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Abstract—This paper introduces the ϕ-partial order for
matrices. It explores this ordering in the context of s-k-unitary
matrices, connecting it to other matrix partial orders like
Loewner and star. As an application, we study how P <

ϕ
R

relates to P 2 <
ϕ
R2. Key findings include the preservation of <

ϕ
partial order under s-k unitary similarity transformations and
characterizations related to s-k normal matrices.

Index Terms—ϕ-partial order; s-k-Unitary similarity;
s-k-Hermitian matrix; s-k-Normal matrix.

I. INTRODUCTION AND PRELIMINARIES

The s-k-unitary matrices are an extension of unitary
matrices introduced by Krishnamoorthy and Bhuvaneswari
[6]. This generalization builds on the structure of secondary
diagonal matrices and permutation matrices, earlier described
by A. Lee [8] and Hill and Waters [9], respectively. Let
Mn(C) denote the set of all complex matrices of order n. For
any matrix A ∈ Mn(C), the notations A, AT , A∗, AS , and
Aθ represent the conjugate, transpose, transpose conjugate
(primary), secondary transpose, and secondary conjugate
transpose respectively. A. Lee has initiated the study
of secondary symmetric, skew-symmetric, and orthogonal
matrices, and explained usual (primary) transpose AT and
secondary transpose (transpose via secondary diagonal) AS .
This is expressed as AS = V ATV , where the matrix V is
a permutation matrix with units at the secondary diagonal,
satisfying the properties: V = V T = V S = V ∗ = V θ = V ,
V 2 = I . From this it follows that the secondary conjugate
transpose is given by Aθ = V A∗V .
Hill and Waters further extended the concept of k-real and
k-Hermitian matrices by generalizing their characterizations
through the use of permutation matrices, where K is the
associated permutation matrix with a fixed product of disjoint
transposition ‘k’ in Sn. This leads to the definition of the
s-k-transpose as Ask = KASK, with K satisfying:
K = KT = KS = K∗ = Kθ = K, K2 = I .
The s-k-conjugate transpose is then defined as:
Aϕ = KAθK = KV A∗V K.
A matrix A is said to be s-k-unitary if AAϕ = AϕA = I .
Furthermore, both K and V satisfy the property Kϕ = K,
V ϕ = V .
An s-k-eigen value of a matrix is defined as a zero of the
polynomial det[λKV −A]. A non-zero vector x ̸= 0 ∈ MnC
is said to be the s-k-eigenvector of a complex matrix A with
a s-k-eigenvalue λ if it satisfies Ax = λKV x.
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In 1978, Drazin [5] introduced the concept of star partial
ordering which is defined as,

A
<

∗
B ⇔ A∗A = A∗B and AA∗ = BA∗ (1)

where A∗ denotes the conjugate transpose of A. The unique
matrix satisfying the given four conditions of Penrose
(i) AXA = A (ii) XAX = X (iii) (AX)

∗= AX
(iv) (XA)

∗ = XA is called Penrose inverse of A. The star
partial ordering may be characterized by using the concept
of Moore-Penrose inverse [5],

A
<

∗
B ⇔ A†A = A†B and AA† = BA† (2)

where ′†′ is Moore-Penrose inverse. In equation (2), it can
be replaced [or conjugate transpose(primary) in (1) ] by a
reflexive generalized inverse, satisfying both AA†A = A
and A†AA† = A†, which is called plus order [4] and there
will be no effect on partial ordering. This leads to the plus
order version of star partial ordering:

A
<

∗
B ⇔ A+A = A+B and AA+ = BA+ (3)

Hartwig [4] introduced a relationship between the rank
subtractivity and the plus partial ordering defined as

A
<

rs
B ⇔ rank(B −A) = rank(B)− rank(A) (4)

where the rank subtractivity is equal to the plus order.
Hartwig and Styan [7] carried further studies on conditions
relative to reflexive inverses and adopted the term minus
partial ordering to describe the rank subtractivity relation as
well.

A
<

−
B ⇔ rank(B −A) = rank(B)− rank(A) (5)

In their study, they also identified additional conditions
which must be added so that the rank subtractivity become
star partial order. In a subsequent development, Bakasalary
and Mitra [2] introduced the concept of left star and
right star partial ordering. Moreover, several properties of
matrix partial ordering was discussed in [1] by Bakasalary,
Pukelshein and Styan. The lowener partial ordering is defined
as-

A
<

L
B ⇔ (B −A) ≥ 0 (6)

For further characterizations and in-depth studies of various
partial orderings including the core, minus, sharp, star, and
diamond partial orderings, particularly in the context of
Hermitian matrices, one may refer ( [10], [11]).
In this paper, we introduce a new partial order, referred to
as the ϕ -partial order, and derive several related results. In
addition, its relationship to other partial orders is described,
as well as some characterizations for s-k-normal matrices.
The paper is organized as follows: In Section 1, we present
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the foundational concepts and established results concerning
s-k-unitary matrices and partial orders. In Section 2, we
define the ϕ-partial ordering and established key results.
Section 3 characterizes the s-k-normal matrices in the context
of ϕ- partial ordering and explores its behavior under matrix
powers. Also, we present the characterizations of minus
partial ordering and demonstrate its equivalence relation with
ϕ-partial order. Lastly, the conclusion and suggestions for
future research are presented in section 4.

