
consumption-free and consumption-present equilibria. We
begin by demonstrating that when R0 ≤ 1, the consumption-
free equilibrium E0 is globally stable.
Theorem 4: If R0 ≤ 1, the consumption-free equilibrium E0

is globally asymptotically stable; otherwise, it is unstable.

V = cL (33)

Proof. Consider the following Lyapunov function, where c is
a positive constant. The derivative of V (P, L, S) with respect
to t gives:

dV

dt
= c

dL

dt
(34)

= c

[
β1

P

N
− (µ + β2)

]
L (35)

= c(µ + β2)
[

β1P

(µ + β2)N − 1
]

L (36)

≤ (R0 − 1)L (37)

where c = 1
µ+β2

and R0 = β1
µ+β2

.
Thus, dV

dt ≤ 0 if R0 ≤ 1. Furthermore, dV
dt = 0 if and only

if L = 0. Hence, by LaSalle’s invariance principle [16], E0

is globally asymptotically stable.

B. Stability of the Consumption-Present Equilibrium
In this section, we analyze the global stability of E∗, the

equilibrium point for the consumption-present case.
Theorem 5: The equilibrium point E∗ for the consumption-
present case is globally asymptotically stable if R0 > 1. We
define the Lyapunov function V as follows:

V : Γ →, R
V (P, L) = c1

[
P − P ∗ ln

(
P

P ∗

)]
+ c2

[
L − L∗ ln

(
L

L∗

)]
where c1 and c2 are positive constants, and
Γ =

{
(P, L) ∈ R2 | P > 0, L > 0

}
is the feasible region.

The time derivative of the Lyapunov function is given by:
dV (P,L)

dt =

= −bc1
(P −P ∗)2

P P ∗ + β1
N (c2 − c1) (P − P ∗) (L − L∗)

For c1 = c2 = 1, we have:

dV (P, L)
dt

= −b
(P − P ∗)2

PP ∗ ≤ 0 (38)

Additionally, we obtain:
dV (P, L)

dt
= 0 ⇒ P = P ∗ (39)

Thus, by LaSalle’s invariance principle [16], the
consumption-present equilibrium E∗ is globally
asymptotically stable on Γ when R0 > 1.
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V. SENSITIVITY ANALYSIS OF R0

Sensitivity analysis is a critical tool for identifying the pa-
rameters that significantly influence the reproduction number
R0, thereby assisting in evaluating the model’s robustness to
changes in parameter values. We compute the normalized
forward sensitivity indices of R0 following the methodology
presented in Chitnis et al. [17]. Let

ΥR0
m = m

R0
· ∂R0

∂m
(40)

represent the sensitivity of R0 with respect to a parameter
m. Given thatR0 = β1

µ+β2
, the specific sensitivity indices are

as follows:
ΥR0

β1
= 1,

ΥR0
β2

= − β1
µ+β2

,

ΥR0
µ = − µ

µ+β2
.

(41)

This analysis shows that the basic reproduction number R0
is most sensitive to changes in β1. If β1 increases, R0
will increase in direct proportion. Conversely, a decrease
in β1 will result in a proportional reduction of R0. On
the other hand, µ and β2 have an inversely proportional
relationship with R0. Specifically, increases in either µ (the
natural death rate of the population) or β2 (the coefficient
of transmission from L to S) will lead to a decrease in R0,
though the effect is less pronounced for β2.Given the high
sensitivity of R0 to β1, this suggests that controlling the
effective contact rate is the most critical factor in reducing
the spread of consumption. Thus, prevention measures are
more effective than treatment in managing the dynamics of
chronic consumption. This sensitivity analysis indicates that
the focus should be on reducing β1, as opposed to increasing
the number of people receiving treatment.

TABLE I: Sensitivity indices for the model parameters.

Parameter Description Sensitivity Index
µ Natural death rate -0.68
β1 Effective contact rate +1
β2 Transmission coefficient from L to S -0.32

VI. NUMERICAL SIMULATIONS

In this section, we present several numerical solutions to
model (1) for various parameter values [18]. The Gauss-
Seidel-like implicit finite-difference method (GSS1 method),
developed by Gumel et al. [19] and presented in [20],
was used to solve system (1). We use the following initial
condition:

P + L + S + C + Q = 1000.

