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Abstract—This study delves into the realm of generalized cone
metric spaces to explore fixed points, their existence, and
their uniqueness under the condition of T -stability, focusing on
Zamfirescu contractions. By extending the scope of fixed point
theory to encompass a broader class of spaces and contractions,
we not only establish a theoretical foundation for the existence
and uniqueness of such fixed points but also apply our findings
to the realm of integral equations, demonstrating their practical
utility. The relevance of our theoretical insights is further
underscored through the application to solving specific classes
of integral equations, highlighting the intersection between
abstract mathematical theory and practical problem-solving.
To substantiate our theoretical assertions, we provide carefully
selected examples that validate the theorem’s applicability, illus-
trating the robustness and relevance of our findings within both
the mathematical and applied contexts, thereby offering new
perspectives and methodologies for tackling integral equations
through fixed point theory.

Index Terms—Picard iteration, T -stable, generalized cone met-
ric space and fixed point theorem.

I. INTRODUCTION AND PRELIMINARIES

S Ince S. Banach introduced the Contraction Principle in
his 1922 PhD thesis [1], hundreds of researchers have

sought to generalize or refine it, focusing on either broad-
ening the contractive conditions or expanding the concept
beyond metric spaces. This led to notable enhancements like
Kannan [2], Chatterjea [3], and Zamfirescu [4] results, among
others, and the exploration of spaces such as semi-metric
and b-metric spaces. However, not all these endeavors proved
practically useful, with some generalizations merely echoing
existing results.
A T : X → X self-mapping function in the cone metric
space (X, d) will be examined here. Moreover, suppose that
the set of fixed points of T is FT = {x ∈ X : Tx = x}. The
Picard iteration process {xn}, is defined in complete metric
space by

xn+1 = Txn, n = 0, 1, 2, . . . (1)

We have used this approach to estimate the fixed points of
contractive mappings.

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ E,α ∈ [0, 1) (2)

by several authors throughout the years. The contraction
condition 2 mentioned above is referred to as Banach’s
contraction condition.
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We will now generalise 1 and overview portions of the
iteration process:
Let x0 ∈ E. The sequence {xn}∞n=0 is defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2 . . . . (3)

is the iteration process known as The Mann, where
{αn}∞n=0 ⊂ [0, 1]. The sequence {xn}∞n=0 is defined as for
every x0 ∈ E.

un+1 = (1− αn)un + αnTvn

vn = (1− βn)un + βnTun

}
n = 0, 1, . . . (4)

is the iteration process known as the Ishikawa iteration,
where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1]. Kannan
[2] used the contractive concept below to extend the fixed
point theorem of Banach:
There exists β ∈ (0, 1

2 ) for a self map T in a way that

d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)],∀x, y ∈ E. (5)

Chatterjee et al. (2011) established the subsequent contrac-
tual stipulation.
There exists γ ∈ (0, 1

2 ) for a selfmap T in a way that

d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)], ∀x, y ