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Abstract—Inventory management and the handling of the
deterioration are critical in various industries worldwide. Over
the years, numerous studies have examined the integration
of fuzzy set theory with inventory management. Most of
inventory models are based on customer demands, which makes
demand a key factor in inventory optimization. In Developing
sustainable inventory models that incorporate environmental
considerations, in addition to traditional inventory management
objectives, is becoming increasingly important. This paper
proposes a probabilistic inventory model with a deterioration
rate independent of time and demand uncertainty, aiming to
determine the optimal inventory policy in a fuzzy environment.
Furthermore, the paper introduces a fuzzy model utilizing
the triangular fuzzy numbers, assuming that certain model
parameters are fuzzy due to inherent imprecision. The study
investigates the impact of various defuzzification methods on
the optimal values of the decision variables and the associated
cost function. Numerical examples are, along with graphical
representations, are provided for each scenario, and sensitivity
analysis is performed on various parameters to validate the
proposed model.

Index Terms—Fuzzy inventory model, Probabilistic uncertain
demand, Deterioration, Triangular Fuzzy Number.

I. INTRODUCTION AND LITERATURE SURVEY

IN numerous inventory models, fuzziness closely reflects
reality, serving as a source of uncertainty. In recent

years, some researchers have focused on time dependent
demand rates, particularly for newly released products such
as trendy clothing, electronics, and mobile phones, which
initially rose gradually before stabilizing. Deterioration refers
to the damage, decay, or spoilage of goods stored for future
use. Given that these goods inevitably lose value over time,
deterioration cannot be avoided in any business context,
Kumar, Sushil, and U. S. Rajput [1].

Researchers traditionally considered demand, degradation,
and other constraints in inventory models as deterministic,
establishing these constraints based on available data and
additional factors. Yet, due to the imprecision of currently
available data and rapid shifts in market conditions, this data
may be inaccurate or insufficient to establish the model’s
constraints. For instance, uncertainties in global economic
conditions introduce variability in inventory costs. Therefore,
traditional inventory models may not yield optimal outcomes
for their intended purposes. This means that the ordered
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quantity, total cycle time, and costs may not align with actual
requirements. Consequently, relying on traditional inventory
model outcomes could potentially result in financial losses
or reduced profits for retailers. Hence, achieving optimal
outcomes for inventory models with inaccurate costs and
other attributes becomes a critical concern for inventory
managers. Fuzzy set theory is considered the most effective
approach for managing cost distortions and other factors
in inventory models in such situations. The first inventory
model was developed by F. Harris [2]. Set out the concept
of fuzzy set theory in inventory modeling, Zadeh, Lotfi
A [3]. Considered an inventory model on decision making
in fuzzy environment Bellman, R. [4]. A fuzzy inventory
model on decision-making in the presence of fuzzy variables
was developed by R. Jain [5]. Initially, Lee and Yao [6]
utilized fuzzy principles to address the inventory model’s
imperfect manufacturing quantity and demand. Subsequently,
numerous academics have developed a inventory models
containing imprecise parameters to achieve more precise
optimal solutions, utilizing the ideas of fuzzy set theory.
Dutta, Anurag, et al. [40] use of the data by National
Aeronautics and Space Administration to train our model.

A. Survey of sustainability

Over the past few decades, it has become increasingly
apparent that our planet’s habitability conditions have been
gradually diminishing. Pollution from the transportation,
industry, and inadequate waste management has led to a
gradual deterioration in the quality of the air we breathe.
There is now widespread recognition of the serious threat
posed by global warming worldwide. Thus, consumers are
more environmentally conscious than they used to be. Many
governmental and non - governmental organizations have
expressed their opinions, highlighting the importance of
finding sustainable solutions to ensure the planet’s thriving.
One practical approach would be to impose higher taxes on
businesses or factories using highly polluting manufacturing
or production methods, or those with inadequate inventory
management critical to production. Furthermore, companies
that contribute excessive pollution during the distribution
and transportation of goods should be required to pay a.
From this perspective, businesses worldwide must adopt and
implement inventory models that prioritize sustainability in
their operations. It is crucial to devise new strategies aimed at
practicing ethical behaviors that reduce their negative impact
on local and global ecosystems. The objective is to encourage
sustainable development over the long term to protect the
environment for future generations [7].
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Managing decreasing inventory levels while meeting of
demand, minimum waste and considering environmental
in impacts poses unique challenges. This underscores the
need to create sustainable inventory models that integrate of
the traditional inventory managementing objectives with the
environmental considerations. To optimize inventory levels
while the minimizing environmental impact, this study of
proposes a sustainable inventory model tailored for the
perishable goods in such situations. This study proposes
a sustainable inventory model specifically designed for the
perishable goods to optimize inventory levels while reducing
environmental impact [8].