II. ϕ- PARTIAL ORDERING

In this section, we formally introduce the concept of ϕ
partial ordering and explore its properties through some
results. We begin by discussing the fundamental aspect of
ϕ- partial ordering, with particular emphasis on its relation
to matrix inversion and its preservation under this order.
Furthermore, we examine the behavior of powers of matrices
that adhere to the ϕ- partial ordering and under what specific
conditions this ordering is maintained. Subsequently, we
delve into the connections between ϕ- partial ordering and
other matrix partial orderings. These relationships provide
deeper insights into how matrices interact under various
transformation works, like unitary and s-k-unitary similarity.
The results presented in this section will highlight the robust
nature of ϕ- partial ordering, particularly in the context of
products and powers of matrices. We now proceed to define
ϕ- partial ordering for matrices.

Definition 2.1: Let P,R ∈ Mn(C), then the ϕ- partial
ordering is defined as:
P <

ϕR ⇐⇒ PϕP = PϕR and PPϕ = RPϕ.
A partial order can be related to an equivalence relation
when it satisfies certain conditions. Specifically, for two
matrices P and R, the ϕ- partial order, denoted as P <

ϕR,
is defined based on the existence of a matrix Q such that
P = RQϕR. This order can induce an equivalence relation if
we further establish that two matrices P and R are equivalent
under the ϕ- partial order when both P <

ϕR and R<
ϕP hold

simultaneously. In such cases, the matrices share certain
structural properties, particularly concerning their range and
null space projections. Thus, the ϕ- partial order serves
not only to compare matrices in a partial order but also
enables the classification of matrices into equivalence classes
based on their mutual comparability under this relation.
This concept is useful when analyzing spectral properties.
In the following, we present an important theorem that
demonstrates how the inversion of matrices also adheres to
this partial ordering.

Theorem 2.2: Let P and R be s-k-unitary matrices then
P <

ϕR ⇐⇒ P−1<
ϕR

−1.
Proof: Given that

P <
ϕR =⇒ PϕP = PϕR and PPϕ = RPϕ.

Consider the relation PϕP = PϕR. Since P is s-k-unitary,
it satisfies Pϕ=P−1. Hence, P−1P = P−1R.
Taking s-k-conjugate transpose on both sides yields
=⇒ (P−1P )ϕ = (P−1R)ϕ.
=⇒ Pϕ(P−1)ϕ = Rϕ(P−1)ϕ

P−1(P−1)ϕ = R−1(P−1)ϕ (7)

Now, consider the second condition: PPϕ = RPϕ. Since P

is s-k-unitary, we have

PP−1 = RP−1.

Taking s-k-conjugate transpose:
(PP−1)ϕ = (RP−1)ϕ,

which gives,
(PP−1)ϕ = (RP−1)ϕ

and, since P and R are s-k-unitary, we have

(P−1)ϕPϕ = (P−1)ϕRϕ

(P−1)ϕP−1 = (P−1)ϕR−1 (8)

From equations (7) and (8), it follows that
P <

ϕR =⇒ P−1<
ϕR

−1.
A similar argument, starting from P−1<

ϕR
−1 =⇒ P <

ϕR,
establishes the reverse implication.
Hence, P <

ϕR ⇐⇒ P−1<
ϕR

−1.
With the preservation of inversion under the star partial
order established, we now connect this concept to other
matrices, particularly s-k-unitary matrices. The following
results illustrate how s-k-unitary matrices, known for their
stability and structure-preserving properties, interact with
ϕ-partial order.

Theorem 2.3: If P is s-k-unitary such that V KP <
ϕPV K

then P is unitary.
Proof: Suppose V KP is ϕ-partial order. i.e.

V KP <
ϕPV K. Then

(V KP )ϕV KP = (V KP )ϕ(PV K)
=⇒ (PϕKV )(V KP ) = (PϕKV )(PV K) [since

Kϕ = K, V ϕ = V ]
=⇒ PϕKKP = (PϕKV )(PV K) [since V 2 = I]
=⇒ PϕP = (PϕKV )(PV K) [since K2 = I]
I = (PϕKV )(PV K) [since P is s-k-unitary]

Post-multiplying both sides by KV , we obtain
KV = PϕKV P (V KKV )

=⇒ KV = PϕKV P
=⇒ KV = (KV P ∗V K)KV P

=⇒ KV = KV P ∗P
Pre-multiplying both sides by V K, we have

V KKV = (V KKV )P ∗P .

I = P ∗P (9)

Similarly, from the second condition of the partial order:
V KP <

ϕPV K.
=⇒ (V KP )(V KP )ϕ = (PV K)(V KP )ϕ

=⇒ (V KP )(PϕKV ) = (PV K)(PϕKV )
=⇒ V KKV = (PV K)(PϕKV )[since P is s-k-unitary]
=⇒ V V = (PV K)(PϕKV )
=⇒ I = (PV K)(PϕKV ).

Post-multiplying both sides by V K, we get
V K = (PV K)(PϕKV )V K

=⇒ V K = (PV K)Pϕ

=⇒ V K = (PV K)(KV P ∗V K)
=⇒ V K = PP ∗V K

Multiplying both sides by KV , we have
V KKV = PP ∗(V KKV )

I = PP ∗. (10)

From equations (9) and (10), we get
PP ∗ = P ∗P = I . =⇒ P is unitary.
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Theorem 2.4: If P <
ϕR, then

(a) P <
ϕR ⇐⇒ V KP <

ϕ V KR ⇐⇒ PV K <
ϕRVK

(b) P <
ϕR ⇐⇒ KV P <

ϕKV R ⇐⇒ PKV <
ϕRKV

The proof of this theorem directly from the previous theorem.
An intriguing aspect of matrix theory is how the partial
ordering of two matrices relates to the partial ordering of
their powers. Specifically, consider the case where we have
P <

ϕR, and we seek to establish that squares of these matrices
also respect the same partial ordering. For this implication
to be valid, a commutativity condition between the matrices
P and R become important. In particular, if P and R are
both s-k-Hermitian and ϕ-partial ordered, then they must be
commutative, i.e. RP = PR. Firstly, we have the following
relation:

P <
ϕR =⇒ PϕP = PϕR. and PPϕ = RPϕ

Let us take,

PϕP = PϕR =⇒ PPϕ = PϕR.