The parameters used are listed in Table II and Table III.
Using the same parameters and different initial values given
in Table II, with R0 = 0.43 and R0 < 1, we begin with a
graphical representation of the consumption-free equilibrium
E0.
Based on these figures, we make the following observations
(see Figure 3,Figure 4 ,Figure 5 ,Figure 6 and Figure 7)
using various initial values for the variables P0, L0, S0,
C0, and Q0. Using the same parameters and different initial
values given in Table II, with R0 = 0.43 and R0 < 1, we
begin with a graphical representation of the consumption-
free equilibrium E0.

TABLE II: Initial Values of Infected Compartments in Model (1).

Type of Infected Initial Values
Potential consumers of fast food P1(0) 300
Potential consumers of fast food P2(0) 600
Potential consumers of fast food P3(0) 800
Moderate consumers of fast food L1(0) 300
Moderate consumers of fast food L2(0) 600
Moderate consumers of fast food L3(0) 800
Excessive consumers of fast food S1(0) 300
Excessive consumers of fast food S2(0) 600
Excessive consumers of fast food S3(0) 800
Obese patients C1(0) 300
Obese patients C2(0) 600
Obese patients C3(0) 800
Individuals who quit from fast food Q1(0) 300
Individuals who quit from fast food Q2(0) 600
Individuals who quit from fast food Q3(0) 800

TABLE III: Parameter Settings for Model (1).

Parameter Description Value
b Birth rate or entry rate into the system 65
µ Natural death rate 0.04
β1 Transition rate from P to L 0.2
β2 Transition rate from L to S 0.4
N Total population 1000
α1 Transition rate from S to C (obesity) 0.001
α2 Recovery rate from excessive consumption 0.001
δ1 Excessive fast-food intake death rate 0.07
δ2 Death rate due to obesity 0.07
γ Recovery rate from obesity 0.002

Based on these figures, we make the following observations
(see Figure 3,Figure 4 ,Figure 5 ,Figure 6 and Figure 7) using
various initial values for the variables P0, L0, S0, C0, and
Q0.

POTENTIAL CONSUMERS OF FAST FOOD (P )

The graph illustrates the growth of potential fast-food
consumers (P ) over time. Initially, there is a rapid increase
in the number of consumers, which then slows as the market
reaches saturation. As the curves flatten, it indicates that the
number of consumers has approached its maximum capacity.
Three initial values 300, 600, and 800represent different
starting points. A larger initial base leads to quicker sat-
uration, suggesting that businesses targeting larger groups
may experience rapid early growth but will face slower
growth as the market becomes saturated. Ultimately, this
graph highlights the limit of market potential and emphasizes
the importance of considering market saturation in long-term
business planning (See Figure 3).

MODERATE CONSUMERS OF FAST FOOD (L)

This graph illustrates the evolution of moderate fast-
food consumers (L) over time, with initial values of 100,
300, and 500. The curves show a significant decrease,
indicating a decline in fast-food consumption over time.The
curves approaching zero suggest a gradual disengagement of
consumers, likely due to lifestyle or health-related factors.
As people become more health-conscious, consumption de-
creases, reflecting broader societal trends (See Figure 4).

EXCESSIVE CONSUMERS OF FAST FOOD (S)

This graph depicts the evolution of individuals excessively
consuming fast food (S) over time, with initial values of 50,
150, and 200. The curves initially show a sharp increase,
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Fig. 3: When R0 < 1, the consuming-free equilibrium E0 is globally asymptotically stable.

Fig. 4: When R0 < 1, the consuming-free equilibrium E0 is globally asymptotically stable.

followed by a gradual decrease. This pattern likely reflects
a period of excessive consumption, followed by a decline
possibly due to changes in habits or greater awareness of the
negative effects of excessive fast-food intake.
This graph suggests a behavioral shift, with individuals
gradually reducing their excessive consumption over time
(See Figure 5).

OBESE PATIENTS (C)

The graph displays the evolution of the number of obese
patients (C) over time, with initial values of 45, 10, and
5. The curves indicate a marked decrease, suggesting a
decline in the number of obese patients, likely due to
reduced excessive fast-food consumption. This could signal
an improvement in public health, driven by better dietary
habits and healthier lifestyles. The graph suggests a positive
trend in public health, with fewer obese patients, which
may reflect the impact of increased awareness and efforts
to manage dietary habits (See Figure 6).

