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Abstract—Let Mn be a compact submanifold minimally
immersed into the unit sphere Sn+p with codimension p, and
denote by h the second fundamental form. As our main results,
we first establish two rigidity theorems in terms of the geometric
quantity σ(u) = ∥h(u, u)∥2 for any unit vector u tangent to
Mn, where ∥ · ∥2 denotes the squared norm with respect to
the standard metric g on Sn+p. Furthermore, we establish an
optimal inequality for the conformally flat minimal Legendrian
submanifolds in S2n+1 with constant scalar curvature, involving
the normalized scalar curvature and the squared norms of
the traceless Ricci tensor and second fundamental form. In
particular, our first theorem related to the hypersurfaces of
Sn+1 gives a new characterization of the Clifford torus, whereas
the other theorems are about the Legendrian submanifolds such
that new characterizations of the Calabi torus can be presented.

Index Terms—unit sphere, hypersurface, Legendrian sub-
manifold, Clifford torus, Calabi torus, rigidity theorem.

I. INTRODUCTION

THE study of pinching problems on submanifolds of the
unit sphere, closely related to the rigidity phenomena, is

always an attractive geometric topic and has been extensively
studied by many geometers, under various intrinsic and
extrinsic geometric conditions. For the former, a variety of
characteristic results were established, see e.g. [5], [6], [35],
[36] for pinching of the sectional curvature and [7], [9],
[11], [19] for pinching of the Ricci curvature, respectively.
In particular, by the minimality it is easily seen that the
pinching problem on the scalar curvature of the submanifold
Mn in the unit sphere Sn+p of codimension p is equivalent to
that on the squared norm S of the second fundamental form
h of Mn with respect to the standard metric g on Sn+p.
Regarding this, Simon [29] obtained the so-called Simons’
formula through calculating the Laplacian of S, which states
that if 0 ≤ S ≤ n/(2 − 1/p) on Mn, then either S ≡ 0 or
S ≡ n/(2 − 1/p) =: c. Furthermore, such submanifolds
attaining S ≡ c were completely determined by Lawson
[14] and Chern-do Carmo-Kobayashi [4] and later Li-Li [17]
improved the first pinching constant c to 2n/3.

Let UMn be the unit tangent bundle on Mn and set
σ(u) = ∥h(u, u)∥2, u ∈ UMn, where ∥ · ∥2 denotes
the squared norm with respect to the standard metric g
on Sn+p. It is should be pointed out that there have been
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some papers on studying submanifolds in the unit sphere by
taking into account the geometric quantity σ(u), especially
about its pinching problem (cf. [8], [23], [31], [32] and
references therein). Among them, Gauchman [8] investigated
the pinching problem of σ(u) and proved the following well-
known extrinsic rigidity theorem:

Theorem A. Let Mn be an n-dimensional compact minimal
submanifold in the unit sphere Sn+p. Then, it holds that

(1) assuming that p = 1 and n is odd, if σ(u) ≤ 1/(1 −
1/n) for any u ∈ UMn, then Mn is totally geodesic
with σ(u) ≡ 0;

(2) assuming that p ≥ 2 and n is odd, if σ(u) ≤ 1/(3 −
2/n) for any u ∈ UMn, then Mn is totally geodesic
with σ(u) ≡ 0;

(3) assuming that p = 1 and n is even, if σ(u) < 1
for any u ∈ UMn, then Mn is totally geodesic with
σ(u) ≡ 0, whereas if maxu∈UMnσ(u) = 1, then
Mn = Sn/2(

√
1/2)× Sn/2(

√
1/2) with σ(u) ≡ 1;

(4) assuming that p ≥ 2 and n is even, if σ(u) < 1/3
for any u ∈ UMn, then Mn is totally geodesic with
σ(u) ≡ 0, whereas if maxu∈UMnσ(u) = 1/3, then
Mn is one of the submanifolds with σ(u) ≡ 1/3.

Remark I.1. It is known from [8] that such submanifolds in
Sn+p with σ(u) ≡ 1/3 are the λ-isotropic minimal ones with
parallel second fundamental form and λ = 1/

√
3, of which

the classification has been obtained by Sakamoto [26].

