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Abstract—A multiple set is an extended version of a fuzzy
set that can handle the uncertainty of an element along with
its multiplicity. Multiple sets provide a significant advantage
over fuzzy sets by allowing multiple occurrences of elements,
each with a finite number of the same or different membership
values. Multiple topological space is a generalized version of
fuzzy topological space. We try to expand on the ideas based
on multiple topological spaces in this study. We will focus on the
key ideas of an interior, closure, continuity, open set, closed set,
denseness, and multiple points to keep things brief. Additionally,
we have proven a few intriguing conclusions based on these
topological ideas.

Index Terms—Multiple set, multiple topology, closure, inte-
rior, continuity, denseness, neighborhood, multiple point.

I. INTRODUCTION

The fundamental ideas in mathematics are sets. Cantor, a
German mathematician who lived from 1845 to 1918, made
important advances in set theory, which has since become
the official language of science. It is possible to clearly and
precisely distinguish between a member and a non-member
of any well-defined collection of entities.

The majority of our conventional tools for formal reason-
ing, modeling, and computation are exact, predictable, and
crisp (i.e., dichotomous). These instruments provide clear
explanations for simplistic systems. Although they provide
clear explanations for simple systems, they fall short when it
comes to delivering accurate and meaningful insights into
the behavior of complex and varied systems. To address
this issue, L.A. Zadeh [1], [2], [3], [4], [5] introduced
the theory of fuzzy sets as an extension of dual logic.
Fuzzy logic focuses on approximate reasoning, as opposed
to strictly deductive reasoning from classical predicate logic.
Since Zadeh’s development of fuzzy set theory in the 1960s
[1], there has been increasing recognition of how human
uncertainty can influence scientific problems. The combi-
nation of fuzzy logic with expert systems has become one
of the most well-known and widely applied approaches.
Until recently, fuzzy set theory operating ”numerically” in
engineering applications has not received much attention.
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Artificial intelligence, computer science, medicine, robotics,
control engineering, decision theory, expert systems, logic,
management science, and operation research are just a few
fields in which this theory finds applications.

The idea of a multiset is a generalization of the concept
of a set in which members are permitted to appear more
than once. In 1971, Cerf et al. introduced the multiset
theory. Yager and Peterson contributed even more to it. In
1989, Blizard formalized the concept of multisets, which
have since become a widely used method for implementing
relations in database systems. Yager later introduced fuzzy
multisets [7] as a generalization of traditional multisets. In
fuzzy multisets, an element of a set X can appear multiple
times, each with the same or different membership values.
Yager introduced the concept of a fuzzy multiset in 1986
as an extension of a fuzzy set. In a fuzzy multiset, fuzzy
membership values are assigned to each identical copy of
an object. The main advantage of a fuzzy multiset over a
fuzzy set is its ability to handle multiple instances of objects.
However, it can only manage one attribute of the object at a
time. On the other hand, a multi-fuzzy set is an extension of a
fuzzy set that provides fuzzy membership values for multiple
attributes of an object. In 2010, Sebastian and Ramakrishnan
[8] proposed the multi-fuzzy set. The key benefit of a multi-
fuzzy set over a fuzzy set is its capacity to manage several
unknown attributes of an object simultaneously, though it
cannot address the multiplicity of the object itself.

In practical applications, representing an object’s multi-
plicity and many aspects may be crucial. A new mathematical
structure called multiple sets was proposed by Shijina et
al [9], [10] to concurrently represent numerous uncertain
features together with multiplicity and developed an in-depth
study on multiple sets. To illustrate incomplete knowledge,
several sets are introduced, from which all the previously
described instances can be inferred as particular situations.
Multiple sets may include different iterations of the same ele-
ment with a limited amount of distinct or similar membership
values. In other words, for every element x in the universal
set X , a multiple set of order (n, k) assigns nk membership
grades. Previous research has focused on the theoretical
development of multiple sets along with a rudimentary
introduction to aggregation operators [11], [12], relations
[13], similarity measures[14], and the topological structure
of multiple sets [15]. They included the basic notion of a
multiple topological space, base of a multiple topology, sub-
base, interior, closure, and subspace of a multiple topological
space in their study on the topological structure of multiple
sets. This work aims to extend the work done by Shijina et
al. in comparison with the study made by Chang on fuzzy
topological spaces [16], [17]. We have done a comparative
study with [17] and expanded the theory of open sets, closed
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sets, interior, closure, and denseness on multiple topological
spaces. A few basic results concerning these concepts are
investigated. We have extended the work to define multiple
continuous mappings by defining neighbourhood and multi-
ple point, We have explored the results based on multiple
continuous mappings using multiple point.