Since Pϕ = P , we have

=⇒ RPϕ = PϕR [since PPϕ = RPϕ]
=⇒ RP = PR, where P and R are s-k-Hermitian.

However, to prove the reverse implication
P 2<

ϕR
2 =⇒ P <

ϕR, an additional condition is necessary,
specifically, that the matrices P and R are positive definite,
which we discussed in the next result. In this sense, we
examine how the ordering of two s-k-Hermitian non-negative
definite matrices P and R relates to the ordering of their
squares P 2and R2 in terms of ϕ-partial ordering.

Theorem 2.5: Let P and R be s-k-Hermitian matrices and
positive definite matrices, then P <

ϕR if and only if P 2<
ϕR

2.
Proof: Assume P <

ϕR. This implies P <
ϕR =⇒ PϕP =

PϕR and PPϕ = RPϕ.
Using the first condition PϕP = PϕR, and post -multiplying
both sides by P , we have, PϕPP = PϕRP .

PϕP 2 = PϕRP ,
=⇒ PϕP 2 = PϕPR [since PR=RP]

=⇒ PϕP 2 = PϕRR [since PϕP = PϕR]
=⇒ PϕP 2 = PϕR2.

Pre-multiplying both sides by Pϕ gives
(Pϕ)2P 2 = (Pϕ)2R2

=⇒ (P 2)ϕP 2 = (P 2)ϕR2

Thus, P 2<
ϕR

2.
Conversely, assume P 2<

ϕR
2.

Let, P 2 = C, R2 = D
C <

ϕD =⇒ CϕC = CϕD

=⇒ (P 2)ϕP 2 = (P 2)ϕ(R2)
=⇒ (Pϕ)2P 2 = (Pϕ)2R2

=⇒ P 2P 2 = P 2R2 [since Pϕ = P and Rϕ = R]
=⇒ P 2 = R2.

=⇒ P = R
Since P and R are s-k-Hermitian and positive definite, it
follows that P 2 = R2 =⇒ P = R.
Multiplying both sides by Pϕ, we have
PϕP = PϕR. =⇒ P <

ϕR
Hence the result.
The following result can be readily proved by applying
Theorem 2.5.

Theorem 2.6: Let P and R be s-k-Hermitian matrices and
positive definite such that

(a) P <
ϕR

(b) P 2<
ϕR

2

(c) PR = RP

Then (b) ⇐⇒ (a) =⇒ (c).
Unitary similarity is a well established concept in matrix
theory. In this context, s-k-unitary similarity serves as a
generalization of unitary similarity, built upon the matrices
K and V as discussed earlier.
Two matrices P , R ∈ Mn(C) are said to be s-k-unitary
similar, if there exist a s-k-unitary matrix T such that
TϕPT = R. Notably, several matrix partial orderings like
lowener, star, minus, and ϕ- partial ordering are preserved
under unitary similarity. In this section, we establish the
invariance concept related to ϕ- partial ordering under
s-k-unitary similarity. For which, our aim to prove that
P <

ϕR ⇐⇒ TϕPT <
ϕ T

ϕRT , which is presented in the next
theorem. Additionally, we explore the relationship between
ϕ- partial ordering and other matrix partial order, providing
further insights into their inter-dependencies.

Theorem 2.7: ϕ- partial ordering is preserved under
s-k-unitary similarity i.e. P <

ϕR ⇐⇒ TϕPT <
ϕ T

ϕRT ,
where T is s-k-unitary matrix.

Proof: If P <
ϕR then P <

ϕR =⇒ PϕP = PϕR and
PPϕ = RPϕ.
To prove: TϕPT <

ϕ T
ϕRT

Let J1 = TϕPT and J2 = TϕRT , then J1
<
ϕ J2.

where, Jϕ
1 J1 = Jϕ

1 J2, and J1J
ϕ
1 = J2J

ϕ
1 .

Now, Jϕ
1 J1 = (TϕPT )ϕTϕPT = TϕPϕTTϕPT

= TϕPϕPT [since T is s-k-unitary matrix]
= TϕPϕRT [since PϕP = PϕR]
= TϕPϕTTϕRT [since TTϕ = I]
= (TϕPT )ϕTϕRT
= Jϕ

1 J2
Similarly,
J1J

ϕ
1 = TϕPT (TϕPT )ϕ = TϕPTTϕPϕT

= TϕPPϕT [since T is s-k-unitary matrix]
= TϕRPϕT [since PPϕ = RPϕ

= TϕRTTϕPϕT
= (TϕRT )(TϕPT )ϕ

= J2J
ϕ
1

Thus, Jϕ
1 J1 = Jϕ

1 J2 and J1J
ϕ
1 = J2J

ϕ
1

=⇒ J1
<
ϕ J2.

Relationship of ϕ- partial order with other partial orders.
Theorem 2.8: If P <

LR and P <
ϕR then P = R.

Proof: Suppose P <
ϕR, and therefore PϕP = PϕR and

PPϕ = RPϕ.

=⇒ Pϕ(R− P ) = 0

=⇒ (R− P )ϕP = 0 (11)

Again, P <
LR =⇒ KV (R− P )∗V K = R− P .