However, the pinching constant in Theorem A is not opti-
mal if we consider that p ≥ 1 and n is odd. This observation
combining with the above statement further motivates us to
consider the following natural and interesting question:
Question. For n-dimensional compact minimal submanifolds
of the unit sphere Sn+p, what is the best possible condition
on the geometric quantity σ(u) such that submanifolds next
to the totally geodesic one can be characterized?

One of the purposes of this article is to answer the
Question, restricted to the hypersurface case of Sn+1 for
p = 1 and n ≥ 2 and the Legendrian submanifold case of
S7 for p = 4 and n = 3, respectively. For better illustrating
our first result, we review the following compact minimal
hypersurface called the Clifford torus in Sn+1.

Example I.1. (cf. [2]) The Clifford torus Cl1,n−1 in the unit
sphere Sn+1.

The Clifford torus

Cl1,n−1 := S1(
√

1/n)× Sn−1(
√
(n− 1)/n)

in Sn+1 is a compact minimal hypersurface with two distinct
constant principal curvatures, one of them being simple:

λ1 = ±
√
n− 1, λ2 = λ3 = · · · = λn = ∓ 1√

n−1
. (1)
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It follows that the square norm S of the second fundamental
form h of Cl1,n−1 satisfies S = ∥h∥2 =

∑n
i=1 λ

2
i = n.

Consider that Mn is a compact minimal hypersurface in
the unit sphere Sn+1 for n ≥ 2. Then, the unit tangent bundle
is defined by UqM

n = {u ∈ TqM
n | g(u, u) = 1} for q ∈

Mn, on which there exists a well-defined function given by
fq(u) := g(ANu, u) on UqM

n (cf. [11]), where AN denotes
the shape operator of Mn with respect to the unit normal
vector field N along Mn. Since UqM

n is a compact set, we
have an element e ∈ UqM

n at which it satisfies fq(e) =
maxu∈UqMnfq(u). Thus, with the non-empty set

Uq := {u ∈ UqM
n | fq(u) = fq(e)},

similar to [11], we can define a function Φe on UqM
n by

Φe(u) := [g(ANe, u)]2, u ∈ UqM
n,

where e is any fixed element in Uq .
Now, the first result of this paper can be stated as follows:

Theorem I.1. Let Mn (n ≥ 2) be a compact minimal
hypersurface in the unit sphere Sn+1. If the squared norm
σ(u) satisfies, at any point q ∈ Mn,

0 ≤ σ(u) ≤ 1
n−1 + n(n−2)

(n−1)2 Φe(u) (2)

for all u ∈ UqM
n and a fixed e ∈ Uq , then either

(i) Mn = Sn is totally geodesic satisfying σ(u) ≡ 0, or
(ii) Mn = Cl1,n−1 is the Clifford torus satisfying σ(u) ≡

1
n−1 + n(n−2)

(n−1)2 Φe(u).

Remark I.2. It is clear that the pinching function in (2) is
optimal and therefore we obtain a new characterization of
the Clifford torus Cl1,n−1 by considering both the case n is
odd and the case n is even. In the latter case, different from
Cl1,n−1, Theorem A characterized the minimal hypersurface
Sn/2(

√
1/2)× Sn/2(

√
1/2).

Recall that, as a real hypersurface of the complex Eu-
clidean space Cn+1, the unit sphere S2n+1 naturally admits
a Sasakian structure (φ, ξ, η, g) (cf. [30]). Moreover, an m-
dimensional submanifold Mm in S2n+1 is said to be C-
totally real (or equivalently, integral ) if the contact form
η of S2n+1 vanishes when it is restricted to Mm, namely
η(X) = 0 for any X ∈ TMm. In particular, we call
a C-totally real submanifold Mm Legendrian if it meets
the smallest possible codimension, namely m = n (cf.
[33]), and associated with the study of such submanifolds
in S2n+1, there are many important results established in the
last decades, see e.g. [12], [13], [15], [16], [20], [21], [22],
[24], [27], [28], [34], [37].

Before stating the remaining main results, we shall look
at the following Legendrian submanifold in S2n+1.

Example I.2. (cf. [5], [11], [18], [23]) The Calabi torus
Ca1,n−1 in the unit sphere S2n+1.