Several papers on sustainable inventory models have been
published in recent years. Chaudhary, R., et al. [9] developed
a sustainable inventory system under fuzziness. Taleizadeh et
al. [10] addressed and examined four sustainable inventory
models: without shortages, lost sales, and partial and full
backorder. Mishra et al. [11] the presented an economic
production quantity (EPQ) inventory model with carbon tax
when the carbon emissions rate can be controlled through
investment in green technology. Tiwari et al. [12] built is
an inventory model for deteriorating products when some
of them are of imperfect quality under carbon emissions.
Mishra et al. [13] examined an EOQ inventory model with
shortages and carbon emissions. Sustainable EOQ models
usually include an extra cost involved to control the discharge
of carbon. For example, in additionally to the ordering
costs, purchasing costs, storage costs, and transportation
costs, Bonney & Jaber [14] suggested a straightforward
non-classical model that takes vehicle emissions and trash
disposal costs into account for better results.

B. Survey of deteriorating items

Items often become unusable for their intended purposes
due to degradation and decay. The rate of deterioration
varies depending on the type of item, storage conditions,
climate, and other factors. Specifically, various types of
deterioration affect fruits, dried fruits, vegetables, dairy
products, and food items. Additionally, the shelf lives of
cold drinks, jewelry, health drinks, medications, radioactive
materials, photographic films, electronic goods, fashionable
clothing, plastic products, and textiles vary. Moreover, the
cost of inventory is influenced by the deterioration of items.
Thus, inventory managers encounter a challenging dilemma
in minimizing the overall cost associated with managing
deteriorating assets. Ghare and Schrader [15] have obtained
the optimal results for retailers’ inventory having constantly
deteriorating items in the early days of the year 1960. Yadav,
A.S., et al. [16] developed a fertilizer inventory model for
TSP using Cuckoo optimization for the environment. Yadav,
K.K., et al. [17] have developed an inventory model to deal
with deteriorating products.

Some researchers viewed variables such as demand rate,
deterioration rate, production rate, etc., as constants, while
others considered them uncertain or variable. Mahapatra,
Amalendu Singha, et al. [18] an inventory model with
uncertain demand for deteriorating items. Kumar U. S.
Rajput.[1] develop a fuzzy inventory model for deteriorating
items with time-dependent and partial backlogging where
demand rate, deterioration rate, and backlogging rate were

considered triangular fuzzy numbers. J. S. Yao and J. Chiang
[19] developed an inventory model without backorders and
defuzzified the fuzzy holding cost by signed distance and
centroid methods. P. K. De and A. Rawat [20] and Mahata
and Debnath [42-43] developed a fuzzy inventory model
without shortages using triangular fuzzy numbers. Nagamani,
M., and G. Balaji.[21] developed a fuzzy inventory model
with adequate shortage using the graded mean integral value
method.

For deteriorating items with time-varying demand and
shortages values. It discusses a production inventory model
for deteriorating items. The rate of deterioration is shown
as fuzzy triangular numbers together with other factors. For
defuzzification using the signed distance method, centroid
method, and graded mean integration method separately by
Sen et al. [23]. A continuous production control inventory
model for items that are deteriorating and in shortage in
an uncertain environment. The signed distance method and
the graded mead integration method are used to denazify
the fuzzy total cost developed by Chakraborty, et al. [24].
The benefit of preservation technology with promotion and
time dependent deterioration under fuzzy learning using
uncertain demand Mahapatra, A. S., et al. [25]. An inventory
model for a deteriorating item with trade credit policy and
allowable shortages under uncertain demand Mali, Mr Vivek,
et al. [26] and Deng, H. [44]. Deep Reinforcement Learning
for Inventory Optimization with Non-Stationary Uncertain
Demand using Dehaybe, Henri, Daniele Catanzaro, and
Philippe Chevalier [27]. A proposed methodology addresses
the control of perishable inventory in the face of uncertain
demand. The inventory systems are managed by fuzzy logic
and artificial neural networks. Fuzzy logic is used to modify
the generated orders while accounting for the forecasted
uncertainty, while the artificial neural network is utilized to
calculate the order signal. A significant benefit is that the
two-stage offline optimization procedure allows the controller
behavior to be adapted to anticipated uncertainty without
consuming a significant amount of computation while using
Cho lodowicz, Ewelina, and Przemys law Orlowski [28].

C. Survey of Demand

Again, product demand is essential for maintaining inven-
tory effectively. Different items experience varying demand
patterns that change with consumer behavior, business cycles,
and other influencing factors. The demand for items can
decrease, increase, or remain constant based on customer
needs. In many cases, it also hinges on variables such as time,
pricing, advertising expenditures, and trade credit availability.
Moreover, fluctuations in demand from market to market
and cycle to cycle indicate that demand rates are often
uncertain. Because it is more practical, many researchers
have developed inventory models that take into consideration
demand patterns with other restrictions and uncertain demand
types. Kumar, B.A., and Paikray, S.K. [29] have developed
an inventory model considering uncertain type demand rates.

Shortages of items during inventory cycles often occur
when suppliers provide limited quantities during business
cycles or when a retailer’s stock point has insufficient storage
capacity. Additionally, inventory shortages can also results
from deterioration and variability in demand. Thus these
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situations, all of the customers or a few of them may choose
not to wait until the next shipment of merchandise arrives.
Then, the depending on the business context, different back
logging rates for inventory shortages should be considered
into account. Thus, shortages and backlogging also influence
the inventory cost. Yadav, A.S., et al. [30] and Yadav, A.S.,
et al. [31] are considering shortages as partial backlogging
in green inventory management.

