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Abstract—In this paper, we present a comprehensive method
for electric load forecasting that integrates the swing door
tabulation (SDT) algorithm, the random forest (RF) model,
and Bayesian optimization. In the data pre-processing stage,
we improve the integrity of the data set by imputing missing
electric power data using triple exponential smoothing and
cubic Newton interpolation. The SDT algorithm is then used
to reduce the complexity of the data while preserving impor-
tant information, thus achieving controlled data compression.
Finally, the RF model is used to predict electrical load data,
ensuring maximum prediction effectiveness. Simulation results
confirm the superior performance of the proposed method in
predicting future electrical loads, thereby validating its practical
value. This study provides new insights into electric load
forecasting and planning, with potential applications in broader
data analysis domains.

Index Terms—electricity data, swing door tabulation, random
forest, Bayesian optimization.

I. INTRODUCTION

HINA has rapidly become an energy superpower, rank-
ing first in the world in both total energy production and
consumption. This growth has significantly improved energy
supply capacity, resulting in noticeable changes in the energy
structure and the rapid development of renewable energy
sources. As a key driver of the national economy, demand
for electricity has risen sharply in line with rapid economic
growth. China’s electricity generation is mainly based on
coal, nuclear, hydro, wind and solar power, which are con-
verted into electrical energy through various processes.
However, there is a significant imbalance between the
geographical distribution of China’s electricity resources and
the demand for electricity: resources are mainly concentrated
in the western and northern regions, while demand is con-
centrated in the eastern regions. This uneven distribution
has led to higher electricity supply costs, higher social
electricity costs, lower energy use efficiency and worsening
air pollution. To address this issue, the Chinese government
has introduced a series of policies, including the West-East
Power Transmission Project, promoting electricity market re-
forms and accelerating the construction of a unified national
electricity market system. At the same time, power compa-
nies must also carry out reasonable planning and design of
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electricity distribution. Therefore, accurately predicting the
daily electricity load of users throughout the year has become
critical to power planning and design.

Research in the field of electricity load forecasting has
been particularly dynamic in recent years. Researchers have
used a variety of methods, ranging from classical time series
analysis to advanced deep learning techniques, to improve
forecasting accuracy. For example, Zhang et al. proposed
a power forecasting model that integrates empirical mode
decomposition, chaotic mapping and the grey wolf optimizer
to improve the solution search process and determine the
parameters [1]. Lai et al. developed a back-propagation
neural network model that incorporates production infor-
mation, genetic algorithms and particle swarm optimization
[2]. He et al. constructed a hybrid model based on Holt-
Winters and gated recurrent unit networks for short-term
load interval prediction [3]. Ahajjam et al. investigated the
use of empirical mode decomposition and deep learning
techniques to improve the accuracy of short-term electric
load forecasting [4].

Recent advances suggest that deep learning technologies
have significant potential for electricity load forecasting.
Hong et al. integrated a hybrid convolutional neural network
(CNN) with a fully connected network and proposed an
enhanced elite particle swarm optimization method to op-
timize the structure and hyperparameters of the CNN in an
outer loop to predict short-term electricity load [5]. Based on
Bayesian neural networks, Tziolis et al. optimized decision
heuristics in the statistical post-processing stage to improve
the performance of short-term network load forecasting [6].
Moradzadeh et al. proposed a deep learning framework that
integrates autoencoders, convolutional neural networks, and
network models with long short-term memory for short-term
electricity load forecasting [7]. Based on empirical mode
decomposition and long short-term memory networks, Yuan
et al. proposed an improved extreme learning machine model,
further enriching electricity load forecasting methods [8]. In
addition to the aforementioned methods, a number of new
technologies and models are continuously being proposed
and applied, see [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19] and many references therein.

Despite the fruitful results achieved in short-term electric-
ity load forecasting research, studies on medium and long-
term electricity load forecasting are relatively scarce. Build-
ing on previous research, this paper applies cubic exponential
time series smoothing, cubic Newton interpolation, random
forest (RF) and swing door tabulation (SDT) algorithms to
the study of medium and long-term electric load. By applying
these methods to the electricity consumption data of users
in the Ceramic Valley to validate the feasibility of planning
solutions, the aim is to provide electricity companies with
more accurate and scientific planning support.

The structure of the paper is as follows: Section II in-
troduces the process of electricity data collection and pre-
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processing, including techniques for handling missing data
and performing correlation analysis. Section III presents the
SDT electricity data compression algorithm and its role in
reducing data complexity. Section IV explores the application
of the RF model for electricity load forecasting, with hy-
perparameters optimized by Bayesian optimization. Finally,
Section V concludes the paper by summarising the main
contributions and discussing future research directions.

II. DATA ACQUISITION AND PRE-PROCESSING
A. Data acquisition

In this paper, we construct an electricity load forecasting
model based on one year of electricity consumption data
collected from eight users through smart meters. Table I
presents a sample of the recorded data, including three-phase
voltage (denoted as Ua, Ub and Uc) and three-phase current
(denoted as Ia, Ib and Ic). The model, developed through
detailed analysis of users’ electricity consumption patterns,
aims to accurately capture demand trends over time. By
validating the model outputs, we ensure reliable forecasting
results that provide valuable support for effective power
system planning and future demand forecasting.

Several key characteristics were observed in the dataset:

(1) The data have a high sampling frequency, with acquisi-
tion rates ranging from 1 to 2 observations per second,
resulting in a significant volume of data.

(2) There are missing values, including individual data
points as well as entire continuous time intervals.

(3) The data set contains anomalous values that are signif-
icantly outside the expected ranges.

These characteristics highlight the need for rigorous data
pre-processing to ensure the accuracy and reliability of
downstream analysis and forecasting.

B. Data pre-processing

To deal with missing electricity data, we adopt a tiered
strategy that classifies missing values into two categories —
sporadic and continuous — based on their temporal character-
istics. Different techniques are applied accordingly to main-
tain data integrity and improve forecasting performance. This
structured approach improves preprocessing efficiency and
provides a solid foundation for subsequent load forecasting.

For convenience, we denote a generic sequence of voltage
or current data as X = {x; |¢=0,1,--- , N}, where N +1
is the number of observations.

1) Repairing sporadic missing data: To recover sporadi-
cally missing data points, we use cubic Newton interpolation,
which uses neighbouring known values to estimate unknown
values. This technique provides a smooth and continuous
function for interpolating individual missing entries, making
it particularly effective for localised data loss.

Specifically, we select two known points before and
after the missing value, making a total of four points
Zo, 1, T2, x3. The interpolation formula is expressed as

f(z) =f(w0) + (x — z0) fl71, 0]
+ (z — z1)(x — o) flx2, 71, 0]

+ (z — z2)(x — 1) (2 — 20) fl3, 22, 21, T0],

where f[z1,20], flze,21,20] and f[xs,z2,21, 0] are the
first, second and third order differences respectively.

Fig. 1(a) illustrates the effect of the cubic Newton inter-
polation method in repairing individual missing data points.

2) Repairing consecutive missing data: For continuous
sequences of missing data, we apply the triple exponen-
tial smoothing method from time series analysis. Given
the strong temporal dependencies in electricity data, this
technique effectively captures underlying trends and seasonal
patterns.

Let the 2N preceding data points be denoted by
T1,X2, -+ ,Ton. The smoothed values are calculated in three
steps:

Single smoothing:

S,Fl) =axs+ (1 - a)St(i)l,
Double smoothing:

5% = s +(1-p)S,
Triple smoothing:

S =287 + (1 =752,

where «, 8,7 € (0,1) are the smoothing coefficients.
The predicted values are then given by:

£t+T:at+th—|—CtT27 T=1,2,---,N,

with

ar = 38" — 357 + 5P,
be = 52 [(6 = 5a) St — 2(5 — 40) S + (4 - 3a)S{Y),
o’ 18 —28@ 4 g®,

Ct = 51—a)2

Fig. 1(b) shows an example of using the triple exponential
smoothing method to reconstruct consecutive missing values.

C. Correlation analysis of electricity data

Both simple and multiple linear regression analyses are
used to assess the interdependencies between electricity
variables. These analyses reveal the strength of linear re-
lationships between current measurements, providing a basis
for statistical modeling and improving the interpretability of
the data.