Let γ = (γ1, γ2) : S1 → S3 ⊂ C2 be a Legendrian curve,
defined by

γ(t) =

(√
n

n+1e
i

1√
n
t
,
√

1
n+1e

−i
√
nt

)
, (3)

and ϕ : Sn−1 → S2n−1 ⊂ Cn be the totally geodesic
Legendrian sphere for n ≥ 3. Then

f(t, y) = (γ1ϕ, γ2) : S1 × Sn−1 → S2n+1 ⊂ Cn+1 (4)

is a minimal Legendrian immersion and f(S1 × Sn−1) is
called the Calabi torus, denoted by Ca1,n−1.

Note from the induced metric of f(t, y) : S1 × Sn−1 →
S2n+1 ⊂ Cn+1

f∗(g) = (dt)2 + n
n+1 [(dy1)

2 + · · ·+ (dyn)
2]

that f is an isometric immersion, where y = (y1, . . . , yn) ∈
Sn−1 ⊂ Rn and

∑n
i=1 y

2
i = 1. Adopting the following local

reparametrization

(y1, y2, . . . , yn) = ( sin θ1, cos θ1 sin θ2, . . . ,

cos θ1 cos θ2 · · · cos θn−2 cos θn−1),

we then obtain a local orthonormal frame {ei}ni=1 on f(S1×
Sn−1) =: Mn with respect to the metric g, satisfying the
relations: 

e1 = −ft, e2 =
√

n+1
n fθ1 ,

e3 =
√

n+1
n cos−1 θ1fθ2 , . . . ,

en =
√

n+1
n

n−2∏
ℓ=1

cos−1 θℓ fθn−1
.

(5)

As the unit sphere S2n+1 admits a natural Sasakian structure
(φ, ξ, η, g), by definition we see that η(ei) = 0 for 1 ≤ i ≤ n
and thus f is a Legendrian immersion.

Denote by h the second fundamental form of f : S1 ×
Sn−1 → S2n+1. Then, direct calculations by using the Gauss
formula show that (cf. [10])

∇eiej = −
√

n+1
n

sin θj−1∏j−1
k=1 cos θk

ei, 2 ≤ j < i ≤ n,

∇eiei =
√

n+1
n

i−1∑
ℓ=2

sin θℓ−1∏ℓ−1
k=1 cos θk

eℓ, 3 ≤ i ≤ n,

∇eiej = 0, otherwise,
(6)

where ∇ is the Levi-Civita connection of the metric g, and

h(e1, e1) =
n−1√

n
φe1, h(e1, ei) = − 1√

n
φei,

h(ei, ej) = − 1√
n
δijφe1, 2 ≤ i, j ≤ n.

(7)

It is obvious that such an immersion f is a compact minimal
Legendrian submanifold. Combining with (6) and (7), we get
(∇̄ξh)(ei, ej , ek) = 0 for 1 ≤ i, j, k ≤ n, i.e., the immersion
f is of C-parallel second fundamental form (cf. Section II).

For the Riemannian curvature tensor of Mn, applying (6)
again, we obtain that

R(e1, ei)e1 = R(e1, ei)ej = R(ei, ej)e1 = 0,

R(ei, ej)ek = n+1
n (δjkei − δikej), 2 ≤ i, j, k ≤ n.

(8)

Therefore, by definition we deduce from (8) that

Ric(e1, e1) = Ric(e1, ei) = 0,

Ric(ei, ej) =
(n−2)(n+1)

n δij , 2 ≤ i, j ≤ n.
(9)

Remark I.3. According to [23], the Calabi torus Ca1,n−1 in
the unit sphere S2n+1 can be viewed as the minimal Calabi
product Legendrian immersion of one point and the totally
geodesic Legendrian sphere.

Consider that M3 is a compact minimal Legendrian sub-
manifold in the unit sphere S7 with the standard contact
metric structure {φ, ξ, η, g}. Due to [1], we have such a
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function Fq(u) = g(h(u, u), φu) defined on UqM
3 for

q ∈ M3. Similarly, there exists an element e ∈ UqM
3 such

that Fq(e) = maxu∈UqM3Fq(u). Hence, we put

Vq := {u ∈ UqM
3 |Fq(u) = Fq(e)},

and according to [11], a well-defined function Ψe on UqM
3

can be obtained by

Ψe(u) = [g(h(e, e), φu)]2, u ∈ UqM
3,

where e is any fixed element in Vq .
Next, the second result of this paper can be stated as

follows:

