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Abstract—In this investigation, two subclasses of Sakaguchi
functions associated with Gegenbauer are introduced. Further,
coefficient bounds and Fekete-Szegö inequalities for functions
belonging to these subclasses are obtained.
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I. INTRODUCTION

ORTHOGONAL polynomials were discovered by Leg-
endre in 1784 [19], and they are widely analyzed nowa-

days. In mathematical treatments of model problems, they
help in finding solutions to ordinary differential equations
under certain conditions imposed by the model.

Orthogonal polynomials play a vital role in contemporary
mathematics. They are frequently applied in physics and
engineering and play a dominant role in problems of ap-
proximation theory. In general, they appear in the theory of
differential and integral equations, as well as in mathematical
statistics. They are also applied in quantum mechanics,
scattering theory, automatic control, signal analysis, and
oscillatory symmetric potential theory [14], [15].

Generally speaking, polynomials ρn and ρm of orders n
and m are orthogonal if∫ b

a

w(x)ρn(x)ρm(x) dx = 0, for n ̸= m.

where w(x) is a non-negative function in the interval (a, b);
therefore, the integral is well-defined for all finite-order
polynomials ρn(x).

In this context, Gegenbauer polynomials act as a special
case of orthogonal polynomials. They are representatively
related to the typically real function Tn, as discovered in
[18], where the representation of typically real functions and
the generating function of Gegenbauer polynomials share a
common algebraic expression. Subsequently, this leads to
several inequalities that arise from the realm of Gegenbauer
polynomials.

Typically, real functions play a vital role in geometric
function theory due to the relation Tn = c0SR and their role
in estimating coefficient bounds, where SR denotes the class
of univalent functions in the unit disk with real coefficients.
The notation c0SR denotes the closed convex hull of SR.
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This paper interrelates certain new classes of Sakaguchi
functions with Gegenbauer polynomials and then explores
some properties of the class at hand. This section paves the
way for mathematical notations and definitions.

Let A indicate the class of analytic functions given below:

f(z) = z +
∞∑

n=2

anz
n, (1)

which are analytic in the open unit disk ∆ = {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = 0 and
f ′(0) = 1. Furthermore, S denotes the class of all functions
in A that are univalent in ∆.

A subordination between two analytic functions f and h
is written as f ≺ h. Conceptually, the analytic function f
is subordinate to h if the image under h contains the image
under f . Technically, the analytic function f is subordinate
to h if there exists a Schwarz function w with w(0) = 0 and
|w(z)| < 1 for all z ∈ ∆, such that:

f(z) = h(w(z)),

Besides, if the function h is univalent in ∆, then the
following equivalence holds: refer [23].

f(z) ≺ h(z) ⇔ f(0) = h(0),

and
f(∆) ⊂ h(∆).

The Koebe one-quarter theorem (see [16]) states that the
image of ∆ under such univalent functions f ∈ S contains
a disk of radius 1

4 . Therefore, each function f ∈ S has an
inverse f−1 that satisfies:

f−1(f(z)) = z(z ∈ ∆),

and

f(f−1(w)) = w{|w| < r0(f) : r0(f) ≥
1

4
}.

In fact, the inverse function is given by

f−1(w) = w−a2w
2+(2a22−a3)w

3−(5a22−5a2a3+a4)w
4+...
(2)

If both f and f−1 are univalent, then f ∈ A is said to
be bi-univalent in A. The class of bi-univalent functions is
represented by

∑
in ∆, as given in (1). In the literature [20],

[24], [29], [30], various information and different examples
can be found.

Frasin [12] investigated the coefficient inequalities for
certain classes of Sakaguchi-type functions satisfying
geometric conditions as follows:

IR

{
(s− t)z(f ′(z))

f(sz)− f(tz)

}
> α (3)
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for complex numbers s, t but s ̸= t and α (0 ≤ α < 1).
For a nonzero real constant λ, the generating function of

the Gegenbauer polynomials is defined as:

Bλ(τ, z) =
1

(1− 2τz + z2)λ
, (4)

where τ ∈ [−1, 1] and z ∈ ∆. For fixing τ, the function
Bλ is analytic in ∆. Hence it can be expanded in a Taylor
series as

Bλ(τ, z) =
∞∑

n=0

Cλ
n(τ)z

n, (5)

where Cλ
n(τ) is Gegenbauer polynomial of degree n.