II. PRELIMINARIES AND BASIC DEFINITIONS

Definition 1: [1] Let X be a universal set a fuzzy set Ã
over X is a set of ordered pairs Ã = {(x, µÃ(x))|x ∈ X}
where µÃ is called the membership function or grade of
membership of x in Ã that maps X to the membership space
M. The range of the membership function is a subset of the
non-negative real numbers, with a finite supremum. When M
contains only 0 and 1, Ã is non-fuzzy, and µÃ(x) is identical
to the characteristic function of a non-fuzzy set.

Definition 2: [6] A multiset M drawn from X(non-empty
set) is represented by a count function CM : X → N ∪ {0}
where N is the set of positive integers. For each x ∈
X,CM (x) indicates the number of occurrences of the el-
ement x in M. Then a multiset M can be represented as
{CM (x)|x;x ∈ X}.

Definition 3: [7] For x ∈ X , the membership sequence of
x is defined as the non-increasing sequence of membership
values of x and is denoted by (µ1

A(x), µ
2
A(x), ..., µ

k
A(x)),

such that µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µk
A(x) where µA is a

membership function and µj
A, j=1,2,...,k are values (same or

different) of membership function µA. A fuzzy multi-set is
a collection of all x together with its membership sequence.

Definition 4: [8] Let X be a non-empty set and let {Li, i ∈
N} be a family of complete lattices where N is the set of
positive integers. A multifuzzy set A in X is a set of ordered
sequences A = {(x, µ1(x), µ2(x), ...);x ∈ X} where µi ∈
LX
i for i ∈ N . The function µA = (µ1, µ2,...) is called a

membership function of multifuzzy set A.
Definition 5: [9] Let X be a non-empty set. A multiple set

A drawn from X is an object of the form {(x,A(x));x ∈ X}
where for each x ∈ X , its membership value is an n × k
matrix,

A(x) =


A1

1(x) A2
1(x) · · · Ak

1(x)
A1

2(x) A2
2(x) · · · Ak

2(x)
...

. . .
...

...
A1

n(x) A2
n(x) · · · Ak

n(x)


where Ai i=1,2,...,n are membership functions. For each
i=1,2,...,n, Aj

i (x), j=1,2,...,k are membership values of the
membership function Ai for the element x ∈ X , written in
decreasing order. Then A is called a multiple set of orders
(n,k).
The collection of all multiple sets of order (n, k) is denoted
by MS(n,k)(X).

Example 1: [9] Suppose X = {x1, x2, x3} is the univer-
sal set of students under consideration. There is a panel
consisting of three experts evaluating the students under
the criteria of intelligence, extra-curricular activities, com-
munication skills, and personality. The membership func-
tions A1,A2,A3 and A4 represent criteria intelligence,
extra-curricular activities, communication skill, and person-
ality respectively. For each i=1,2,3,4, membership values
A1

i (x), A
2
i (x) and A3

i (x) of the membership function Ai for
the element x ∈ X are given by the three experts, written in

the decreasing order. Then the performance of students can
be represented by a multiple set of order (4,3) as follows:
A = {(x,A(x1)), (x,A(x2)), (x,A(x3))} where A(xi) for
i=1,2,3 are 4× 3 matrices given as follows:

A(x1) =


0.7 0.6 0.5
0.6 0.5 0.4
0.7 0.5 0.3
0.9 0.9 0.8

, A(x2) =


0.8 0.6 0.6
0.6 0.5 0.4
0.7 0.5 0.4
0.9 0.8 0.7

,

A(x3)=


0.8 0.7 0.5
0.7 0.6 0.4
0.7 0.4 0.4
0.8 0.8 0.7


Definition 6: [9] Let X be a universal set. Let A,B ∈

MS(n,k)(X) and ,

A(x)=


A1

1(x) A2
1(x) · · · Ak

1(x)
A1

2(x) A2
2(x) · · · Ak

2(x)
...