INDIVIDUALS WHO QUIT FAST FOOD (Q)

This graph represents the number of individuals who have
quit consuming fast food (Q) over time, with initial values
of 60, 30, and 4. The curves show an exponential decrease,
indicating a higher abandonment rate at the beginning, fol-
lowed by a phase of stabilization. This suggests that people

are gradually stopping their fast-food consumption, and the
rapid initial decline slows over time as the market stabilizes.
The graph highlights a phase of significant behavioral change
followed by a plateau as fewer people quit fast food (See
Figure 7). These graphs illustrate the different phases of
fast-food consumption, from initial interest to eventual aban-
donment. Thus, the solution curves toward the equilibrium
point E0(P0, 0, 0, 0, 0) when R0 < 1, indicating that model
(1) is globally asymptotically stable.They provide insights
into both excessive and moderate consumption patterns and
highlight the effects of fast food on obesity.
This data is crucial for studying consumption trends and
assessing the potential impact of increased awareness about
healthier eating habits. In summary, these graphs serve as a
valuable tool for understanding the evolution of eating be-
haviors and promoting a more balanced and health-conscious
lifestyle.
We use the parameters listed in Table IV and Table V.
Additionally, we start with a graphical representation of
the consumption-present equilibrium E∗, using the same
parameters but with different initial values given in Table
IV and Table V. With R0 = 3.65 and R0 > 1, the
following observations were obtained from the figures, based
on varying initial values of P0, L0, S0, C0, and Q0 (See
Figure 8, Figure 9 , Figure 10, Figure 11 and Figure 12).
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Fig. 5: When R0 < 1, The consuming-free equilibrium E0 is globally asymptotically stable.

Fig. 6: When R0 < 1, The consuming-free equilibrium E0 is globally asymptotically stable.

TABLE IV: Paramètres académiques utilisés dans
le modèle (1).

Type of Infected Initial Values
Potential consumers of fast food P1(0) 200
Potential consumers of fast food P2(0) 300
Potential consumers of fast food P3(0) 600
Moderate consumers of fast food L1(0) 300
Moderate consumers of fast food L2(0) 400
Moderate consumers of fast food L3(0) 500
Excessive consumers of fast food S1(0) 100
Excessive consumers of fast food S2(0) 300
Excessive consumers of fast food S3(0) 500
Obese patients C1(0) 45
Obese patients C2(0) 5
Obese patients C3(0) 10
Individuals who quit from fast food Q1(0) 60
Individuals who quit from fast food Q2(0) 30
Individuals who quit from fast food Q3(0) 5

TABLE V: Parameter Settings.

Parameter Description Value
b Birth rate or entry rate into the system 65
µ Natural death rate 0.04
β1 Transition rate from P to L 0.75
β2 Transition rate from L to S 0.4
N Total population 1000
α1 Transition rate from S to C (obesity) 0.001
α2 Recovery rate from excessive consumption 0.001
δ1 Fast-food overconsumption mortality rate 0.07
δ2 Obesity-related mortality rate 0.07
γ Recovery rate from obesity 0.002

POTENTIAL CONSUMERS OF FAST FOOD (P )

This graph illustrates the evolution of the number of
individuals interested in fast food consumption (P ) over
time, with initial values of 200, 300, and 600. Interpretation:
The curves show a sharp initial decline, indicating a rapid
decrease in the interest of potential consumers, likely due to
market saturation or initial doubts about fast food. After this
drop, the curves stabilize, suggesting that the market reaches
a more constant level of interest. Conclusion: The fast-
food market may experience an initial peak in interest that
quickly diminishes, probably due to competition or growing
consumer awareness, and then stabilize at a regular demand
level (See Figure 8).

MODERATE CONSUMERS OF FAST FOOD (L)

This graph depicts the evolution of moderate fast-food
consumers (L) over time, with initial values of 300, 400,
and 500. Interpretation: Each curve peaks early, suggesting
an initial increase in moderate consumption, likely as new
consumers adapt to a balanced eating pattern. After the
peak, the curves gradually decline and stabilize, implying
that moderate consumers eventually find a consistent level of
fast-food consumption. Conclusion: This graph indicates that
moderate consumers reach a balanced consumption pattern
after an initial adjustment phase, ultimately maintaining a
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Fig. 7: When R0 < 1, the consuming-free equilibrium E0 is globally asymptotically stable.