Theorem I.2. Let M3 be a compact minimal Legendrian
submanifold in the unit sphere S7. If the squared norm σ(u)
satisfies, at any point q ∈ M3,

0 ≤ σ(u) ≤ 1
3 + 3

4Ψe(u) (10)

for all u ∈ UqM
3 and a fixed e ∈ Vq , then either

(i) M3 = S3 is totally geodesic satisfying σ(u) ≡ 0, or
(ii) M3 = Ca1,2 is the Calabi torus satisfying σ(u) ≡

1
3 + 3

4Ψe(u).

Remark I.4. From the view of intrinsic geometry, the char-
acterizations of Calabi torus in S7 were presented by Dillen-
Vrancken [5] for pinching of sectional curvature and by Hu-
Xing [11] for pinching of Ricci curvature, respectively. In
this paper, Theorem I.2 states that a new characterization of
the Calabi torus can be obtained by considering the pinching
of the extrinsic geometric quantity σ(u).

Finally, we can prove the following theorem:

Theorem I.3. Let Mn (n ≥ 3) be a conformally flat
minimal Legendrian submanifold in the unit sphere S2n+1

with constant scalar curvature. Then the traceless Ricci
tensor R̃ic of Mn satisfies

∥R̃ic∥2 ≥ (n−2)(n+1)
n+2 Sχ, (11)

where S and χ are respectively the squared norm ∥ · ∥2
of the second fundamental form and the normalized scalar
curvature of Mn. Moreover, the equality in (11) holds
identically if and only if Mn is locally congruent to one
of the following three examples:

(i) Mn = Sn is totally geodesic;
(ii) Mn = Tn is the flat Clifford torus;

(iii) Mn = Ca1,n−1 is the Calabi torus.

Remark I.5. Recall that the Riemannian manifold (Mn, g)
is said to be conformally flat if around each point of
Mn there exists a neighborhood which can be conformally
immersed into the Euclidean space Rn. When n ≥ 4, it is
known that (Mn, g) is conformally flat if and only if its Weyl
curvature tensor vanishes. When n = 3, we should remark
that the Weyl curvature tensor vanishes automatically, and
(M3, g) is conformally flat if and only if its Schouten tensor
is a Codazzi tensor.

Remark I.6. Recently, the Calabi torus Ca1,n−1 has been
characterized by Luo-Sun-Yin [23] from the view of extrinsic
geometry and by Li-Xing-Yin [18] from the view of intrinsic
geometry. In particular, it was conjectured in [22] that, for

a closed minimal Legendrian submanifold Mn in the unit
sphere S2n+1, if 0 ≤ S ≤ (n + 2)(n − 1)/n, then Mn is
either the totally geodesic sphere with S = 0, or the Calabi
torus with S = (n+2)(n−1)/n. It is worth mentioning that
Theorem I.3 corresponds to Theorem 1.2 of Cheng-Hu [3].

II. PRELIMINARIES

In this section, we briefly review some basic facts on
submanifolds in the unit sphere Sn+p with codimension p,
and then present some useful lemmas, associated to the
hypersurface case for p = 1 and n ≥ 2 (cf. [25]) as well
as the Legendrian submanifold case for p = 4 and n = 3
(cf. [11]), which we need in the proofs of Theorems I.1–I.3.

Let Mn be an n-dimensional submanifold in the unit
sphere Sn+p equipped with the standard metric g. For
simplicity, we denote also by g the induced metric on Mn.
Let ∇ and ∇̄ be the Levi-Civita connections of Mn and
Sn+p, respectively. Then, for the immersion Mn ↪→ Sn+p,
we have the Gauss and Weingarten formulas:

∇̄XY = ∇XY + h(X,Y ),

∇̄XN = −ANX +∇⊥
XN

(12)

for any tangent vector fields X,Y ∈ TMn and normal vector
field N ∈ T⊥Mn. Here, ∇⊥ denotes the normal connection
in the normal bundle T⊥Mn and h (resp. AN ) denotes
the second fundamental form (resp. the shape operator with
respect to N ) of Mn ↪→ Sn+p(1). Applying (12), we derive
the relation:

g(h(X,Y ), N) = g(ANX,Y ). (13)