We start with a pairwise linear regression between Ia, Ib
and Ic. The regression model takes the form ¥ = a + bX,
where a and b are the intercept and slope, respectively.
Table II summarizes the regression coefficients, R?, F-
statistic, p-value and error variance estimates. The R? values,
all above 0.91, indicate strong linear correlations between the
current pairs. In addition, the low root mean squared error
(RMSE) values (230.22, 245.27 and 264.84) further confirm
the high predictive accuracy of the model.

We then extend the analysis to a multiple regression
framework, using two current variables as predictors of the
third. The model is defined as Y = a + bX; + ¢X5, where
Y is the dependent variable and X;, X5 are the independent
variables. As shown in Table III, the R? values are greater
than 0.93 in all cases, and the p-values are close to zero,
confirming the statistical significance of the relationships.
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TABLE 1
ELECTRICITY DATA COLLECTED FROM A USER’S SMART METER.

Time Ua Ub Uc JE Ib Ic
2018/7/19 9:03 22528 224.64 22740 27535 271.11 241.86
2018/7/19 9:04  225.08 22444 227770 265.17 260.33  233.81
2018/7/19 9:05 22491 22481 22690 271.06 271.85 236.88
2018/7/19 9:06  225.89 22595 22639 264.70 267.47  229.66
2018/7/19 9:10 22540 22556 22637 263.19 267.79  239.09
2018/7/19 9:11 22593  226.09 22499 268.85 279.38 242.16
2019/8/4 22:00  226.35  226.09 227.40 106.59 10499  105.86
2019/8/4 22:02  226.38  226.19 22737 105.54 105.05 106.02
2019/8/4 22:04  226.35 22625 227.59  96.60 97.09 97.48
2019/8/4 22:05 22644 22637 227.64  92.07 85.45 93.37
2019/8/4 22:07 22647 226.62 227.70  100.50 92.12 101.14

TABLE II
LINEAR REGRESSION RESULTS FOR CURRENT VARIABLES.

Y X a b R? F-statistic  p o?

Ia Ib -45406 09966 0.9299 3609463 0 230.22

Ia Ic -24072 1.0637 0.9254 3371268 0 245.27

Ib Ic 6.0648 1.0229 09139 2887240 0 264.34

TABLE III
MULTIPLE REGRESSION RESULTS FOR CURRENT VARIABLES.
Y X1 X2 a b c R? F-statistic ~ p o?
Ia Ib Ic  -56628 05368 0.5146 0.9486 2508400 0 168.96
b 1Ia Ic 74600  0.5796 04063 0.9407 2157100 O 182.44
Ic Ia Ib 4.5287 0.5171  0.3782  0.9368 2016300 0 169.79

III. ELECTRICITY DATA COMPRESSION BASED ON THE
SDT ALGORITHM

The extremely high sampling frequency of electricity data
results in large volumes of data that pose significant pro-
cessing challenges for utilities. In addition, it is impractical
for utilities to plan electricity transmission on a minute-by-
minute basis. In order to facilitate subsequent operations and
planning, it is therefore necessary to compress the predicted
electricity data.

To address this problem, we use the SDT algorithm, which
offers a high compression ratio (CR), computational effi-
ciency and ease of implementation. With controllable error
tolerance, SDT is particularly effective for data with minimal
fluctuations [20]. The SDT algorithm is based on geometric
principles such as triangles or parallelograms. Typically, both
an angle threshold and a distance threshold are set. However,
in this study we adopt a simplified version by setting only a
fixed distance threshold and omitting the angular constraint.
This improves the computational efficiency of the power data
compression.

Once the distance threshold is set, the algorithm starts
from an initial data point ¢y, which serves as a reference.
Two “swing doors” are then constructed to define the range
of acceptable data. As the algorithm proceeds, it selectively
retains data points that meet the threshold criteria, effectively
reducing the data size while preserving essential trends.

Figure 2 illustrates the compression process. In the ex-
ample shown, a straight line connects t2 to t5, representing
all intermediate values. Similarly, a line from 5 to tg
summarizes the next segment. This method greatly simplifies
the presentation of the data while retaining the overall trend
characteristics, making it well suited to electricity data with

low short-term volatility.