D. Survey of probabilistic demand inventory models

A probabilistic demand strategy is the more effective
in managing uncertainty, as accurately predicting customer
demand for an item in the today’s market environment
challenging. A probabilistic inventory model with permitted
payment delays was first presented by Shah, N.N., [32],
who spearheaded the development of such models. Through
probabilistic demand, Bhattacharjee and Sen [33] designed
an inventory management system for supply chains. EOQ
models are developed in the random and fuzzy-random
environments considering demand to be dependent on unit
cost which is a decision variable. In addition to these, the
total average cost goal and constraint goal for storage area is
fuzzy for the probabilistic model in a fuzzy environment by
Panda, Debdulal, and Samarjit Kar [34]. Inventory model for
deteriorating items with fuzzy lead time, negative exponential
demand, and partially backlogged shortages and its nature
due to probabilistic deterioration along with fuzzy lead time
by Sen, Nabendu, and Sumit Saha [35]. Negi, Ashish, and
Ompal Singh [41] use Uniform probabilistic distribution
deterioration.

E. Our Contribution

The Proposed model, a probabilistic inventory model with
a deterioration rate independent of time and probabilistic
certain demand is developing to determine optimal inventory
policies, by the taking a triangular fuzzy number in the fuzzy
environment. After Using the different defuzzifications meth
ods namely the Graded Mean integration method, Signed
distance method, and Centroid method to find minimum
optimal cost.

II. PRELIMINARIES

A. Fuzzy Set:

If X is a universe of discourses and x be any particular
element of X. The fuzzy set A defined on X is a collection
of ordered pair,

A = {(x, µA(x)) : x ∈ X}

where, µA(x) : X → [0, 1] is called the membership
function.

B. Fuzzy Number:

A fuzzy number is an extension of the real numbers,in It
implies that it refers to a connected set of potential values
rather than a single value with weights [36]. This is known
as membership function.A convex, normalized fuzzy set
of the real line is a specific instance of a fuzzy number
[37]. Fuzzy number calculations enable the inclusion of
uncertainty on initial conditions, parameters etc. A fuzzy

number is equal to a fuzzy interval [38].

A fuzzy number Ã = (a1, a2, a3) with a1 < a2 < a3
is triangular if its membership function define as :

µÃ(x) =



x−a1

a2−a1
, ‘a1 ≤ x ≤ a2

a3−x
a3−a2

, ‘a2 ≤ x ≤ a3‘

0, ‘otherwise

In this way, parabolic fuzzy numbers, hexagonal fuzzy
numbers, trapezoidal fuzzy numbers, pentagonal fuzzy
numbers, etc. can be defined. Several methods exist for
defuzzifying fuzzy numbers. The most widely used methods
for defuzzification are the centroid method, graded mean
integration method, and signed distance methods.

i Graded mean integration method representation of the
triangular fuzzy number is dF Ã = a1+4a2+a3

6 .
ii Centroid method for triangular fuzzy number is

dF Ã = a1+a2+a3

3 .
iii Signed distance method for triangular fuzzy number is

dF Ã = a1+2a2+a3

4 .

Fig. 1. Schematic diagram of proposed model

III. ASSUMPTIONS

i The inventory systems involves probabilistic of single
item.

ii Lead time is zero and shortages are allowed with
complete backlogging.

iii The Set-up cost,holding cost, deterioration rate are
fuzzy.

iv The Demand rate is D(ρ) = D0 + d1ρ, where D0

is fixed base demand and d1ρ measure the effect of
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promotional activity ρ with d1 as a positive, constant
scaling term. A Continuous random variable ϵ with
expected value µ, is associated with demand D(ρ) [39].
i.e. D(ρ, ϵ) = D(ρ) + ϵ and E(D(ρ, ϵ)) = D(ρ) + µ

v The deterioration rate independent of time.
vi Replenishment is instantaneous.

IV. NOTATIONS

There are two types of models first is crisp model and
second is fuzzy model. Symbols for both models are different
which is represented below separately.

TABLE I
NOTATION FOR CRISP MODEL AND FUZZY MODEL

Symbol Description
A Set-up cost per cycle
Ch Holding cost per unit time
θ Deterioration rate at time t

Cd Deterioration cost per unit time
Cp Purchase cost per unit time
Cs Shortage cost per unit time

D(ρ) Uncertain demand rate per unit time
TAC Total cost per unit time
t1 Duration of production
R Initial order quantity
M Maximum shortage level
T Cycle length

I1(t) Inventory level at time t, 0 ≤ t ≤ t1

I2(t) Inventory level at time t, t1 ≤ t ≤ T

Ã Fuzzy set-up cost
θ̃ Fuzzy deterioration rate
C̃h Fuzzy holding cost per unit time
C̃d Fuzzy deterioration cost per unit time
C̃p Fuzzy purchase cost per unit time
C̃s Fuzzy shortage cost per unit time