Obviously, Bλ generates nothing when λ = 0. Therefore,
the generating function of the Gegenbauer polynomial is
given by:

Bλ(τ, z) = 1− log(1− 2τz + z2) =
∞∑

n=0

Cλ
n(τ)z

n, (6)

for λ = 0. Moreover, it is worth mentioning that a
normalization of λ greater than −1

2 is desirable [15], [21],
[26]. Gegenbauer polynomials can also be defined by the
following recurrence relation:

Cλ
n(τ) =

1

n
[2τ(n+λ−1)Cλ

n−1(τ)− (n+2λ−2)Cλ
n−1(x)],

(7)
with the conditional values

Cλ
0 (τ) = 1, Cλ

1 (τ) = 2τλ and Cλ
2 (τ) = 2λ(1 + λ)τ2 − λ.

First, we present some special cases of the polynomials
Cλ

n(τ) :

1. For λ = 1, we get the Chebyshev polynomials.
2. For λ = 1

2 , we get the Legendre polynomials.
Recently, many researchers have been exploring

bi-univalent functions associated with orthogonal
polynomials; a few of them are mentioned in [1]–[6],
[8]–[11], [22], [25], [27], [28]. For the Gegenbauer
polynomial, so far, no one has attempted to study Sakaguchi
functions in the literature. The aim of this paper is to
introduce two subclasses of starlike and convex functions
of Sakaguchi functions associated with Gegenbauer
polynomials. Additionally, the coefficient bounds and
Fekete-Szegö inequalities belonging to these classes are
obtained. Definition 1.1 defines a class of starlike Sakaguchi
functions associated with the Gegenbauer polynomial as
follows:

Definition 1.1: A function f ∈ A given by (1) is said to be
in the class G∗(λ,m) if the following subordinations holds
for all z, w ∈ ∆ :

(1−m) zf ′(z)

f(z)− f(mz)
≺ Bλ(τ, z), (8)

and
(1−m) wh′(w)

h(w)− h(mw)
≺ Bλ(τ, w). (9)

where z ∈ ( 12 , 1] and |m| ≤ 1 but m ̸= 1, the function
h(w) = f−1(w) is defined by (2) and Bλ is the generating
function of the Gegenbauer polynomial is given by (4).

The following definition introduces a class of convex Sak-
aguchi functions associated with the Gegenbauer polynomial:

Definition 1.2: A function f ∈ A given by (1) is said to be
in the class Gc(λ,m) if the following subordinations holds
for all z, w ∈ ∆ :

((1−m) zf ′(z))′

(f(z)− f(mz))′
≺ Bλ(τ, z), (10)

and
((1−m) wh′(w))′

(h(w)− h(mw))′
≺ Bλ(τ, w). (11)

where z ∈ ( 12 , 1] and |m| ≤ 1 but m ̸= 1, the function
h(w) = f−1(w) is defined by (2) and Bλ is the generating
function of the Gegenbauer polynomial is given by (4).

Remark 1.1: Taking the parameter m = 0 that was studied
by Ala Amourah et al [7].

II. COEFFICIENT BOUNDS FOR THE CLASS G∗(λ,m)

This section is devoted to finding the initial coefficient
bounds of the class G∗(λ,m) of Sakaguchi functions.

Theorem 2.1: For |m| ≤ 1 but m ̸= 1, let the function
f ∈ A given by (1) be in the class G∗(λ,m). Then

|a2| ≤
2|λ|τ

√
2|λ|τ√

(1−m)|(4λ2 − (1−m)2λ(1 + λ))τ2 + (1−m)τ |
,

(12)
and

|a3| ≤
2|λ|τ

2−m−m2
+

4λ2τ2

(1−m)2
. (13)

Proof: Let f ∈ G∗(λ,m). From (8) and (9), it is known
that

(1−m) zf ′(z)

f(z)− f(mz)
= Bλ(τ, w(z)), (14)

and
(1−m) wh′(w)

h(w)− h(mw)
= Bλ(τ, ϑ(w)), (15)

for some analytic functions

w(z) = r1z + r2z
2 + r3z

3 + ... (z ∈ ∆),

ϑ(w) = s1w + s2w
2 + s3w

3 + ... (w ∈ ∆).

such that w(0) = ϑ(0) = 0, |w(z)| < 1 (z ∈ ∆) and
|ϑ(w)| < 1 (w ∈ ∆).
It follows from (14) and (15) that

(1−m) zf ′(z)

f(z)− f(mz)
= 1+Cλ

1 (τ)r1z+[Cλ
1 (τ)r2+Cλ

2 (τ)r
2
1]z

2+...

and
(1−m) wh′(w)

h(w)− h(mw)
= 1+Cλ

1 (τ)s1w+[Cλ
1 (τ)s2+Cλ

2 (τ)s
2
1]w

2+...