This follows from the equivalence
P <

LR ⇐⇒ KV P <
LKV R =⇒ KV (R− P ) ≥ 0

which shows that (R−P ) is s-k-Hermitian positive definite.
Now, pre-multiplying by V K and post multiplying by KV ,
we obtain

(R− P )∗ = V K(R− P )KV (12)
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Using equation (11), we get (R− P )ϕP = 0.
=⇒ (KV (R− P )∗V K)P = 0.
Now, by using (12)

(KV (V K(R− P )KV )V K)P = 0
I(R− P )IP = 0
(R− P )P = 0
RP − PP = 0
PP = RP

=⇒ P = R.
Theorem 2.9: If P and R are s-k-unitary matrices then

P <
ϕR =⇒ V KP <

∗ V KR.
Proof: Assume P <

ϕR, which implies PϕP = PϕR and
PPϕ = RPϕ.
From PϕP = PϕR,
We have, (KV P ∗V K)P = (KV P ∗V K)R.

=⇒ (PV K)∗(V KP ) = (PV K)∗(V KR)
Since P is s-k-unitary,
Therefore, PV K = V KP , and hence, (PV K)∗ =
(V KP )∗.
Thus,

(V KP )∗(V KP ) = (V KP )∗(V KR). (13)

Again, PPϕ = RPϕ,
which gives, P (KV P ∗V K) = R(KV P ∗V K).
Post- multiplying both sides by KV yields,

PKV P ∗ = RKV P ∗

Pre- multiplying by V K, we obtain
V KPKV P ∗ = V KRKV P ∗

(V KP )(PV K)∗ = (V KR)(PV K)∗

This implies,

(V KP )(V KP )∗ = (V KR)(V KP )∗ (14)

From equations (13) and (14), we conclude: V KP <
∗ V KR.

Hence, the result.
Theorem 2.10: If P and R are s-k-unitary matrices then

P <
∗ R =⇒ KV P <

ϕKV R.
Proof: Given, P <

∗ R =⇒ P ∗P = P ∗R and
PP ∗ = RP ∗.
Using, P ∗P = P ∗R
Pre- multiplying both sides by KV :

KV P ∗P = KV P ∗R.

KV P ∗V KKV P = KV P ∗V KKV R
PϕKV P = PϕKV R

Again, pre-multiplying both sides by V K,
V KPϕKV P = V KPϕKV R.
Using the fact that

(PKV )ϕKV P = (PKV )ϕKV R.

Since, P is s-k-unitary, therefore,
PKV = KV P =⇒ (PKV )ϕ = (KV P )ϕ

(KV P )ϕKV P = (KV P )ϕKV R (15)

Now, from PP ∗ = RP ∗, post-multiplying both sides by V K
gives, PP ∗V K = RP ∗V K,

PV KKV P ∗V K = RVKKV P ∗V K,
PV KPϕ = RVKPϕ.

Pre-multiplying both sides by KV gives.

KV PVKPϕ = KV RVKPϕ,

(KV P )(PKV )ϕ = (KV R)(PKV )ϕ,

(KV P )(KV P )ϕ = (KV R)(KV P )ϕ. (16)

Combining equations (15) and (16), we get KV P <
ϕKV R.

This completes the proof.
As discussed earlier, Hartwig and Styan [3] proved
P <

∗ R ⇐⇒ P <
rsR. Based on this and the previous theorem,

it follows that the ϕ- partial ordering is also closely related
to the minus partial ordering or rank subtractivity.

III. CHARACTERIZATIONS OF P <
ϕR

In this section, we present characterizations of ϕ- partial
ordering specifically for s-k-normal matrices. For these
matrices spectral decomposition becomes significantly more
accessible, allowing for a clear understanding of their
underlying structure. We will also establish relationships
concerning the squares of two s-k-normal matrices under
the ϕ- partial ordering. A matrix P ∈ Mn(C) is said to
be s-k-normal if PPϕ = PϕP .

Theorem 3.1: If P and R are two s-k-normal matrices
with 1 ≤ rank(P ) < rank(R), then the following
statements are equivalent:
(a) P <

ϕR
(b) There is a s-k-unitary matrix T such that

TϕPT =

[
M 0
0 0

]
and TϕRT =

[
M 0
0 N

]
,

where M is a s-k-diagonal matrix and N ̸= 0 is
a s-k-diagonal matrix.

(c) There is a s-k-unitary matrix T such that

TϕPT =

[
E 0
0 0

]
and TϕRT =

[
E 0
0 F

]
,

where E is a non-singular square matrix and F ̸= 0.
(d) There is a s-k-unitary matrix T such that

TϕPT =

[
E 0
0 0

]
and TϕRT =

[
E′ 0
0 F

]
,

where E is a non-singular square matrix and E′

is a square matrix of the same dimension and F ̸= 0,
then E = E′.

(e) There is a s-k-unitary matrix T such that

TϕPT =

[
M 0
0 0

]
and TϕRT =

[
M ′ 0
0 N

]
,

where M and M ′ are s-k-diagonal matrices of
the same dimension, and N ̸= 0 is an s-k-diagonal
matrix, then M = M ′.

(f) If T is a s-k-unitary matrix satisfies

TϕPT =

[
M 0
0 0

]
, where M is a non-singular

s-k-diagonal matrix, then

TϕRT =

[
M 0
0 F

]
, where F ̸= 0.

(g) All s-k-eigenvectors corresponding to non-zero
s-k-eigenvalues of P are s-k-eigen vector of R
corresponding to same eigen values.