A. Hypersurfaces in the unit sphere Sn+1

In this subsection, we always assume that Mn is a minimal
hypersurface in the unit sphere Sn+1. For the sake of
simplicity, we adopt the notations of Peng-Terng [25] to give
the well-known result:

Lemma II.1. Let Mn be a minimal hypersurface in the unit
sphere Sn+1. Then it holds that

1
2∆∥h∥2 = ∥∇̄h∥2 + ∥h∥2(n− ∥h∥2). (14)

For later’s purpose, by means of (13) we easily derive the
following lemma:

Lemma II.2. Let Mn be a minimal hypersurface in the
unit sphere Sn+1 with unit normal vector field N . Then,
for any point q ∈ Mn, there exists an orthonormal basis
{e1, e2, . . . , en} of TqM

n and numbers λ1, λ2, . . . , λn such
that the second fundamental form h of Mn satisfies that

h(e1, e1) = λ1N, h(em, em) = −λmN, h(ei, ej) = 0
(15)

for 2 ≤ m ≤ n and 1 ≤ i ̸= j ≤ n, where there holds

λ1 =
n∑

m=2

λm = max{λ1,−λ2, ...,−λn}

= max
u∈UqMn

g(ANu, u).

(16)
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B. Legendrian submanifolds in the unit sphere S2n+1

In this subsection, we always assume that Mn is a minimal
Legendrian submanifold in the unit sphere S2n+1 admitting
a Sasakian structure (φ, ξ, η, g). It is known that, associated
to ∇̄ and ξ, a covariant differentiation ∇̄ξ can be defined
such that it acts on h as (cf. [13], [18])

(∇̄ξh)(X,Y, Z) = (∇̄h)(X,Y, Z)−g(h(Y, Z), φX)ξ (17)

for any vector fields X,Y, Z tangent to Mn, where there
holds

(∇̄h)(X,Y, Z) = ∇⊥
Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

(18)
In particular, the second fundamental h is called C-parallel
if it satisfies ∇̄ξh = 0 on Mn.

The Legendre frame {e1, . . . , en, e1∗ , . . . , en∗ , e2n+1} on
Mn can be chosen so that, restricted to Mn, the vector fields
e1, . . . , en are orthonormal and tangent to Mn, whereas
{e1∗ = φe1, . . . , en∗ = φen, e2n+1 = ξ} are orthonormal
normal vector fields of Mn in the unit sphere S2n+1. Set
hk∗

ij = g(h(ei, ej), φek) and h2n+1
ij = g(h(ei, ej), e2n+1)

and make the following convention on range of indices:

i, j, k, ℓ = 1, . . . , n; α = 1, . . . , n+ 1,

i∗, j∗, k∗, ℓ∗ = n+ 1, . . . , 2n; α∗ = α+ n.

From now on, we assume that n = 3 and it therefore fol-
lows from the notations given in Chern-do Carmo-Kobayashi
[4] and Hu-Yin [13] that (cf. also Lemma 2.1 of [23] or
Lemma 2.3 of [11])

Lemma II.3. Let M3 be a minimal Legendrian submanifold
in the unit sphere S7. Then, in terms of Hi = (hi∗

jk), we have
the Laplacian of ∥h∥2 as below:

1
2
∆∥h∥2 = ∥∇̄ξh∥2+4∥h∥2−

∑
i,j

N(HiHj−HjHi)−
∑
i,j

(Sij)
2,

(19)
where ∥∇̄ξh∥2 =

∑
i,j,k,ℓ(h

ℓ∗

ij,k)
2, Sij = trace(HiHj) and

N(A) =
∑

i,j(aij)
2 for A = (aij).

Finally, we also need the following three useful lemmas
that were presented in [11].