By simple calculation show that

(1−m)a2 = Cλ
1 (τ)r1, (16)

(2−m−m2)a3− (1−m2)a22 = Cλ
1 (τ)r2+Cλ

2 (τ)r
2
1, (17)

−(1−m)a2 = Cλ
1 (τ)s1, (18)

(2a22−a3)(2−m−m2)−(1−m2)a22 = Cλ
1 (τ)r2+Cλ

2 (τ)r
2
1,

(19)
From (16) and (18), it is obtained that

r1 = −s1, (20)
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and
2(1−m)2a22 = [Cλ

1 (τ)]
2(r21 + s21). (21)

By summing (17) and (19), it is found that

2(1−m)a22 = Cλ
1 (τ)(r2 + s2) + Cλ

2 (τ)(r
2
1 + s21). (22)

By using (21) in (22), it is obtained that[
2(1−m)− 2Cλ

2 (τ)(1−m)2

[Cλ
1 (τ)]

2

]
a22 = Cλ

1 (τ)(r2 + s2).

(23)
It is well-known that [16], if |w(z)| < 1 and |ϑ(w)| < 1,

then
|rj | ≤ 1 and |sj | ≤ 1 for all j ∈ N. (24)

By considering (7) and (24), the required inequality (12)
is obtained from (23).

Next, by subtracting (19) from (17), then

2(2−m−m2)a3 − 2(2−m−m2)a22

= Cλ
1 (τ)(r2 − s2) + Cλ

2 (τ)(r
2
1 − s21). (25)

Further, in view of (20), it follows from (25) that

a3 =
Cλ

1 (τ)(r2 − s2)

2(2−m−m2)
+ a22. (26)

By considering (7) and (24), the desired inequality (13) is
obtained from (26).

This completes the proof of Theorem 2.1.
By taking λ = 1 in theorem 2.1, the following corollary

is obtained.
Corollary 2.1: Let the function f ∈ A given by (1) be in

the class G∗(1,m). Then

|a2| ≤
2τ

√
2τ√

(1−m)|(4− (1−m)4)τ2 + (1−m)|
,

and
|a3| =

4τ2

(1−m)2
+

2τ

2−m−m2
.

By putting m = 0, in corollary 2.1, which was studied by
Ala Amourah et al [7]

Remark 2.1: Let the function f ∈ A given by (1) be in
the class G∗(1). Then

|a2| ≤ 2τ
√
2τ ,

and
|a3| ≤ 4τ2 + τ.

III. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS
Gc(λ,m)

This section is devoted to finding the initial coefficient
bounds of the class Gc(λ,m) of Sakaguchi functions.

Theorem 3.1: For |m| ≤ 1 but m ̸= 1, let the function
f ∈ A given by (1) be in the class Gc(λ,m). Then

|a2| ≤
2|λ|τ

√
2|λ|τ√

|(2− 3m+m2)4λ2τ2 − 4(1−m)2(2λ(1 + λ)τ2 − λ)|
,

(27)
and

|a3| ≤
λ2τ2

(1−m)2
+

2|λ|τ
3(2−m−m2)

. (28)

Proof: By using (10) and (11), it is allows that

((1−m)zf ′(z))′

(f(z)− f(mz))′
= Bλ(τ, w(z)), (29)

and
((1−m)wh′(w))′

(h(w)− h(mw))′
= Bλ(τ, ϑ(w)). (30)

for some analytic functions

w(z) = r1z + r2z
2 + r3z

3 + ...

and
ϑ(w) = s1w + s2w

2 + s3w
3 + ...

on the unit disk ∆ with w(0) = ϑ(0) = 0, |w(z)| < 1(z ∈
∆) and |ϑ(w)| < 1(w ∈ ∆). By virtue of the generating
function of the Gegenbauer polynomial Bλ defined in (4),
the equations (29) and (36), can be written as

((1−m)zf ′(z))′

(f(z)− f(mz))′
= 1+Cλ

1 (τ)r1z+[Cλ
1 (τ)r2+Cλ

2 (τ)r
2
1]z

2+ ...

and
((1−m)wh′(w))′

(h(w)− h(mw))′
= 1+Cλ

1 (τ)s1w+[Cλ
1 (τ)s2+Cλ

2 (τ)s
2
1]w

2+...