D̃(ρ) Fuzzy uncertain demand rate
T̃AC Fuzzy total cost per unit time

dF (T̃AC) Defuzzified value of T̃AC

V. PROPOSED MODEL

This work aims to formulate and solve a probabilistic
inventory model with the aforementioned assumptions
considered into account. At t=0, the initial inventory level
is R. It decreases in the time period [0, t1]and reaches
inventory level is zero at t = t1 . After that, complete
backlogging situations occur during the interval [t1, T ]. The
item’s deterioration and demand are responsible for this
depletion. This conditions is represented in fig 2.
The differential equation that describes the conditions is

dI1(t)

dt
= −

{
D + θI1(t)

}
; 0 ≤ t ≤ t1 (1)

⇒
dI1(t)

dt
+ θI1(t) = −D,

dI2(t)

dt
= −D; t1 ≤ t ≤ T (2)

Subject to condition, Initial Conditions I1(t) = R at t = 0
Boundary Conditions I1(t) = 0 at t = t1 and I2(t) = −S at

t = T
Solution of equation (1) is given by

I1(t) = −D

θ
+ C1e

−θt (3)

Now using Initial Conditions I1(t) = R at t = 0,
So C1 = R+ D

θ .
Therefore equation (3) is

I1(t) = −D

θ
+

[
R+

D

θ

]
e−θt (4)

Now apply Boundary Conditions I1(t) = 0 at t = t1, we
get

R = −D

θ

[
1 + eθt1

]
(5)

Fig. 2. Inventory situation of retailer.

Solution of equation (2) is given by

I2(t) = −Dt+ C2 (6)

Now using Initial Conditions I2(t) = 0 at t = t1, So
C2 = Dt1
Therefore equation (6) is

I2(t) = D(t1 − t) (7)

Now apply Boundary Conditions I2(t) = −S at t = T , we
get

S = −D(t1 − T ) (8)

The components used for obtaining the total cost are given
as follows:
Ordering Cost :

OC = A (9)

Purchasing Cost :

PC = Cp(R+ S)

PC = Cp

[
− D

θ

(
1 + eθt1

)
+

(
−D(t1 − T )

)]
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PC = Cp

[
− D

θ

(
1 + eθt1

)
−D(t1 − T )

]
(10)

Holding Cost :

HC = Ch

∫ t1

0

I1(t)dt

HC = Ch

∫ t1

0

[
− D

θ
+

[
R+

D

θ

]
e−θt

]
dt

HC = Ch

[
− D

θ
t1 +

(
D

θ2
+

R

θ

)
(e−θt1 − 1)

]
Put value of R From equation (5), So we get

HC = Ch

[
−D

θ
t1+

(
D

θ2
−D

θ2
(1+eθt1)

)
(e−θt1−1)

]
(11)

Deterioration Cost :

DC = Cd

∫ t1

0

θI1(t)dt

DC = Cdθ

∫ t1

0

[
− D

θ
+

[
R+

D

θ

]
e−θt

]
dt

DC = Cd

[
− D

θ
t1 +

(
D

θ2
+

R

θ

)
(e−θt1 − 1)

]
Put value of R From equation (5), So we get

DC = Cdθ

[
−D

θ
t1+

(
D

θ2
−D

θ2
(1+eθt1)

)
(e−θt1−1)

]
(12)

Shortage Cost :

SC = Cs

∫ T

t1

[−I2(t)]dt = −Cs

∫ T

t1

D(t1 − t)dt

Sc = CsD

[
t21
2
−
(
t1T − T 2

2

)]
(13)

Total Cost :

TAC =
1

T
[OC + PC +HC +DC + SC]

Substitute the value of OC, PC, HC, DC and SC from
equation (9), equation (10), equation (11), equation (12) and
equation (13) respectively. That is

TAC =
1

T

[
A+ Cp

[
− D

θ

(
1 + eθt1

)
−D(t1 − T )

]
+ Ch

[
− D

θ
t1 +

(
D

θ2
− D

θ2
(1 + eθt1)

)
(e−θt1 − 1)

]
+ Cdθ

[
− D

θ
t1 +

(
D

θ2
− D

θ2
(1 + eθt1)

)
(e−θt1 − 1)

]
+ CsD

[
t21
2
−
(
t1T − T 2

2

)]]
(14)

VI. FUZZY MODEL

It is not always possible to define certain parameters
with precision due to environmental uncertainty, hence we
fuzzify some parameters. Here we fuzzify the parameters
A, Cp, Ch, Cd, Cs, θ, D. We take triangular fuzzy numbers
Ã = (A1, A2, A3), C̃p = (Cp1

, Cp2
, Cp3

),
C̃h = (Ch1

, Ch2
, Ch3

), C̃d = (Cd1
, Cd2

, Cd3
),

C̃s = (Cs1 , Cs2 , Cs3), θ̃ = (θ1, θ2, θ3), D̃ = (D1, D2, D3),
Therefore

T̃AC =
1

T

[
Ã+ C̃p

[
− D̃

θ̃

(
1 + eθ̃t1

)
− D̃(t1 − T )

)]
+ C̃h

[
− D̃

θ̃
t1 +

(
D̃

θ̃2
− D̃

θ̃2
(1 + eθ̃t1)

)
(e−θ̃t1 − 1)