. . .
...

...
A1

n(x) A2
n(x) · · · Ak

n(x)

,

B(x)=


B1
1(x) B2

1(x) · · · Bk
1 (x)

B1
2(x) B2

2(x) · · · Bk
2 (x)

...
. . .

...
...

B1
n(x) B2

n(x) · · · Bk
n(x)


be the membership matrices for x in A and B respectively.

• Subset: A ⊆ B iff Aj
i (x) ≤ Bj

i (x) for every x ∈ X ,
i=1,2,...,n and j=1,2,...,k.

• Equality: A = B iff A ⊆ B and B ⊆ A. That
is, Aj

i (x) = Bj
i (x) for every x ∈ X , i=1,2,...,n and

j=1,2,...,k.
• Standard Union: The union of A and B, denoted as

A ∪B, is a multiple set whose membership matrix for
every x ∈ X , i=1,2,...,n and j=1,2,...,k is given by (A∪
B)ji (x) = max{Aj

i (x), B
j
i (x)}.

• Standard Intersection: The intersection of A and B,
denoted as A∩B, is a multiple set whose membership
matrix for every x ∈ X , i=1,2,...,n and j=1,2,...,k is
given by (A ∩B)ji (x) = min{Aj

i (x), B
j
i (x)}.

• Standard Complement: The standard complement of A
is denoted as Ā, is a multiple set whose membership
matrix for each x ∈ X , is given by Āj

i (x) = 1 −
Ak−j+1

i (x) for every i=1,2,...,n and j=1,2,...,k.
Definition 7: [17] On a set X, a fuzzy topology is a family

F={µ : µ is a fuzzy set in X} of fuzzy subsets that satisfies
the following three axioms:

• 0,1 ∈ F.
• µ1, µ2 ∈F, then µ1 ∧ µ2 ∈F.
• If {µi : i ∈ J} ⊂ F where J denotes an index set, then

∨µi ∈F.
F is described as a fuzzy topology for X and (X, F) is named
as a fuzzy topological space or fts. The members of F are
defined as an F-open fuzzy set.
If the complement of ρ denoted by ρc, is F-open, then an
element ρ ∈ [0, 1]X is said to be an F-closed fuzzy set.

III. MULTIPLE TOPOLOGICAL SPACES

Definition 8: A multiple topology on a set X is a family
of multiple subsets that satisfy the following three axioms:

• ϕ,X ∈ M.
• P1,P2 ∈ M then P1 ∩P2 ∈ M.
• If {Pi : i ∈ J} ⊂ M then ∪Pi ∈ M.
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M is described as a multiple topology for X and the pair (X,
M) is named a multiple topological space.

Definition 9: Let, (X, M) be a multiple topological space
then the members of M are defined as M-open multiple set
or open set .
A multiple set P is said to be closed in a multiple topological
space (X, M) iff Pc ∈ M .

Example 2: A ={(x1,A(x1)), (x2,A(x2)), (x3,A(x3))}
and B ={(x1,B(x1)), (x2,B(x2)), (x3,B(x3))} be two
multiple sets of order (2,2) defined over X = {x1, x2, x3}
where

A(x1)=

0.9 0.7 0.6
0.8 0.5 0.2
0.8 0.7 0.3

, A(x2)=

0.6 0.7 0.3
0.3 0.2 0.1
0.7 0.4 0.3

,

A(x3)=

0.5 0.3 0.2
0.2 0.1 0.1
0.6 0.3 0.1


B(x1)=

0.6 0.5 0.4
0.5 0.5 0.2
0.3 0.2 0.1

, B(x2)=

0.3 0.3 0.2
0.3 0.3 0.1
0.4 0.4 0.1

,

B(x3)=

0.3 0.2 0.1
0.1 0.1 0.1
0.3 0.3 0.2


Let, M = {ϕ,A,B, X}.
A(x1) ∩B(x1) = B(x1),
A(x2) ∩B(x2) = B(x2),
A(x3) ∩B(x3) = B(x3),
A(x1) ∪B(x1) = A(x1),
A(x2) ∪B(x2) = A(x2),
A(x3) ∪B(x3) = A(x3),
That is A ∪ B ∈ M and A ∩ B ∈ M. Clearly, (X,M)

forms a multiple topological space.
Example 3: Consider the collection M = {X,ϕ}. Clearly

M defines a multiple topology over X called indiscrete
multiple topology.