A simple calculation shows that

2(1−m)a2 = Cλ
1 (τ)r1, (31)

3(2−m−m2)a3−4(1−m2)a22 = Cλ
1 (τ)r2+Cλ

2 (τ)r
2
1, (32)

−2(1−m)a2 = Cλ
1 (τ)s1, (33)

3(2−m−m2)(2a22−a3)−4(1−m2)a22 = Cλ
1 (τ)s2+Cλ

2 (τ)s
2
1,

(34)
From (31) and (33). it is clear that

r1 = −s1, (35)

and
8(1−m)2a22 = [Cλ

1 (τ)]
2(r21 + s21), (36)

By adding (32) and (34), it is obtained that

2(2−3m+m2)a22 = Cλ
1 (τ)(r2+s2)+Cλ

2 (τ)(r
2
1+s21), (37)

By applying (36) in (37),

[
2(2− 3m+m2)− 8Cλ

1 (τ)(1−m)2

[Cλ
1 (τ)]

2

]
a22 = Cλ

1 (τ)(r2+s2).

(38)
It is well known that [16], if |w(z)| < 1 and |ϑ(w)| < 1,

then

|rj | ≤ 1and|sj | ≤ 1forallj ∈ N. (39)

By considering (7) and (39), the desired inequality (27) is
obtained from (28).

Next, by subtracting (30) from (32), it is obtained that

6(2−m−m2)a3 − 6(2−m−m2)a22

= Cλ
1 (τ)(r2 + s2) + Cλ

2 (τ)(r
2
1 − s21), (40)

Further, in view of (35), it is follows from (40) that

a3 = a22 +
Cλ

1 (τ)

6(2−m−m2)
(r2 − s2). (41)

By considering (36) and (39), the desired inequality (28) is
derived from (41).
This completes the proof the theorem 3.1
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By taking λ = 1 in theorem 3.1, the following corollary
is found.

Corollary 3.1: Let the function f ∈ A given by (1) be in
the class Gc(1,m). Then

|a2| ≤
2τ

√
2τ√

|(2− 3m+m2)4τ2 − 4(1−m)2(4τ2 − 1)
,

|a3| ≤
τ2

(1−m)2
+

2τ

3(2−m−m2)
.

By putting m = 0, in corollary 3.1, which was introduced
by Ala Amourah et al [7].

Remark 3.1: Let the function f ∈ A given by (1) be in
the class Gc(1). Then

|a2| ≤
τ
√
2τ√

|1− 2τ2|
,

and
|a3| ≤ τ2 +

τ

3
.

IV. FEKETE-SZEGÖ INEQUALITY FOR THE CLASS
G∗(λ,m)

The Fekete-Szegö inequality is one of the famous
problems related to the coefficients of univalent analytic
functions. It was first introduced by [17], who stated that,
f ∈ S, then

|a3 − µa22| ≤ 1 + 2e
−2µ
1−η . (42)

This bound is sharp when µ is real.
This section is devoted to finding the sharp bounds of the

Fekete-Szegö functional a3 − µa22 for the class G∗(λ,m).
Theorem 4.1: For |m| ≤ 1 but m ̸= 1, let the function

f ∈ A given by (1) be in the class G∗(λ,m). Then for some
µ ∈ IR.

|a3 − µa22|

≤


2|λ|τ

2−m−m2 ,

|µ− 1| ≤ | (1−m)[(4λ2−(1−m)(2λ(1+λ)))τ2+λ]
2λ2τ2 |

8|λ|3τ3(1−µ)
(1−m)|(4λ2−(1−m)(2λ(1+λ)))τ2+λ| ,

|µ− 1| ≥ | (1−m)[(4λ2−(1−m)(2λ(1+λ)))τ2+λ]
2λ2τ2 |

(43)

Proof: Let f ∈ G∗(λ,m). By using (23) and (26) for
some µ ∈ IR, it is claimed that

a3 − µa22

= (1− µ)
[Cλ

1 (τ)]
3(r2 + s2)

2(1−m)([Cλ
1 (τ)]

2 − (1−m)Cλ
2 (τ)

+
Cλ

1 (τ)(r2 − s2)