]
+ C̃dθ̃

[
− D̃

θ̃
t1 +

(
D̃

θ̃2
− D̃

θ̃2
(1 + eθ̃t1)

)
(e−θ̃t1 − 1)

]
+ C̃sD̃

[
t21
2
−
(
t1T − T 2

1

2

)]]
(15)

T̃AC = (TAC1, TAC2, TAC3) say
Where,

TACi =
1

T

[
Ai +Cpi

[
− Di

θi

(
1 + eθit1

)
−Di(t1 − T )

]
+ Chi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+ Cdiθi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+ CsiDi

[
t21
2
−

(
t1T − T 2

2

)]]
Now we find the derivatives

d

dT
TACi = − 1

T 2

[
Ai+Cpi

[
−Di

θi

(
1+eθit1

)
−Di(t1−T )

]
+ Chi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+ Cdi

θi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+CsiDi

[
t21
2
−
(
t1T−T 2

2

)]]
+

1

T

[
Cpi

Di−CsiDi(t1−T )

]
i = 1, 2, 3

And Now again derivative

d2

dT 2
TACi =

2

T 3

[
Ai+Cpi

[
−Di

θi

(
1+eθit1

)
−Di(t1−T )

]
+ Chi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+ Cdi

θi

[
− Di

θi
t1 +

(
Di

θ2i
− Di

θ2i
(1 + eθit1)

)
(e−θit1 − 1)

]
+CsiDi

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cpi

Di−CsiDi(t1−T )

]
+

1

T
CsiDi i = 1, 2, 3

Now find the defuzzified value of T̃AC
1. Graded Mean integration method (GMIR).
2. Signed distance method (SDM)
3. Centroid method (CEM)
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1. GRADED MEAN INTEGRATION METHOD

The deduzzified value is :

dF T̃AC =
1

6
(TAC1 + 4TAC2 + TAC3)

d

dT
dF T̃AC =

1

6

(
d

dT
TAC1 + 4

d

dT
TAC2 +

d

dT
TAC3

)
Where,

dTAC1

dT
= − 1

T 2

[
A1+Cp1

[
−D1

θ1

(
1+eθ1t1

)
−D1(t1−T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp1D1−Cs1D1(t1−T )

]
,

dTAC2

dT
= − 1

T 2

[
A2+Cp2

[
−D2

θ2

(
1+eθ2t1

)
−D2(t1−T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp2

D2−Cs2D2(t1−T )

]
and

dTAC3

dT
= − 1

T 2

[
A3+Cp3

[
−D3

θ3

(
1+eθ3t1

)
−D3(t1−T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp3

D3−Cs3D3(t1−T )

]

So
dT̃AC

dT
dF

=
1

6

[
− 1

T 2

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp1D1−Cs1D1(t1−T )

]
+ 4

{
− 1

T 2

[
A2 + Cp2

[
− D2

θ2

(
1 + eθ2t1

)
−D2(t1 − T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]

+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp2

D2−Cs2D2(t1−T )

]}
+

{
− 1

T 2

[
A3 + Cp3

[
− D3

θ3

(
1 + eθ3t1

)
−D3(t1 − T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp3D3−Cs3D3(t1−T )

]}
And

d2dF T̃AC

dT 2
=

1

6

(
d2

dT 2
TAC1+4

d2

dT 2
TAC2+

d2

dT 2
TAC3

)
where,

d2TAC1

dT 2

=
2

T 3

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp1

D1−Cs1D1(t1−T )

]
+

1

T
Cs1D1

d2TAC2

dT 2

=
2

T 3

[
A2 + Cp2

[
− D2

θ2

(
1 + eθ2t1

)
−D2(t1 − T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp2

D2−Cs2D2(t1−T )

]
+

1

T
Cs2D2

and
d2TAC3

dT 2

=
2

T 3

[
A3 + Cp3

[
− D3

θ3

(
1 + eθ3t1

)
−D3(t1 − T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp3D3−Cs3D3(t1−T )

]
+

1

T
Cs3D3
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So
d2dF T̃AC

dT 2

=
1

6

{
2

T 3

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp1

D1−Cs1D1(t1−T )

]
+

1

T
Cs1D1+4

[
2

T 3

[
A2+Cp2

[
−D2

θ2

(
1+eθ2t1

)
−D2(t1−T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2

θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp2

D2−Cs2D2(t1−T )

]
+

1

T
Cs2D2

]
+

2

T 3

[
A3+Cp3

[
−D3

θ3

(
1+eθ3t1

)
−D3(t1−T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp3

D3−Cs3D3(t1−T )

]
+

1

T
Cs3D3

}

Now d
dT dF T̃AC = 0

=⇒
(
Cp1D1 + 4Cp2D2 + Cp3D3

)
T −

(
2Cs1D1t1

+ 8Cs2D2t1 + 2Cs3D3t1

)
T +

3

2

(
Cs1D1 + 4Cs2D2

+ Cs3D3

)
T 2 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+4Cp2

[
−D2

θ2

(
1+eθ2t2

)
−D2(t2−T )

]
+Cp3

[
−D3(t1−T )