Lemma II.4. Let M3 be a minimal Legendrian submanifold
in the unit sphere S7. Then, for each point q ∈ M3,
there exists an orthonormal basis {e1, e2, e3} of TqM

3 and
numbers {λ1, λ2, µ1, µ2} such that the second fundamental
form h of M3 takes the following form:

h(e1, e1) = (λ1 + λ2)φe1,

h(e1, e2) = −λ1φe2,

h(e1, e3) = −λ2φe3,

h(e2, e2) = −λ1φe1 + µ1φe2 + µ2φe3,

h(e2, e3) = µ2φe2 − µ1φe3,

h(e3, e3) = −λ2φe1 − µ1φe2 − µ2φe3,

(20)

where, for Fq(u) = g(h(u, u), φu) defined on UqM
3, it

satisfies that
λ1 + λ2 = max

u∈UqM3
Fq(u) ≥ 0,

λ1 + λ2 ≥ −2λ1, λ1 + λ2 ≥ −2λ2,

− (λ1 + λ2) ≤ µi ≤ λ1 + λ2, i = 1, 2.

(21)

Lemma II.5. If (20) holds, then by the notations of Lemma
II.3, we have

∥h∥2 =
∑
i,j,α

(hα∗

ij )
2 = 4λ2

1+4λ2
2+2λ1λ2+4µ2

1+4µ2
2. (22)

Lemma II.6. If (20) holds, then by the notations of Lemma
II.3, we have ∑

i,j

N(HiHj −HjHi) +
∑
i,j

(Sij)
2

= 24(λ4
1 + λ3

1λ2 + λ2
1λ

2
2 + λ1λ

3
2 + λ4

2)

− 36λ1λ2(µ
2
1 + µ2

2) + 24(µ2
1 + µ2

2)
2

+ 18(λ2
1 + λ2

2)(µ
2
1 + µ2

2).

(23)

III. PROOF OF THEOREM I.1

Let Mn (n ≥ 2) be a compact minimal hypersurface in the
unit sphere Sn+1. At an arbitrary point q ∈ Mn, choosing
the orthonormal basis {e1, . . . , en} of TqM

n as stated in
Lemma II.2, by definition we have

σ(e1) = λ2
1 =

( n∑
m=2

λm

)2

,

σ(em) = λ2
m, 2 ≤ m ≤ n.

(24)

Moreover, by setting e = e1 ∈ Uq and using Lemma II.2,
we obtain from the assumption of Theorem I.1 that

0 ≤ σ(v) ≤ 1
n−1 + n(n−2)

(n−1)2 Φe1(u) (25)

for all u ∈ UqM
n, where Φe1(e1) = λ2

1 and Φe1(em) = 0 for
2 ≤ m ≤ n. In what follows, we shall divide the remaining
proof of Theorem I.1 into two cases: n ≥ 3 and n = 2.

Assume that n ≥ 3. Then, combining (24) with (25) and
interchanging er and es for 2 ≤ r < s ≤ n if necessary, we
may assume without loss of generality that

λn ≤ λn−1 ≤ · · · ≤ λ2,

0 ≤ λ2
1 ≤ n− 1,

0 ≤ λ2
m ≤ 1

n−1 , 2 ≤ m ≤ n.

(26)

Applying the fact ∥h∥2 =
∑n

i,j=1 h
2
ij and Lemma II.2, we

further have

∥h∥2(n− ∥h∥2)

=−
( n∑

i=1

λ2
i

)( n∑
i=1

λ2
i − n

)
=−

( n∑
i=1

λ2
i

)(
2

n∑
m=2

λ2
m + 2

n∑
r<s

λrλs − n
)
.

(27)

In particular, it is easily seen that the following relation holds:

2
n∑

m=2

λ2
m + 2

n∑
r<s

λrλs − n

= n
n−1

n∑
m=2

[
(n− 1)λ2

m − 1
]
−

n∑
r<s

(λr − λs)
2.

(28)

Consequently, it follows from (26)–(28) that

∥h∥2(n− ∥h∥2) ≥ 0, (29)

where it is obvious that the equality sign in (29) holds if and
only if either λi = 0 for 1 ≤ i ≤ n, or λ1 =

√
n− 1 and

λ2 = λ3 = · · · = λn =
√
1/(n− 1) such that ∥h∥2 = n.
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Assume that n = 2. It is known from (24) and (25) that
λ2
1 = λ2

2 ≤ 1. Therefore, we conclude that in this case (29)
still holds and the corresponding equality sign holds if and
only if either λ1 = λ2 = 0, or λ1 = λ2 = 1 such that
∥h∥2 = 2.