2(2−m−m2)

= Cλ
1 (τ)

[
(h(µ) +

1

2(2−m−m2)
)r2 + (h(µ)

− 1

2(2−m−m2)
)s2

]

where h(µ) =
[Cλ

1 (τ)]2(1−µ)

2(1−m)([Cλ
1 (τ)]2−(1−m)Cλ

2 (τ)
. Then, it is

easily concluded that

|a3 − µa22| ≤

{
2|λ|τ

2−m−m2 , |h(µ)| ≤ 1
2(2−m−m2)

4|h(µ)||λ|τ, |h(µ)| ≥ 1
2(2−m−m2)

This proves Theorem 4.1
By choosing m = 0 in Theorem 4.1, which was

investigated by Ala Amourah et al. [7], we derive the
following:

Remark 4.1: Let the function f ∈ A given by (1) be in
the class G∗(λ). Then

|a3 − µa22| ≤

 |λ|τ, |µ− 1| ≤
∣∣∣ 2λτ2−2τ2+1

2λτ2

∣∣∣
8|λ|3τ3(1−µ)
|2λ(λ−1)τ2+λ| , |µ− 1| ≥

∣∣∣ 2λτ2−2τ2+1
2λτ2

∣∣∣
Taking µ = 1 in theorem 4.1, the following corollary found.

Corollary 4.1: Let the function f ∈ A given by (1) be in
the class G∗(λ). Then

|a3 − a22| ≤ |λ|τ.

V. FEKETE-SZEGÖ INEQUALITY FOR THE CLASS
Gc(λ,m)

Since the bounds of |a2| and |a3| are obtained for f ∈
Gc(λ,m), it is easy to determine the sharp bounds of the
Fekete-Szegö functional a3 − µa22 for f ∈ Gc(λ,m).

Theorem 5.1: For |m| ≤ 1 but m ̸= 1, let the function
f ∈ A is given by (1) be in the class Gc (λ,m). Then for
some µ ∈ IR.

|a3 − µa22|

≤



2|λ|τ
3(2−m−m2) ,

|µ− 1| ≤
∣∣∣ (2−3m+m2)2λ2τ2−2(1−m)2(2λ(1+λ)τ2−λ)

λ2τ2

∣∣∣
2λ3τ3(1−µ)

(2−3m+m2)λ2τ2−(1−m)2(2λ(1+λ)τ2−λ) ,

|µ− 1| ≥
∣∣∣ (2−3m+m2)2λ2τ2−2(1−m)2(2λ(1+λ)τ2−λ)

λ2τ2

∣∣∣
(44)

Proof: Let f ∈ Gc(λ,m). By using (38) and (41) for
some µ ∈ IR, it follows that

a3 − µa22

= (1− µ)

[
[Cλ

1 (τ)]
3(r2 + s2)

2[(2− 3m+m2)[Cλ
1 (τ)]

2 − 4(1−m)2Cλ
2 (τ)]

]
+

Cλ
1 (τ)(r2 − s2)

6(2−m−m2)

= Cλ
1 (τ)

(
[h(µ) +

1

6(2−m−m2)
]r2

+[h(µ)− 1

6(2−m−m2)
]s2

)
where h(µ) =

(1−µ)[Cλ
1 (τ)]2

2[(2−3m+m2)[Cλ
1 (τ)]2−4(1−m)2Cλ

2 (τ)]
.

Then, it is concluded that

|a3 − µa22| ≤

{
2|λ|τ

3(2−m−m2) , |h(µ)| ≤ 1
6(2−m−m2)

4|h(µ)||λ|τ, |h(µ)| ≥ 1
6(2−m−m2)

This proves Theorem 5.1
By taking m = 0 in Theorem 5.1, which was studied by

Ala Amourah et al. [7], we obtain the following:
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Remark 5.1: Let the function f ∈ A given by (1) be in
the class Gc(λ). Then

|a3 − µa22| ≤


|λ|τ
3 , |µ− 1| ≤

∣∣∣ 1−2τ2

λτ2

∣∣∣
2λ|2τ3(1−µ)

|1−2τ2| , |µ− 1| ≥
∣∣∣ 1−2τ2

λτ2

∣∣∣
By putting µ = 1 in theorem 5.1, the following corollary
derived.

Corollary 5.1: Let the function f ∈ A given by (1) be in
the class Gc(λ). Then

|a3 − a22| ≤
|λ|τ
3

.
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