− D3

θ3

(
1 + eθ13t1

)]
= A1 + 4A2 +A3

+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+ 4Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+4Cd2

θ2

[
− D2

θ2
t1+

(
D2

θ22
− D2

θ22
(1+ eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd3θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
− Cs1D1t1 − 4Cs2D2t1 − Cs3D3t1

2. SIGNED DISTANCE METHOD

The deduzzified value is :

dF T̃AC =
1

4
(TAC1 + 2TAC2 + TAC3)

ddF T̃AC

dT
=

1

4

(
d

dT
TAC1 + 2

d

dT
TAC2 +

d

dT
TAC3

)

d

dT
dF T̃AC

=
1

4

[
− 1

T 2

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp1

D1−Cs1D1(t1−T )

]
+ 2

{
− 1

T 2

[
A2 + Cp2

[
− D2

θ2

(
1 + eθ2t1

)
−D2(t1 − T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2

θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp2D2−Cs2D2(t1−T )

]}
+

{
− 1

T 2

[
A3 + Cp3

[
− D3

θ3

(
1 + eθ3t1

)
−D3(t1 − T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp3D3−Cs3D3(t1−T )

]}
And

d2dF T̃AC

dT 2
=

1

4

(
d2TAC1

dT 2
+ 2

d2TAC2

dT 2
+

d2TAC3

dT 2

)

d2dF T̃AC

dT 2

=
1

4

{
2

T 3

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp1

D1−Cs1D1(t1−T )

]
+

1

T
Cs1D1+2

[
2

T 3

[
A2+Cp2

[
−D2

θ2

(
1+eθ2t1

)
−D2(t1−T )

]
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+Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp2

D2−Cs2D2(t1−T )

]
+

1

T
Cs2D2

]
+

2

T 3

[
A3+Cp3

[
−D3

θ3

(
1+eθ3t1

)
−D3(t1−T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp3

D3−Cs3D3(t1−T )

]
+

1

T
Cs3D3

}
Now d

dT dF T̃AC = 0

=⇒
(
Cp1

D1 + 2Cp2
D2 + Cp3

D3

)
T −

(
2Cs1D1t1

+ 4Cs2D2t1 + 2Cs3D3t1

)
T +

3

2

(
Cs1D1 + 2Cs2D2

+ Cs3D3

)
T 2 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+2Cp2

[
−D2

θ2

(
1+eθ2t2

)
−D2(t2−T )

]
+Cp3

[
−D3(t1−T )

− D3

θ3

(
1 + eθ13t1

)]
= A1 + 2A2 +A3

+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+ 2Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd1θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+2Cd2

θ2

[
− D2

θ2
t1+

(
D2

θ22
− D2

θ22
(1+ eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
− Cs1D1t1 − 2Cs2D2t1 − Cs3D3t1

3. BY CENTROID METHOD

The deduzzified value is :

dF T̃AC =
1

3
(TAC1 + TAC2 + TAC3)

d

dT
dF T̃AC =

1

3

(
d

dT
TAC1 +

d

dT
TAC2 +

d

dT
TAC3

)

d

dT
dF T̃AC

=
1

3

[
− 1

T 2

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]

+Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp1

D1−Cs1D1(t1−T )

]
+

{
− 1

T 2

[
A2 + Cp2

[
− D2

θ2

(
1 + eθ2t1

)
−D2(t1 − T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2

θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp2

D2−Cs2D2(t1−T )

]}
+

{
− 1

T 2

[
A3 + Cp3

[
− D3

θ3

(
1 + eθ3t1

)
−D3(t1 − T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
+

1

T

[
Cp3D3−Cs3D3(t1−T )

]}
And

d2dF T̃AC

dT 2
=

1

3

(
d2

dT 2
TAC1+

d2

dT 2
TAC2+

d2

dT 2
TAC3

)

d2

dT 2
dF T̃AC

=
1

3

{
2

T 3

[
A1 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cs1D1

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp1D1−Cs1D1(t1−T )

]
+

1

T
Cs1D1+

[
2

T 3

[
A2+Cp2

[
−D2

θ2

(
1+eθ2t1

)
−D2(t1−T )

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cs2D2

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp2

D2−Cs2D2(t1−T )

]
+

1

T
Cs2D2

]
+

2

T 3

[
A3+Cp3

[
−D3

θ3

(
1+eθ3t1

)
−D3(t1−T )

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cs3D3

[
t21
2
−
(
t1T−

T 2

2

)]]
− 2

T 2

[
Cp3

D3−Cs3D3(t1−T )

]
+

1

T
Cs3D3

}
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Now d
dT dF T̃AC = 0

=⇒
(
Cp1

D1 + Cp2
D2 + Cp3

D3

)
T −

(
2Cs1D1t1

+ 2Cs2D2t1 + 2Cs3D3t1

)
T +

3

2

(
Cs1D1 + Cs2D2

+ Cs3D3

)
T 2 + Cp1

[
− D1

θ1

(
1 + eθ1t1

)
−D1(t1 − T )

]
+Cp2

[
−D2

θ2

(
1+eθ2t2

)
−D2(t2−T )

]
+Cp3

[
−D3(t1−T )