Definition 10: Discrete multiple topology of order (n, k)
over X is a collection that contains all the multiple sets of
order (n, k) defined over X .

Definition 11: Let (X, M) be a multiple topological space
and P ⊂ X . The closure of P is denoted by P̄ and is defined
as the smallest closed multiple set containing P.
Equivalently, P̄ is defined as following way:

P̄ = ∩{Q : Q is M-closed and P ⊂ Q}.
Obviously then P̄ is always M-closed.
Multiple topology generated by the closure operator is de-
noted by MX and is defined by,

MX = {P ∈ MS(n,k)(X) where 1−P = 1−P}.

Then (X,MX) is called the closure of multiple topological
space generated by the closure operator.

Theorem 1: A map P → P̄ defined over the multiple
topological space (X,M) is said to be a closure operator if it
satisfies the following properties:

1) P ≤ P̄.
2) ¯̄P = P̄.
3) For any multiple set Q,P ∪Q = P̄ ∪ Q̄.
4) ϕ̄ = ϕ.

Proof: 1. From the definition of closure operator,
P=∩{R : R is closed and R ≥ P}.
therefore P ≤ P.
2. Since P is the smallest closed set containing P and P

itself is closed.
Then P=P.
3. Clearly, P ∪Q is closed.
Again, P ∪Q ≥ P ∨Q.

⇒ P ∨Q ≥ P ∪Q.
⇒ P ∨Q ≥ P ∪Q

And, P ∪Q ≥ P.
⇒ P ∪Q ≥ P.
thereforeP ∪Q ≥ P ∪Q.

Hence, P ∪Q=P ∪Q.
4. Since the whole space X ∈ M is open, then it’s comple-
ment, Xc= ϕ is closed.
Also ϕ is closed.
So we can write ϕ=X.

Example 4: Let A, B,C be multiple sets over R, defined as

Aj
i (x) =

{
2x
5 + 1

2 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Bj
i (x) =

{
2x
15 + 2

3 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Cj
i (x) =

{
x
4 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

ρ = {X,ϕ, ,A,C} is a multiple topology on R.

Then A=X, B=X and C=Cc.

Example 5: Let A,B,C be multiple sets of order (2,2)
over X = {1, 2} whose membership values are given by,

Aj
i (x) =

2x
15i +

2
3j ; x∈ X and for i,j=1,2.

Bj
i (x) =

x
4ij ; x∈ X and for i,j=1,2.

The membership matrix is calculated below,

A(1) =

[
0.8 0.46
0.73 0.4

]
, A(2) =

[
0.93 0.6
0.8 0.46

]
B(1) =

[
0.25 0.125
0.125 0.06

]
, B(2) =

[
0.5 0.25
0.25 0.125

]
Here, A ∪B = A, A ∩B = B.
Then,ρ = {ϕ,X,A,B} is a multiple topology on X, where
A=X, and B=Bc.

Theorem 2: Let (X, M) be a multiple topological space
and P,Q be two multiple sets in X. Then P ∩Q=P ∩Q.

Proof: Clearly, P̄ ∩ Q̄ is closed.
Again, P̄ ∩ Q̄ ≤ P ∩Q.

⇒ P̄ ∩ Q̄ ≤ P ∩Q.
⇒ P̄ ∩ Q̄ ≤ P ∩Q.

Again, P ∩Q ≤ P.
⇒ P ∩Q ≤ P̄.

Similarly, P ∩Q ≤ Q̄.
Therefore, P ∩Q ≤ P̄ ∩ Q̄.
Hence, P ∩Q = P̄ ∩ Q̄.

Definition 12: Let (X, M) be a multiple topological space
and Q ⊂ X . The interior of Q is denoted by Q◦ and is
defined as the largest open multiple set contained in Q.
Equivalently, Q◦ is defined in the following way:

Q◦ = ∪{P : P is M-open and P ⊂ Q}.
Then Q◦ is always M-open.
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Example 6: Let A,B, C be multiple sets over R, defined
as

Aj
i (x) =

{
2x
5 + 1

2 ;x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Bj
i (x) =

{
2x
15 + 2

3 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Cj
i (x) =

{
x
4 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

ρ = {X,ϕ,A,C} is a multiple topology on R.