The proof of this theorem is structured in four parts:
In part(1), we establish the logical sequence
(a) =⇒ (b) =⇒ (c) =⇒ (a).
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Proof: (a) =⇒ (b)
Given that P <

ϕR =⇒ PϕP = PϕR and PPϕ = RPϕ,
where both P and R are s-k-normal matrices. Since P is
s-k-normal, it satisfies =⇒ PPϕ = PϕP , which means that
Pϕ and P commute. Therefore, they are simultaneously s-k-
diagonalizable or contains same eigen vectors. Furthermore,
using s-k- normality property, Pϕ and R also commute. i.e.

PϕP = PϕR
PPϕ = PϕR

Since, PPϕ = RPϕ,
=⇒ RPϕ = PϕR,

Therefore they are simmultaneouslay s-k-diagonalizable.
Using all these results, we can say that P and R are also
simmultaneouslay s-k-diagonalizable, hence, Pϕ and R
commutative. Let us suppose that M and N are s-k-diagonal
matrices of matrices P and R, respectively, then there exists
a s-k-unitary matrix T such that

P = T

[
M 0
0 0

]
Tϕ and R = T

[
M ′ 0
0 N

]
Tϕ,

where M is a s-k-diagonal matrix and N ̸= 0.

Now, Pϕ = T

[
Mϕ 0
0 0

]
Tϕ.

Therefore,

PϕP = T

[
Mϕ 0
0 0

]
TϕT

[
M 0
0 0

]
Tϕ

PϕP = T

[
MϕM 0

0 0

]
Tϕ (17)

and, PϕR = T

[
Mϕ 0
0 0

]
TϕT

[
M ′ 0
0 N

]
Tϕ

PϕR = T

[
MϕM ′ 0

0 0

]
Tϕ (18)

From equations (17) and (18), we have
PϕP = PϕR =⇒ MϕM = MϕM ′ =⇒ M = M ′.

Proof: (b) =⇒ (c).
This implication follows trivially.

Proof: (c) =⇒ (a)

Given, TϕPT =

[
E 0
0 0

]
and TϕRT =

[
E 0
0 F

]
,

where E is a non-singular square matrix and F ̸= 0.
Therefore,

P = T

[
E 0
0 0

]
Tϕ, R = T

[
E 0
0 F

]
Tϕ

Then, we can write Pϕ = T

[
Eϕ 0
0 0

]
Tϕ

Thus,

PϕP = T

[
Eϕ 0
0 0

]
TϕT

[
E 0
0 0

]
Tϕ

PϕP = T

[
EϕE 0
0 0

]
Tϕ. (19)

Also,

PϕR = T

[
Eϕ 0
0 0

]
TϕT

[
E 0
0 F

]
Tϕ

PϕR = T

[
EϕE 0
0 0

]
Tϕ (20)

From equations (19) and (20), we observed that
PϕP = PϕR =⇒ P <

ϕR.
Part (2):

Proof: (a) =⇒ (d) =⇒ (e) =⇒ (a)
By applying a similar approach outlined above, we can easily
establish this which is trvial modification of previous results.

Part (3): We now prove that (b) ⇔ (f).
Proof: (b) =⇒ (f) ;

Assume that condition (b) holds.

Let T be a s-k-unitary matrix such that TϕPT =

[
M 0
0 0

]
.

By (b), there exists a s-k-unitary matrix U such that

UϕPU =

[
M

′
0

0 0

]
, UϕRU =

[
M

′
0

0 N

]
where M

′
is a non-singular s-k-diagonal matrix and

N ̸= 0 is a s-k-diagonal matrix.
By interchanging the columns of U if necessary, we assume
M

′
= M .

Let T = (T1, T2) be a partition.
Then, we have

TϕPT =

[
T1

ϕ

T2
ϕ

]
P
[
T1 T2

]
=

[
T1

ϕPT1 T1
ϕPT2

T2
ϕPT1 T2

ϕPT2

]
=

[
M 0
0 0

]
(21)

For the corresponding partition U = (U1, U2), we have,

UϕPU =

[
U1

ϕ

U2
ϕ

]
P
[
U1 U2

]

=

[
U1

ϕPU1 U1
ϕPU2

U2
ϕPU1 U2

ϕPU2

]
=

[
M 0
0 0

]
(22)

and

UϕRU =

[
U1

ϕ

U2
ϕ

]
R
[
U1 U2

]

=

[
U1

ϕRU1 U1
ϕRU2

U2
ϕRU1 U2

ϕRU2

]
=

[
M 0
0 N

]
(23)

Observe that, (22) =⇒ P = U

[
M 0
0 0

]
Uϕ

=⇒ P =
[
U1 U2

] [ M 0
0 0

] [
U1

ϕ

U2
ϕ

]

=
[
U1M 0

] [ U1
ϕ

U2
ϕ

]
=⇒ P = U1MU1

ϕ.

Equation (23) =⇒ R = U

[
M 0
0 N

]
Uϕ

TϕRT = TϕU

[
M 0
0 N

]
UϕT

=

[
T1

ϕ

T2
ϕ

] [
U1 U2

] [ M 0
0 N

] [
U1

ϕ

U2
ϕ

] [
T1 T2

]

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2297-2305

 
______________________________________________________________________________________ 



=
[

T1
ϕU1 T1

ϕU2

T2
ϕU1 T2

ϕU2

] [
MU1

ϕT1 MU1
ϕT2

NU2
ϕT1 NU2

ϕT2

]
By applying the normality condition, we have

=
[

T1
ϕU1 0

0 T2
ϕU2

] [
MU1

ϕT1 0

0 NU2
ϕT2

]

=

[
T1

ϕU1MU1
ϕT1 0

0 T2
ϕU2NU2

ϕT2

]

TϕRT =

[
T1

ϕPT1 0

0 T2
ϕU2NU2

ϕT2

]
Since, T1

ϕPT1 = M , let us take

T2
ϕU2NU2

ϕT2 = F , F ̸= 0.