Fig. 8: When R0 > 1, the consumption-present equilibrium E∗ is globally asymptotically stable.

stable and moderate level of fast-food intake (See Figure 9).

EXCESSIVE CONSUMERS OF FAST FOOD (S)

This graph represents the number of excessive fast-food
consumers (S) over time, starting with initial values of 100,
300, and 500. Interpretation: The curves show a rapid rise to
a peak, reflecting a period of high fast-food consumption.
After reaching the peak, the numbers decline, eventually
stabilizing at a lower level, suggesting that some consumers
reduce their excessive consumption or shift to lower levels
of intake. Conclusion: This graph indicates that although
some individuals initially consume fast food excessively,
their consumption tends to decrease over time, possibly due
to a shift toward healthier eating habits or a natural reduction
in fast-food appeal (See Figure 10).

OBESE PATIENTS (C)

This graph tracks the number of obese patients (C) over
time, with starting values of 45, 10, and 5. Interpretation: The
sharp decline in each curve suggests a significant reduction
in obesity, likely due to healthier eating choices or reduced
consumption of fast food. As the curves level off, it indicates
that the number of obese patients stabilizes at a lower level,
reflecting an overall health improvement. Conclusion: This
trend suggests a positive shift in health, with decreasing

obesity rates correlating to reduced fast-food consumption.
This indicates a transition toward more health-conscious
behaviors (See Figure 11).

INDIVIDUALS WHO QUIT FAST FOOD (Q)

This graph represents the number of people who have
stopped consuming fast food (Q), starting with initial values
of 60, 30, and 5. Interpretation: A sharp decline at the
beginning of each curve suggests that many people quit
fast food quickly, likely due to health concerns or dissat-
isfaction. Over time, the curves stabilize, indicating that
the abandonment rate slows down, likely because only the
most loyal or regular consumers remain. Conclusion: This
trend highlights an initial wave of abandonment among less
engaged consumers, followed by a stabilization that leaves a
core group of regular consumers continuing their fast-food
habits (See Figure 12). These revised graphs depict the
progression of fast-food consumption trends across various
consumer categories: Potential Consumers (P ): Initially fluc-
tuate but stabilize at a consistent level of interest. Excessive
Consumers (S): Experience an initial surge in consump-
tion, followed by a period of moderation. Individuals Who
Quit Fast Food (Q): Exhibit a high initial dropout rate,
which levels off as only the most committed consumers
remain. Moderate Consumers (L): Reach a balanced level
of consumption after a phase of growth. Obese Patients (C):
Show a decline in numbers, likely due to the adoption of

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2280-2290

 
______________________________________________________________________________________ 



Fig. 9: When R0 > 1, the consumption-present equilibrium E∗ is globally asymptotically stable.

Fig. 10: When R0 > 1, the consumption-present equilibrium E∗ is globally asymptotically stable.

healthier choices over time. These observations highlight the
lifecycle of fast-food consumption, where initial enthusiasm
diminishes as consumers moderate their habits and health
outcomes improve. This information could be valuable for
stakeholders in the fast-food industry as well as public health
policymakers.

VII. CONCLUSION

In this study, we developed the continuous mathematical
model PLSCQ to capture the dynamics of fast food
consumption, considering the influence of both private
and public addiction treatment centers. We analyzed the
model’s behavior and derived the basic reproduction
number, R0 = β1

µ+β2
,a key metric for understanding the

system’s dynamics. A sensitivity analysis was conducted
to identify the parameters that most significantly impact
R0, shedding light on the factors that affect the model’s
outcomes.We then assessed the stability of the system using
nonlinear stability analysis. Our findings show that the
consumer-free equilibrium, E0, is stable when R0 ≤ 1,
indicating that the number of consumers will decrease under
this condition. Conversely, when R0 > 1, the consumer
equilibrium, E∗, is stable, meaning consumption will persist
in the population.Through the use of Lyapunov functions,
we confirmed that E0 is globally stable when R0 ≤ 1,
ensuring that the system will eventually reach a state of no
consumers. Similarly, when R0 > 1, we demonstrated that

E∗ is globally stable, meaning the system will stabilize at
the consumer equilibrium.In conclusion, the PLSCQ model
provides a useful tool for understanding and predicting fast
food consumption behavior, while also evaluating the impact
of addiction treatment interventions. The insights from this
model can inform public health policies aimed at reducing
fast food consumption and promoting healthier eating habits.
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