Then A◦ = C, B◦ = C and C◦ = ϕ.
Example 7: Let A, B, C be multiple sets of order (2,2)

over X = {1, 2} whose membership values are given by,
Aj

i (x) =
2x
15i +

2
3j ; x∈ X and for i,j=1,2.

Bj
i (x) =

x
4ij ; x∈ X and for i,j=1,2.

ρ = {X,ϕ,A,B} is a multiple topology on X.
Then A◦ = B and B◦ = ϕ.

Theorem 3: Let (X, M) be a multiple topological space
and P,Q be two multiple sets in X. Then

1) ϕ◦ = ϕ,X◦ = X.
2) P◦ ⊂ P.
3) P◦◦ = P◦.
4) (P ∩Q)

◦=P◦ ∩Q◦.

Proof: 1. Since the interior of any set is the join of all
open subsets contained in this set. Now the empty set ϕ and
the whole space X of a multiple topological space is open.
Thus ϕ◦=ϕ and X◦=X.
2. From the definition of interior of a set P, the combination
of all open subsets is included in P, denoted by P◦ i.e.,
P◦=∪{Q : Q is open and Q ⊂ P}.
Hence, P◦ ⊂ P.
3. Since P◦ itself is open and P◦◦ is the greatest open set
contained in P◦.
So, evidently P◦◦ = P◦.
4. Since (P ∩Q)

◦ ⊂ P◦ and (P ∩Q)
◦ ⊂ Q◦.

So, (P ∩Q)
◦ ⊂ P◦ ∩Q◦.

On the other hand, P◦ ∩Q◦ ⊂ P∩Q of which the open set
P◦ ∩Q◦ hold in P ∩Q.
Hence P◦ ∩ Q◦ must be contained in the largest open set
(P ∩Q)

◦
.

i.e., P◦ ∩Q◦ ⊂ (P ∩Q)
◦
.

Therefore, (P ∩Q)
◦=P◦ ∩Q◦.

Theorem 4: Let (X, M) be a multiple topological space
and P,Q be two multiple sets in X. Then P◦ ∪ Q◦ ⊆
(P ∪Q)

◦
.

Proof: Clearly, P◦ ∪Q◦ is open.
Also, P◦ ⊆ P and Q◦ ⊆ Q.
Then, P◦ ∪Q◦ ⊆ P ∪Q.

⇒ (P◦ ∪Q◦)◦ ⊆ (P ∪Q)
◦
.

⇒ P◦ ∪Q◦ ⊆ (P ∪Q)
◦
.

Definition 13: Suppose (X,M1) and (Y,M2) be two mul-
tiple topological spaces and let F : (X,M1) → (Y,M2) be
a function from X into Y. Then F is said to be continuous
at a point x ∈ X if every M2 open subset Q , F−1(Q) is
open in M1.

Theorem 5: Let (X,M1) and (Y,M2) be two multiple
topological spaces. Then a function F : (X,M1) → (Y,M2)
is continuous if F (P) ⊂ F (P) for all P in multiple
topological space (X,M1).

Proof: Let P1 ∈ {(yi, A(yi)); yi ∈ Y } be such that
P1

c ∈ M2 and put
P = F−1(P1), then

F (P̄) ⊂ F (P).
= F (F−1(P1).
⊂ P̄1.
= P1.

But P̄ is such that P ⊂ P̄. So, P = P̄ and P is
closed. i.e., F−1(P1) is closed. Therefore, F is continuous.

Definition 14: Let (X,M) be a multiple topological space.
Some definitions on this space are given below:

1) A multiple set P is said to be everywhere dense iff
P̄=X.

2) A multiple set P is nowhere dense iff (P̄)
c=X.

3) int(P̄) = ϕ, that is if the interior of closure of any
multiple set P is empty, then P is called nowhere dense
in X.

4) Any multiple set P is said to be multiple boundary(M-
boundary) iff 1−P=X.