Therefore, TϕRT =

[
M 0
0 F

]
.

Hence, (b) =⇒ (f).

Next, to prove that (f) ⇒ (b).
Suppose (f) is true. Let T be a s-k-unitary matrix such that

TϕPT =

[
M 0
0 0

]
, where M is non-singular s-k-diagonal

matrix. Then by (f), TϕRT =

[
M 0
0 F

]
, where F ̸= 0.

Since F is s-k-normal, there exists a s-k-unitary matrix Y
such that N = Y ϕFY , which is a s-k-diagonal matrix.

Let W = T

[
I 0
0 Y

]
Then,

WϕPW =

[
I 0
0 Y ϕ

]
TϕPT

[
I 0
0 Y

]

=
[

I 0
0 Y

] [
M 0
0 0

] [
I 0
0 Y

]
=

[
M 0
0 0

]
and
WϕRW =

[
I 0
0 Y ϕ

]
RϕRT

[
I 0
0 Y

]

=
[

I 0
0 Y

] [
M 0
0 N

] [
I 0
0 Y

]
=

[
M 0
0 N

]
Finally, the proof of part (4), (a) ⇔ (g), is
straightforward, since s-k-normality ensures simulaneous
s-k-diagonalizability, which preserves s-k-eigenvalues and
eigenvectors, leading to the confirmation of ϕ- partial
structure.
Hence the result.
The next theorem addresses the converse for s-k-normal
matrices: if P <

ϕR =⇒ . P 2<
ϕR

2.
Theorem 3.2: Let P and R be s-k-normal matrices with

I ≤ rank(P ) < rank(R). Then, the following two
statements are equivalent:

(a) P <
ϕR.

(b) P 2<
ϕR

2 and if P and R has non-zero s-k-eigen values α
and β respectively such that α2 and β2 are eigenvalues
of P 2 and R2 with a common eigenvector Y , then α =
β and Y is a common eigenvector of P and R.

Proof: Let us consider P <
ϕR =⇒ PϕP = PϕR.

Let T be a s-k-unitary matrix such that

TϕPT =

[
M 0
0 0

]
and TϕRT =

[
M 0
0 N

]
.

By part (b) of theorem (3.1), we also know that

TϕP 2T =

[
M2 0
0 0

]
and TϕR2T =

[
M2 0
0 N2

]
.

Let α and β be non-zero s-k-eigenvalues of P and R
respectively. Therefore, α2 and β2 have non-zero s-k
eigenvalues of P 2 and R2 respectively. Suppose Y is the
common s-k-eigenvector of P 2 and R2, in that case, we
have α = β and Y is a common s-k-eigen vector of P and R.

Conversely, suppose that statement (b) holds. Then

TϕP 2T =

[
∆2 0
0 0

]
and TϕR2T =

[
∆2 0
0 Γ2

]
,

where T , ∆, and Γ are appropriate matrices obtained by
applying part (b) of theorem (3.1) to P 2 and R2.

Let Tsk(1), Tsk(2)....,Tsk(m) be the column vectors of
T , and denote r = rank(P ).
For i = 1, 2, 3, ..., r, we have P 2tsk(i) = R2tsk(i) =
χsk(i)tsk(i), where χsk(i) = diag∆.
Thus, by the second part of (b), there exist complex
numbers dsk(1), dsk(2), dsk(3),...., dsk(r) such that
for all i=1,2,3,...,r, we have d2sk(i) = χsk(i) and
Ptsk(i) = Rtsk(i) = χsk(i)tsk(i).
Let D be the s-k-diagonal matrix with dsk(i) = diagD. For
i = r + 1, r + 2, ..., n,
we have R2tsk(i) = µsk(i−r)tsk(i), where µsk(i) = diagΓ.
Now, Take complex numbers nsk(1),nsk(2), nsk(3),....,
nsk(m−r) satisfying n2

sk(i) = µsk(i) for i = 1, 2, ...,m − r.
Let N be the s-k-diagonal with nsk(i) = diag(N).

Then, TϕPT =

[
M 0
0 0

]
, and TϕRT =

[
M 0
0 N

]
By applying part (b) of theorem (3.1), this equation
satisfies condition (a).
Hence, we conclude that P 2<

ϕR
2 =⇒ P <

ϕR.
Theorem 3.3: Let P and R be s-k-normal matrices. If

P <
ϕR, then PR = RP .

Proof: Let P and R be s-k-normal matrices. Then,
by definition of s-k-normality, we have PPϕ = PϕP and
RRϕ = RϕR. By part (b) of theorem (3.1), we have

TϕPT =

[
M 0
0 0

]
and TϕRT =

[
M 0
0 N

]
.

=⇒ P = T

[
M 0
0 0

]
Tϕ and R = T

[
M 0
0 N

]
Tϕ

=⇒ PR = T

[
M 0
0 0

]
TϕT

[
M 0
0 N

]
Tϕ

= T

[
M2 0
0 0

]
Tϕ.

Similarly, RP = T

[
M2 0
0 0

]
Tϕ.

=⇒ PR = RP .
Corollary 3.4: Let P and R be s-k-normal matrices whose

eigenvalues all have positive real parts. Then P 2<
ϕR

2 if and
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only if P <
ϕR.