The quality of compression is evaluated using two metrics:
the CR and the RMSE [20]. CR reflects the compression
efficiency, while RMSE quantifies the loss of fidelity in the
reconstructed data. These metrics are defined as follows

M+1
CR=1—-—— 1
N+1’ M
1 N
= 72 L 52
RMSE N1 (x; — 24)2, 2)

i=0
where Z; is the reconstructed value, and N + 1 and M + 1
are the number of data points before and after compression,
respectively.

We summarize the SDT-based compression procedure in
Algorithm 1.

TABLE IV
COMPRESSION PERFORMANCE METRICS FOR ELECTRICITY DATA.

Metric Ua Ia
CR 0.9601 0.9572
RMSE  3.2301 90.3504

The SDT algorithm was used to compress the voltage data
Ua and the current data Ia. The distance thresholds A E were
set to 1.1 for Ua and 16.69 for Ia. Linear interpolation was
used to reconstruct the data after compression. Figures 3
and 4 visualize the compression and reconstruction results.
Table IV summarizes the CR and RMSE values. The com-
pressed dataset retains a consistent volume of approximately
10,000 records.

The visual results show that the SDT algorithm achieves
high compression efficiency. As shown in Table IV, the CR
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Fig. 1. Examples of missing data restoration techniques.

Algorithm 1 Electricity data compression based on the SDT

method
Require: Electricity data set X = {(t;,z;) | ¢ =
{(tivxi) | =

0,1,---,N}; distance threshold AF.
Ensure: Compressed data set X' =
0,1,---,M}; CR; RMSE.
1: Add (to,zo) to X’ and then construct swing doors with
upper and lower limits based on AF.
2: For each new data point z;, calculate upper and lower
bounds:

Upper = x; + AE,
Lower = x; — AFE.

3: Iterate over the data set. If x; is outside the bounds, add
(t;,x;) to X', update the reference and thresholds. If x;
is inside the bounds, discard the point and update the
bounds.

4: Compute CR and RMSE based on compressed and
reconstructed data.

for both Ua and Ia is greater than 0.95. The low RMSE for Ua
indicates minimal distortion, while the higher RMSE for Ia
reflects the greater variability in the actual data. Nevertheless,

Algorithm 2 Electricity data prediction algorithm based on

the RF model.

Require: Prepared training and prediction sets. The training
set is used to train the RF model, while the prediction
set is used to generate predictions.

Ensure: Predicted electricity values for the coming year.

1: Data normalisation: Normalize electricity data to [0, 1]
range:

x; — min{x;}
~ K

~ max{z;} — min{z;}’
K2 K2

2: Model construction: Define the number of decision trees
and the minimum number of leaf nodes.

3: Model training: Use 80% of the data for training. Ad-
just hyperparameters iteratively until the model achieves
satisfactory performance.

4: Prediction: Apply the trained RF model to the prediction
set.

5. Evaluation: Compute the RMSE and the coefficient of
determination (R?) to evaluate the accuracy and gener-
alization ability of the model.

6: Denormalization: Convert the normalized predictions
back to their original scale:

Z; = Z;(max{z;} — min{z;}) + min{x;},

where Z; is the denormalized prediction for the i-th
feature.

the reconstruction accuracy remains within acceptable limits,
confirming the suitability of the SDT algorithm for electricity
data compression.

IV. BAYESIAN OPTIMIZATION FOR RF-BASED
ELECTRICITY LOAD FORECASTING

Building on the previous correlation analysis, we use the
RF model to predict electricity load.

A. RF model

The RF model is an ensemble learning technique that
constructs multiple decision trees through bagging and in-
tegrates their results to improve prediction accuracy [21].
Each decision tree is built independently and there are no
direct interactions between them. During prediction, each
tree produces its own output and the RF model aggregates
these outputs, using the mode (for classification) or mean
(for regression) as the final prediction.

This ensemble strategy improves prediction stability and
mitigates the overfitting problems commonly associated with
individual decision trees. The RF model is particularly suited
to problems involving complex variable relationships and
high inter-variable correlation, as is the case with electricity
data.