− D3

θ3

(
1 + eθ13t1

)]
= A1 +A2 +A3

+ Ch1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+ Ch2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+ Ch3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
+Cd1

θ1

[
− D1

θ1
t1 +

(
D1

θ21
− D1

θ21
(1 + eθ1t1)

)
(e−θ1t1 − 1)

]
+Cd2θ2

[
− D2

θ2
t1 +

(
D2

θ22
− D2

θ22
(1 + eθ2t1)

)
(e−θ2t1 − 1)

]
+Cd3

θ3

[
− D3

θ3
t1 +

(
D3

θ23
− D3

θ23
(1 + eθ3t1)

)
(e−θ3t1 − 1)

]
− Cs1D1t1 − Cs2D2t1 − Cs3D3t1

Let D̃

P̃
< 1 i.e. D̃1

P̃1
< 1, D̃2

P̃2
< 1, D̃3

P̃3
< 1,

then in each case T exists and clearly for this value of T, we
see that d2

dT 2 dF T̃AC > 0.
Hence defuzzified value of total cost per unit time.
i.e. dF T̃AC is minimum. And minimum value is obtained
by substitute the value T in dF T̃AC for the respective cases.

VII. SOLUTION PROCEDURE

A algorithm is developed and coded in MATLAB to solve
the proposed model. The proposed algorithm looks like this.
Algorithm :
Step-1 : Start
Step-2 : Set fuzzy variables: Ã, C̃p, C̃h, C̃d, C̃s, θ̃, D̃
Step-3 : For T∈ [0,1] (Cycle length)
Step-4 : Evaluate Total Average cost: TAC
Step-5 : Set TAC1,TAC2,TAC3

Step-6 : Evaluate: TACgm,TACsd,TACcen

Step-7 : Find the optimal cost : min{TACgm},
min{TACsd},min{TACcen}
Step-8 : End loop

VIII. RESULT AND DISCUSSION

To perform a numerical and graphical analysis of the
model, the following numerical values of the parameters in
the proper units are taken into consideration.

Ã = (50, 56, 62), C̃p = (48, 52, 56), C̃h = (6, 9, 12),
C̃d = (1.2, 1.6, 2.0), C̃s = (1.12, 1.18, 1.24),
θ̃ = (0.006, 0.011, 0.016), µ = 10, D̃ = (450, 510, 570)
The output of the given model using MATLAB software
under different defuzzification method are given below

TACgm = 172.5328, T = 0.6800; TACsd = 154.7554, T =
0.7500; and TACcen = 136.3928, T = 0.8500.

Fig. 3. Step of solution procedure

IX. SESTIVITY ANALYSIS

The above result illustrates that, when the centroid method
of defuzzification is applied, the total cost is minimum with
a corresponding value of T. On the other hand, when the
graded mean integration value is used, T is the maximum
and has a corresponding total cost. The cost functions are
plotted against T in the following figure.

Fig. 4. Sensitivite Analysis on Ã Using GMIR method:
Time vs. Total avarge cost

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2357-2372

 
______________________________________________________________________________________ 



TABLE II
SENSITIVITY ON Ã

% Ã Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (60,67.2,74.4) 185.4627 0.7600 165.2675 0.8300 148.2565 0.9300

+10% (55,61.6,68.2) 178.5368 0.7200 158.6358 0.7900 142.4682 0.8900

0 % (50,56,62) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (45,50.4,55.8) 166.2461 0.6400 148.4230 0.7200 128.6421 0.8100

-20 % (40,44.8,49.6) 160.3204 0.6000 139.1057 0.6800 122.2489 0.7700

TABLE III
SENSITIVITY ON C̃p

% C̃p Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (57.6,62.4,67.2) 177.2203 0.7600 162.5536 0.8300 144.5462 0.9300

+10% (52.8,57.2,61.6) 174.3708 0.7200 157.4321 0.7900 140.5405 0.8900

0 % (48,52,56) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (43.2,46.8,50.4) 169.3402 0.6400 151.2502 0.7200 131.9752 0.8100

-20 % (38.4,41.6,44.8) 167.5423 0.6000 146.4623 0.6800 126.4561 0.7700

TABLE IV
SENSITIVITY ON C̃h

% C̃h Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (7.2,10.8,14.4) 188.5421 0.6200 171.4652 0.6900 149.6792 0.7800

+10% (6.6,9.9,13.2) 180.4536 0.6500 163.4521 0.7200 143.5479 0.8200

0 % (6,9,12) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (5.4,8.1,10.8) 164.1054 0.7100 146.4687 0.7900 129.5482 0.9000

-20 % (4.8,7.2,9.6) 156.4652 0.7400 139.4657 0.8400 122.5794 0.9500

TABLE V
SENSITIVITY ON C̃d

% C̃d Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (1.44,1.92,2.4) 172.5551 0.6800 154.7714 0.7500 136.3956 0.8500

+10% (1.32,1.76,2.2) 172.5436 0.6800 154.7634 0.7500 136.3942 0.8500

0 % (1.2,1.6,2.0) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (1.08,1.44,1.8) 172.5214 0.6800 154.7474 0.7500 136.3914 0.8500