Theorem 3.5: Let P and R be s-k-normal matrices with
I ≤ rank(P ) < rank(R). Then

(a) P <
ϕR

is equivalent to the following:

(b) P 2<
ϕR

2 and if TϕPT =

[
M 0
0 0

]
, TϕRT =[

MM1 0
0 N

]
, where T is a s-k-unitary matrix, M is

a non-singular s-k-diagonal matrix, M1 is a s-k-unitary
diagonal matrix, and N ̸= 0 is a s-k-diagonal matrix,
then M1 = I .

Proof: For the first direction (a) ⇒ (b), refer to the
proof of theorem (3.2) and, for the second part of (a) ⇒ (b),
see part (e) of theorem (3.1).
Conversely, assume that (b) holds. then, as established in the
proof of theorem (3.2), we have

TϕP 2T =

[
∆2 0
0 0

]
and TϕR2T =

[
∆2 0
0 Γ2

]
.

Hence, TϕPT =

[
M 0
0 0

]
and TϕRT =

[
M ′ 0
0 N

]
where M and M ′ are s-k-diagonal matrices satisfying M2 =
(M ′)2 = ∆ and N is s-k-diagonal matrices satisfying
N2 = Γ . Denote dsk(i) = diagD, d′sk(i) = diagD′,
r = rank(P ). Then, for all i = 1, 2, . . . , r, we have
d2sk(i) = (d′sk(i))

2. Hence, there exist complex numbers
msk(1),msk(2), . . . ,msk(r) such that |msk(1)| = |msk(2)| =
. . . = |msk(r)| and d′sk(i) = dsk(i)msk(i) for all i =
1, 2, 3, . . . , r.
Let M1 be the s-k-diagonal matrix with msk(i) = diagM1.
Then M ′ = MM1, and so M ′ = M . Thus, condition (a)
follows, since part (b) of theorem (3.1) is satisfied.
Next, we turn to the characterizations of minus partial
ordering (rank subtractivity) for s-k-normal matrices. In this
context, we examine the equivalence relation P <

rsR and
P 2 <

rsR
2 ⇔ P <

ϕR. To establish this equivalence, we make
use of a fundamental result due to Israel and Greville
[ [12],p.178], which we present below as a lemma:

Lemma 3.6: Let P ∈ Mn(C), 1 ≤ r ≤ n, s = n− r, then
the following statements are equivalent:

(a) rank(P ) = r
(b) If N ∈ Mr(C) is a non-singular submatrix of P , then

there are permutation matrices A and B ∈ Mn(R) and
matrices Q ∈ Ms×r(C), S ∈ Mr×s(C) such that

P = A

[
QNS QN
NS N

]
R.

Theorem 3.7: Let P and R be s-k-normal matrices. If a =
rank(P ), b = rank(R), 1 ≤ a ≤ b ≤ n and p = b−a, then
the following conditions are equivalent:

(a) P <
rsR.

(b) There exists a s-k-unitary matrix T ∈ Mn(C) such that

TϕPT =

[
M 0
0 0

]
and

TϕRT =

 M +QNS QN 0
NS N 0
0 0 0

,

where M ∈ Ma(C), N ∈ Mp(C) are non-singular
s-k-diagonal matrices, Q ∈ Ma×p(C) and
S ∈ Mp×a(C).

(c) There exists a s-k-unitary matrix T ∈ Mn(C) such that

TϕPT =

[
F 0
0 0

]
and

TϕRT =

 M +QES QE 0
ES E 0
0 0 0

,

where F ∈ Ma(C) and E ∈ Mp(C) are non-singular
matrices, Q ∈ Ma×p(C) and S ∈ Mp×a(C).
Proof: First, we prove that (c) =⇒ (a).

Assume condition (c) holds. Then, we have

TϕRT − TϕPT =

 QES QE 0
ES E 0
0 0 0



Tϕ(R− P )T =

 QES QE 0
ES E 0
0 0 0


C =

 QES QE 0
ES E 0
0 0 0


,
where (B −A) = (TCTϕ) satisfies
rank(C) = rank(B −A).
On the other hand, by Lemma (3.6), we have
rank(C) = rank(F ) = p = b−a = rank(R)− rank(P )
rank(R− P ) = rank(R)− rank(P ),
which proves (a) =⇒ (b).
Assume that P and R satisfy condition (a). Then, using the
notations from [Theorem 1, [1]], we have

TϕPU =

[ ∑
0

0 0

]
, and

TϕRU =

 ∑
+QNS QN 0
NS N 0
0 0 0

.

The singular values of a s-k-normal matrix are the absolute
values of its s-k-eigenvalues. Therefore, the s-k-diagonal
matrix formed by of s-k-eigenvalues of A is M0 =

∑
0 J ,

where J is a s-k-diagonal matrix of elements with absolute
value one. Furthermore, U = TJ−1 and TϕPU = M0 =[

M 0
0 0

]
, where M is the s-k-diagonal matrix of the

non-zero s-k-eigenvalues of P. Let us denote:

J =

 L 0 0
0 M 0
0 0 N

.

Next, TϕRT = TϕRUJ =

 ∑
+QNS QN 0
NS N 0
0 0 0

 L1 0 0
0 M1 0
0 0 N1


TϕRT =

 ∑
L1 +QNSL1 QNM1 0
NSL1 NM1 0

0 0 0


TϕRT =

 M1 +QNSL1 QNM1 0
NSL1 NM1 0

0 0 0


By (a), we have
b− a = rank(R− P ) = rank((Tϕ(R− P ))T )

= rank

[
QNSL1 QNM1

NSL1 NM1

]
.
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Denote N ′ = NM1. Since N and M1 are non-singular, it
follows that rank(N ′) = b− a.
Hence, by lemma (3.6), there exists matrices Q′ ∈ Maxp(C)
and S′ ∈ Ma×p(C) such that[

QNSL1 QNM1

NSL1 NM1

]
=
[

Q′N ′S′ Q′N ′

N ′S′ N ′

]
.