Since Mn is compact, Lemma II.1 and the divergence
theorem show that∫

Mn

{
∥∇̄h∥2 + ∥h∥2(n− ∥h∥2)

}
dVMn = 0, (30)

where dVMn denotes the volume element of the induced
metric g on Mn. Together with (29) and the arbitrariness
of q ∈ Mn, we get

∥∇̄h∥2 = ∥h∥2(n− ∥h∥2) ≡ 0 (31)

on Mn. Finally, according to the well-known results of Law-
son [14] and Chern-do Carmo-Kobayashi [4], we conclude
that either Mn is totally geodesic and Mn = Sn, or Mn is
the Clifford torus Cl1,n−1 with ∥h∥2 = n. This completes
the proof of Theorem I.1.

IV. PROOF OF THEOREM I.2

Let M3 be a compact minimal Legendrian submanifold in
the unit sphere S7. Then, for an arbitrary point q ∈ M3, we
can choose the orthonormal basis {e1, e2, e3} of TqM

3 as in
Lemma II.4 such that e = e1 ∈ Vq and {σ(e1), σ(e2), σ(e3)}
take the following forms:

σ(e1) = (λ1 + λ2)
2,

σ(e2) = λ2
1 + µ2

1 + µ2
2,

σ(e3) = λ2
2 + µ2

1 + µ2
2.

(32)

Under the assumption of Theorem I.2, we deduce from
Lemma II.4 that, at q ∈ M3, the squared norm σ(u) satisfies
that

0 ≤ σ(u) ≤ 1
3 + 3

4Ψe1(u) (33)

for all u ∈ UqM
3, where Ψe1(e1) = (λ1 + λ2)

2 and
Ψe1(ej) = 0 for j = 2, 3.

Then, taking u = e1, e2 and e3 in (33), respectively, we
easily see from (32) that

(λ1 + λ2)
2 ≤ 1

3 + 3
4 (λ1 + λ2)

2,

λ2
1 + µ2

1 + µ2
2 ≤ 1

3 ,

λ2
2 + µ2

1 + µ2
2 ≤ 1

3 .

(34)

Interchanging e2 and e3 if necessary, we can assume that
λ2
2 ≤ λ2

1. This combining with (21) and (34) yields that

0 ≤ λ1 ≤
√
3
3 , λ2 ≤ λ1,

− 1
3λ1 ≤ λ2, µ2

1 + µ2
2 ≤ 1

3 − λ2
1.

(35)

On the other hand, using the compactness of M3, we
can integrate (19) and thus the combination of Lemma II.5,
Lemma II.6 and the divergence theorem gives

0 =

∫
M3

{
∥∇̄ξh∥2 −

{
24[λ4

1 + λ4
2 + λ2

1λ
2
2 + λ1λ2(λ

2
1 + λ2

2)]

+ 18(µ2
1 + µ2

2)(λ1 − λ2)
2 + 24(µ2

1 + µ2
2)

2

− 16(µ2
1 + µ2

2)− 16(λ2
1 + λ2

2 +
1
2
λ1λ2)

}}
dVM3 ,

(36)

where dVM3 denotes the volume element of the induced
metric g on M3. Furthermore, according to the proof of
Theorem 1.2 of [11], we can also set

Λ := 24[λ4
1 + λ4

2 + λ2
1λ

2
2 + λ1λ2(λ

2
1 + λ2

2)]

+ 18(µ2
1 + µ2

2)(λ1 − λ2)
2 + 24(µ2

1 + µ2
2)

2

− 16(µ2
1 + µ2

2)− 16(λ2
1 + λ2

2 +
1
2λ1λ2).

(37)

From now on, we assume that M3 is not totally geodesic.
So it is sufficient to consider the point q ∈ M3 at which
h ̸= 0. In this case, it holds that λ1 > 0. By means of (35)
we obtain that

3λ1 + 5λ2 = 4
3λ1 + 5( 13λ1 + λ2) > 0, (38)

and moreover the expression of (37) can be rewritten as

Λ = 24
[
2(µ2

1 + µ2
2) + 2λ2

1 + λ1λ2 + 2λ2
2

](
µ2
1 + µ2

2 + λ2
1 − 1

3

)
− 3

[
2(µ2

1 + µ2
2) + 2λ2

1 + λ1λ2 + 2λ2
2

]
(3λ1 + 5λ2)(λ1 − λ2)