-20 % (0.96,1.28,1.6) 172.5101 0.6800 154.7394 0.7500 136.3900 0.8500
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TABLE VI
SENSITIVITY ON C̃s

% C̃s Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (1.34,1.40,1.48) 172.5428 0.6800 154.7634 0.7500 136.3936 0.8500

+10% (1.23,1.29,1.36) 172.5378 0.6800 154.7594 0.7500 136.3932 0.8500

0 % (1.12,1.18,1.24) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (1.01,1.07,1.12) 172.5278 0.6800 154.7514 0.7500 136.3924 0.8500

-20 % (0.90,0.96,1.0) 172.5228 0.6800 154.7374 0.7500 136.3920 0.8500

TABLE VII
SENSITIVITY ON θ̃

% θ̃ Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (0.0072,0.0132,0.0192) 172.5556 0.6800 154.7694 0.7500 136.3954 0.8500

+10% (0.0066,0.0121,0.0176) 172.5442 0.6800 154.7524 0.7500 136.3941 0.8500

0 % (0.006,0.011,0.016) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (0.0054,0.0099,0.0144) 172.5213 0.6800 154.7485 0.7500 136.3913 0.8500

-20 % (0.0048,0.0088,0.0128) 172.5098 0.6800 154.7415 0.7500 136.3898 0.8500

TABLE VIII
SENSITIVITY ON D̃

% D̃ Graded Mean Method Signed Distance Method Centroid Method

Change TACgm Time (yrs) TACsd Time (yrs) TACcen Time (yrs)

+20 % (540, 612, 684) -256.4568 1.0000 -286.0238 1.0000 -342.4658 1.0000

+10% (495, 561, 627) -6.4592 1.0000 -45.7568 1.0000 -67.7849 1.0000

0 % (450, 510, 570) 172.5328 0.6800 154.7554 0.7500 136.3928 0.8500

-10% (405, 459, 513) 247.4583 0.4700 245.7458 0.4900 236.3789 0.5100

-20 % (360, 408, 456) 295.7952 0.3900 285.4589 1.4100 295.7459 0.4200

Fig. 5. Sensitivity Analysis of Ã Using SDM Method: Time vs. Total
Average Cost Fig. 6. Sensitivite Analysis on Ã Using CEM method:

Time vs. Total avarge cost
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Fig. 7. Sensitivite Analysis on C̃p Using GMIR method:
Time vs. Total avarge cost

Fig. 8. Sensitivite Analysis on C̃p Using SDM method: Between
Time vs. Total avarge cost

Fig. 9. Sensitivite Analysis on C̃p Using CEM method:
Time vs. Total avarge cost

Fig. 10. Sensitivite Analysis on C̃h Using GMIR method:
Time vs. Total avarge cost

Fig. 11. Sensitivite Analysis on C̃h Using SDM method:
Time vs. Total avarge cost

Fig. 12. Sensitivite Analysis on C̃h Using CEM method:
Time vs. Total avarge cost
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Fig. 13. Sensitivite Analysis on C̃d Using GMIR method:
Time vs. Total avarge cost

Fig. 14. Sensitivite Analysis on C̃d Using SDM method:
Time vs. Total avarge cost

Fig. 15. Sensitivite Analysis on C̃d Using CEM method:
Time vs. Total avarge cost

Fig. 16. Sensitivite Analysis on C̃s Using GMIR method:
Time vs. Total avarge cost

Fig. 17. Sensitivite Analysis on C̃s Using SDM method:
Time vs. Total avarge cost

Fig. 18. Sensitivite Analysis on C̃s Using CEM method:
Time vs. Total avarge cost
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Fig. 19. Sensitivite Analysis on θ̃ Using GMIR method:
Time vs. Total avarge cost

Fig. 20. Sensitivite Analysis on θ̃ Using SDM method:
Time vs. Total avarge cost

Fig. 21. Sensitivite Analysis on θ̃ Using CEM method:
Time vs. Total avarge cost

Fig. 22. Sensitivite Analysis on D̃ Using GMIR method :
Time vs. Total avarge cost

Fig. 23. Sensitivite Analysis on D̃ Using SDM method :
Time vs. Total avarge cost

Fig. 24. Sensitivite Analysis on D̃ Using CEM method :
Time vs. Total avarge cost
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X. CONCLUSION

The aim of this paper is to determine an optimal inventory
policy in a fuzzy environment by analyzing a probabilistic
inventory model with a time-independent deterioration rate,
complete backlog, and probabilistic uncertain demand. The
paper further develops corresponding models in a fuzzy
environment using triangular fuzzy numbers to represent
fuzzy parameters. Three defuzzification methods—namely
the Centroid method, the Graded Mean Integration method,
and the Signed Distance method—are employed to handle
the fuzziness in the model. The primary objective of the
model is to minimize total costs. Numerical examples
are provided to illustrate the proposed model, and the
convexity of the cost function is examined. Additionally,
the sensitivity of the model to changes in parameter values
is investigated through sensitivity analysis. Both the models
and defuzzified results are solved, and the sensitivity results
are presented graphically and in tabular form. The graphical
representations further enhance our understanding of the
scenario.
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