Algorithm 2 outlines the RF-based forecasting process for
compressed electricity data.

B. Bayesian optimization

The predictive performance of the RF model depends
heavily on its hyperparameters, such as the number of
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Fig. 2. Tllustration of electricity data compression using the SDT method.

decision trees and the minimum number of leaf nodes [22],
[23]. To optimize these hyperparameters, we use Bayesian
optimization.

Let the hyperparameter set be defined as Hgrp =
(Naty Npmi), where Ny and N,,; denote the number of
decision trees and the minimum number of leaves, respec-
tively. The objective function to be minimized is the RMSE,
f(Hgr). Let P(f|D) denote the posterior distribution of
f given the observed data D = {(Hig, f(Hig))}_,. The
process of Bayesian optimization is then outlined as follows.

Step 1: Setting the prior. We use a Gaussian process as
the prior: P(f) with mean m(Hgg) and covariance function
k(Hgr, Hgg). The square exponential kernel is used:

d
1 i in2
k(HRFaHl/{F) = U?’ exXp <_212 E ((HRF) - (HIIQF) ) ) )
=1

where a? controls the amplitude, [ is the length scale, and d
is the dimensionality of the hyperparameter space.

Step 2: Posterior update. We update the posterior distri-
bution after each iteration. The updated P(f|D) remains a
Gaussian process with revised mean p(Hgr) and covariance
Y (Hgp, H}g). For each new candidate Hgp, the predicted
value f(Hgp) follows a normal distribution.

Step 3: Acquisition function. We will use three acquisi-
tion functions:

+ Expected improvement (EI):
El(Hgg) = E[max{ fmin — f(Hgrr), 0}]
o Probability of improvement (PI):
PI(Hgr) = P(f(Hrr) < fmin)
« Upper confidence bound (UCB):

UCB(Hgr) = pi¢(Hgr) + ko (Hgr)

t .
where fiin = m_1{1 f(Hkg) is the best RMSE observed so

far, and k controls the exploration-exploitation trade-off.
Using MATLAB, we perform Bayesian optimization to
determine the optimal hyperparameter values for the RF
model. The results are shown in Table V.
TABLE V

OPTIMAL HYPERPARAMETERS OBTAINED USING BAYESIAN
OPTIMIZATION.

Hyperparameters Ua Ub  Uc
Number of decision trees 11 11 10
Minimum number of leaves 124 149 73

C. Forecast results

Using the optimized RF model, we forecast the electricity
load data. For comparison, we also evaluate the performance
of the long short-term memory (LSTM) network [24] and
support vector regression (SVR) [25]. Table VI shows the
RMSE values for the three models applied to Ua, Ub and Uc.
Figure 5 shows the prediction performance of each model.

TABLE VI
RMSE oF LSTM, SVR, AND RF.

Model Ua Ub Uc
LSTM 208 226 2.13
SVR 176 2.09 1.82
RF 1.70  2.03 1.82

As shown in Figure 5, all three models capture the general
trend of the data. The LSTM performs well, but has a slight
lag in rapidly changing intervals. The SVR also follows the
trend, although its predictions deviate from the actual data in
some regions. The RF model produces smoother results, but
shows accurate tracking of the actual data trends. As shown
in Table VI, the RF model produces the lowest RMSE, con-
firming its superior performance among the models tested.
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Fig. 3. Voltage data before and after compression.

V. CONCLUSION

This paper presents a comprehensive framework for
medium- and long-term electricity load forecasting that in-
tegrates data pre-processing, machine learning, optimization
and compression techniques. To ensure data completeness,
both isolated and continuous missing values were handled
using cubic Newton interpolation and triple exponential
smoothing, respectively. The RF model was then applied
to load prediction, using ensemble learning to capture non-
linear relationships in the electricity data. To further improve
model performance, Bayesian optimization was used to auto-
matically fine tune critical hyper-parameters. In addition, the
SDT algorithm was introduced to compress electricity data,
significantly reducing its volume while preserving essential
patterns. Experimental results on real electricity datasets

validate the effectiveness and efficiency of the proposed
methods, providing practical value for intelligent power
system planning, data analysis and decision making.
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