Consequently, TϕRT =

 M +Q′N ′S′ Q′N ′ 0
N ′S′ N ′ 0
0 0 0

,

which confirms part (b).
The implication (b) =⇒ (c) is trivial.

Corollary 3.8: Let P , R ∈ Mn(C). If P is s-k-normal, R
is s-k-Hermitian and P <

rsR, then P is s-k-Hermitian.
Proof: If rank(P ) = 0 or rank(P ) = rank(R), then

the result follows immediately.
Otherwise, using theorem 3.7, we proceed as follows:

P ′ = TϕPT =

[
M 0
0 0

]
, and

R′ = TϕRT =

 M +QNS QN 0
NS N 0
0 0 0

.

Since R is s-k-Hermitian, R′ is also s-k-Hermitian.
Therefore, Nϕ = N and NS = (QN)ϕ = NQϕ, which
implies S = Qϕ, since N is non-singular.

Now consider, P ′ = R′ −

 QNQϕ QN 0
NQϕ N 0
0 0 0

,

which is the difference of two s-k-Hermitian matrices.
Hence, and is therefore s-k-Hermitian. Hence, P ′ is also
s-k-Hermitian, and therefore P is s-k-Hermitian.

Theorem 3.9: Let P and R be two s-k-normal matrices
with 1 ≤ rank(P ) < rank(R), then the following
conditions are equivalent:
(a) P <

ϕR
(b) There is a s-k-unitary matrix T ∈ Mn(C) such that

TϕPT =

[
M 0
0 0

]
,TϕRT =

 M 0 0
0 N 0
0 0 0

,

where M and N are non-singular s-k-diagonal matrices.
(if b = n, then omit the third block row and
block-column of zeros in the expression of R).
Proof: Refer to theorem (3.1).

Theorem 3.10: Let P ,R be s-k-normal and suppose that
(R−P ) is s-k-Hermitian. Then the following conditions are
equivalent:
(a) P <

ϕR

(b) P <
rsR and P 2 <

rsR
2.

Proof: (a) =⇒ (b)
The implication follows directly from theorems (3.1) and
(3.9).
(b) =⇒ (a).
Assume that (b) holds. Using the notations from theorem

3.1, we have P = T

[
M 0
0 0

]
Tϕ

R = T

 M +QNS QN 0
NS N 0
0 0 0

Tϕ.

Since (R-P) is s-k-Hermitian, it follows that Tϕ(R − P )T
is also s-k-Hermitian. Therefore, N is s-k-Hermitian, and
S = Qϕ. We can write R as:

R = T

 M +QNQϕ QN 0
NQϕ N 0
0 0 0

Tϕ.

Furthermore,

P 2 = T

[
M2 0
0 0

]
Tϕ, and

R2 = T

 (M +QNQϕ)2 +QN2Qϕ (M +QNQϕ)QN +QN2 0
NQϕ(M +QNQϕ) +N2Qϕ NQϕQN +N2 0

0 0 0

Tϕ.

Thus, the difference becomes

R2 − P 2 = T

[
H1 0
0 0

]
Tϕ,

where,
H1 = T

[
(MQNQϕ +QNQϕ)2 +QN2Qϕ (M +QNQϕ)QN +QN2

NQϕ(M +QNQϕ) +N2Qϕ NQϕQN +N2

]
Tϕ.

Applying row and column operation, which do not
affect the rank, we reduce H1 to:

rank(H1) = rank

[
0 MQN

NQϕM NQϕQN +N2

]
.

Since, P 2 <
rsR

2, we have
rank(H1) = rank(R2 − P 2) = rank(R2) − rank(P 2) =
b− a = p.
Because NQϕQN is s-k-Hermitian non-singular definite,
and N is s-k-Hermitian positive definite, their sum
N ′ = NQϕQN +N2 is s-k-Hermitian positive definite, and
therefore non-singular.
Applying lemma 3.6 to H1, we find that there exists a
matrix S ∈ Mp×a(C) such that SϕN ′ = MQN and
SϕN ′S = 0. Since N ′ is positive definite, it follows that
S = 0. Therefore, SϕN ′ = MQN reduces to MQN = 0,
which in turn implies Q = 0 due to the non-singularity of
M and N .
Hence,

R = T

 M 0 0
0 N 0
0 0 0

Tϕ

and condition (a) follows from theorem 3.9.

IV. CONCLUSION

In this paper, we have delved into the concept of ϕ- partial
ordering and its connections to other partial orders, with
a special focus on the ϕ- partial ordering. We started by
defining a ϕ- partial order and proved several theorems
demonstrating how this ordering behaves in different
contexts, including matrix inversion and multiplication.
Next, we explored the preservation of ϕ- partial order under
various matrix operations, such as squares and s-k-unitary
similarity. One of the significant contributions of this study
was the characterization of ϕ- partial ordering for s-k-normal
matrices, as well as the characterizations of minus partial
ordering are described in the context of s-k-normal and
s-k-unitary matrices.
Furthermore, we established that the squares of s-k normal
matrices retain the ϕ- partial order under specific conditions,
adding depth to our understanding of how partial orders
operate on matrix squares. Through the exploration of ϕ-
partial ordering and its broader implications, this paper
contributes to the continued development of matrix theory.
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