Example 8: Let A,B,C be multiple sets over R, defined
as

Aj
i (x) =

{
2x
5 + 1

2 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Bj
i (x) =

{
2x
15 + 2

3 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

Cj
i (x) =

{
x
4 ; x∈ [0, 1] ∀i, j ∈ N.

0; otherwise.

ρ = {ϕ,X,A,C} is a multiple topology on R.

Then A=1, B=1 and C=Cc.
This implies that A and B is everywhere dense in R.

Result 1: If P ⊆ Q and Q is everywhere dense then P
is everywhere dense too.

Proof: Since P ⊆ Q and Q ⊆ Q̄,
⇒ P ⊆ Q̄.
⇒ P̄ ⊆ ¯̄Q.
⇒ P̄ ⊆ Q̄.
Since Q̄ = X, therefore P̄ = X.
Hence, P is everywhere dense too.

Result 2: If Q ⊆ P and P is M-boundary, consequently
then Q is M-boundary too.

Proof: Since Q ⊆ P,
⇒ 1−P ⊆ 1−Q.
⇒ 1−P ⊆ 1−Q.
So, 1−P=X.
Thus, 1−Q=X.
Hence, Q is M-boundary too.

Result 3: If P is nowhere dense and Q ⊆ P, then Q is
nowhere dense too.

Proof: Since Q ⊆ P and P ⊆ P̄,
⇒ Q ⊂ P.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 7, July 2025, Pages 2336-2341

 
______________________________________________________________________________________ 



⇒ 1−P ⊆ 1− Q̄.
⇒ 1−P ⊆ 1− Q̄.
Since P is nowhere dense which implies

1−P=X.
Hence, Q is nowhere dense too.

Result 4: If P is nowhere dense then so is P̄.
Proof: Since P ⊆ P̄,

⇒ 1−P ⊇ 1− P̄.
⇒ 1−P ⊇ 1− P̄.
⇒ (Pc) ⊇ (P̄c).
Since P is nowhere dense, so P

c
= X.

Hence, P̄ is nowhere dense too.
Definition 15: Let (X, M) be a multiple topological space

and Q ⊂ X and x ∈ X . Then Q is a neighborhood of x if
M-open set A exists such that x ∈ A ⊂ Q.

Definition 16: A multiple set Q in the multiple topo-
logical space (X,M) is called a multiple point of y if
M(x) = [0](n×k) for every x ∈ X − {y}.

Definition 17: Let (X, M) and (Y, N) be multiple topolog-
ical spaces. The mapping FG : (X,M) → (Y,N) is called
multiple mapping from (X, M) to (Y, N), where F : X → Y
and G : M → N . For each multiple neighborhood P of
F (qx), if there exists a multiple neighborhood Q of qx such
that FG(Q) ⊂ P, then FG is said to be multiple continuous
mapping at qx.
If FG is multiple continuous mapping at all qx, then FG is
called multiple continuous mapping.

Definition 18: Let (X, M) and (Y, N) be multiple topolog-
ical spaces. The mapping FG : (X,M) → (Y,N) is called
multiple mapping from (X, M) to (Y, N), where F : X → Y
and G : M → N . Then
(1) if the image of each M-open set over X is M-open in
Y , then FG is said to be M-open mapping.
(2) if the image of each M-closed set over X is M-closed
in Y , then FG is said to be M-closed mapping.

Theorem 6: We know that (X, M) and (Y, N) are two
multiple lattice topological spaces, FG : (X,M) → (Y,N)
be a mapping. Then the following conditions are equivalent:
(1) FG : (X,M) → (Y,N) is a multiple continuous
mapping.
(2) For each M-open set O over Y, FG(O) is a M-open set
over X.
(3) For each M-closed set B over Y, F−1

G (B) is a M-closed
set over X.
(4) For each M-open set A over X, FG(A) ⊂ FG(A).
(5) For each M-open set O over Y, F−1

G (O) ⊂ FG(O).
(6) For each M-open set O over Y, F−1

G ((O)o) ⊂
(F−1

G (O))o.
Proof: (1) ⇒ (2):

Let G be a M-open set over Y and Q ∈ F−1
G (O) be an

arbitrary M-point. Then FG(Q) ∈ A.
Since FG is M-continuous mapping, there exists Q ∈ A ∈ τ
such that FG(A) ⊂ O.
This implies Q ∈ A ⊂ F−1