− 24(µ2
1 + µ2

2)
2 − 3(λ1 − λ2)

2(2λ2
1 + 2λ2

2 − 3λ1λ2)

− 12(5λ2
1 + 5λ2

2 + 4λ1λ2)(µ
2
1 + µ2

2),
(39)

which together with (35) and (38) implies that Λ ≤ 0, where
the equality holds if and only if λ1 = λ2 =

√
3/3 and

µ1 = µ2 = 0. By virtue of the integral identity (36) and the
arbitrariness of q ∈ M3, the fact Λ ≤ 0 implies that M3 is a
Legendrian submanifold with C-parallel second fundamental
form (i.e., ∇̄ξh = 0). Consequently, we conclude that either
it is totally geodesic and M3 = S3(1), or by continuity it
satisfies the relations λ1 = λ2 =

√
3/3 and µ1 = µ2 = 0

such that ∥h∥2 = 10/3 hold identically on M3.
In the latter case, with (20) and the Gauss equation, a

direct calculation shows that the Ricci curvature Ric of M3

satisfies the following relation:

Ric(u) ≥ 4
3 −Ψe1(u) (40)

for e1 ∈ Vq and all u ∈ UqM
3, where Ric(u) = trace{X 7→

R(X,u)u}/∥u∥2 with R the Riemannian curvature of M3

(cf. [11]). Finally, with the arbitrariness of q ∈ M3, by
applying Theorem 1.2 of [11] we find that in this case M3

is congruent to the Calabi torus Ca1,2. This completes the
proof of Theorem I.2.

V. PROOF OF THEOREM I.3

Let Mn (n ≥ 3) be a conformally flat minimal Legendrian
submanifold in the unit sphere S2n+1 with constant scalar
curvature. According to Lemma 4.1 of [18], we immediately
have

1
2∆S = ∥∇̄ξh∥2 − ∥Rie∥2 − ∥Ric∥2 + n(n2 − 1)χ, (41)

where ∥Rie∥2 denotes the squared norm of the Riemannian
curvature tensor of Mn. Under the Legendre frame as in
Section II, we denote Rijkℓ = g

(
R(ei, ej)eℓ, ek

)
and Rij =∑

k g(R(ei, ek)ek, ej) for 1 ≤ i, j, k, ℓ ≤ n. Recall that the
components of the Weyl curvature tensor W of Mn satisfy

Wijkℓ = Rijkℓ +
nχ
n−2 (δikδjℓ − δiℓδjk)

− 1
n−2 (δikRjℓ + δjℓRik − δiℓRjk − δjkRiℓ),

(42)
and thus it holds that (cf. [18], [33]):

∥Rie∥2 = ∥W∥2 + 4
n−2∥Ric∥

2 − 2n2(n−1)
n−2 χ2. (43)
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Here, ∥Rie∥2 =
∑

i,j,k,ℓ(Rijkℓ)
2, ∥Ric∥2 =

∑
i,j(Rij)

2 and
∥W∥2 =

∑
i,j,k,ℓ(Wijkℓ)

2. From R̃ij = Rij − (n− 1)χδij ,
we easily see that

∥Ric∥2 = ∥R̃ic∥2 + n(n− 1)2χ2, (44)

where ∥R̃ic∥2 =
∑

i,j(R̃ij)
2 and R̃ic is the traceless part of

Ric. Substituting (43) and (44) into (41) immediately gives

1
2∆S = ∥∇̄ξh∥2 −∥W∥2 − n+2

n−2∥R̃ic∥
2 +(n+1)Sχ, (45)

where we used the relation n(n− 1)χ = n(n− 1)− S.
Now, as Mn is conformally flat and χ is constant, we can

derive from (45) that

0 = ∥∇̄ξh∥2 − n+2
n−2∥R̃ic∥

2 + (n+ 1)Sχ

≥ − n+2
n−2∥R̃ic∥

2 + (n+ 1)Sχ,
(46)

by which we then obtain (11) and find that the equality holds
identically if and only if ∇̄ξh = 0 on Mn, i.e., Mn is of C-
parallel second fundamental form. Finally, applying Theorem
1.3 of Li-Xing-Yin [18], we can conclude that Mn is locally
congruent to one of the examples (i)–(iii). This completes
the proof of Theorem I.3.
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