G (O), F−1
G (O) is a M-open set

over X.
(2) ⇒ (1):
Let Q be a M-point and F (Q) ∈ O be an arbitrary M-
neighbourhood. Then
F (Q) ∈ F−1

G (O) is a M-neighbourhood and FG(F
−1
G (O)) ⊂

O.
(2) ⇒ (3):

If for each M-open set G over Y, F−1
G (O) is a M-open set X,

then for each M-closed set H over Y, F−1
G (B) is a M-closed

set over X.
(3) ⇒ (4):
Let A be a M-open set over X.
Since FL

P ⊂ F−1
G (FG(A)) and FG(F

L
P ) ⊂ (FG(A)), we

have
FL
P ⊂ F−1

G (FG(A)) ⊂ F−1
G (FG(A)).

By (3), since F−1
G (FG(A)) is a M-closed set over X,

(A) ⊂ F−1
G (FG(A)).

Thus FG((A)) ⊂ FG(F
−1
G (A)) ⊂ FG(A) is obtained.

(4) ⇒ (5):
Let G be a M-open set over Y and F−1

G (O) = A.
By (4),
FG((A)) = FG(F

−1
G (O)) ⊂ FG(F

−1
G (O)) ⊂ (O).

Then F−1
G (O) = ((A)) ⊂ F−1

G (FG(A)) ⊂ F−1
G (O).

(5) ⇒ (6):
Let G be a M-open set over Y.
Substitute (A)′ in (5), then
F−1
G ((O)′) ⊂ F−1

G ((O)′).
Since (O)o = ((O)′)′, then we have
F−1
G ((O)o) = F−1

G (((O)′)′) = (F−1
G (((O)′)′) ⊂

(F−1
G (((O)′)′) = ((F−1

G (((O)′))′ = (F−1
G (O))o.

(6) ⇒ (2):
Let G be a M-open set over Y.
Then since (F−1

G ((O))o ⊂ F−1
G (O) = F−1

G (O)o) ⊂
(F−1

G ((O))o,
(F−1

G ((O))o = F−1
G (O) is obtained.

This implies F−1
G (O) is a M-open set over X.

Note 1: M-open, M-closed, and multiple continuous map-
pings are all independent.

Theorem 7: If FG : (X,M) → (Y,N) is a multiple con-
tinuous mapping, then for each element x, FGx : (X,Mx) →
(Y,Nx) is a multiple continuous mapping.

Proof: Let U ∈ Nx. Then there exists a M-open set O
over Y such that U = O(x).
Since FG : (X,M) → (Y,N) is a multiple continuous
mapping, F−1

G (O) is a M-open set over X and F−1
G (O)(x) =

F−1
G (O(x)) = F−1(A) is a M-open set.

This implies FGx is a multiple continuous mapping.
Theorem 8: If (Ā)′ is a M-open set over X , for each M-

open set A, then FG : (X,M) → (Y,N) is a multiple
continuous mapping if and only if FGx : (X,Mx) → (Y,Nx)
is a multiple continuous mapping for each element x.

Proof: Let FGx : (X,Mx) → (Y,Nx) be a multiple
continuous mapping for each element x and let A be an ar-
bitrary M-open set over X . Then FGx(Ā(x)) ⊂ FGx(A)(x)
is satisfied for each x.
Since (Ā)′ ∈ X , (Ā)′ = A′.
Thus FG((A)) = FG(A) is obtained.
Let FG : (X,M) → (Y,N) be a multiple continuous
mapping. Then for each element x and if A be an arbitrary
M-open set over X . Then FG(Ā(x)) ⊂ FG(A)(x) is satisfied
for each element x.
Thus FGx : (X,Mx) → (Y,Nx) is obtained.
This implies FGx is a multiple continuous mapping for each
element x.
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CONCLUSION

A detailed study has been made on the topological struc-
ture of multiple sets. The analysis proceeds as a generaliza-
tion of fuzzy topology by Chang. The theory of interior,
closure, denseness, open and closed sets, neighbourhood,
multiple point, and continuous mapping in multiple topologi-
cal spaces have been extensively studied. The theory has been
illustrated with numerical examples combined with graphical
representations. We can extend the theory of multiple con-
tinuous mapping and explore some interesting results with
proof.
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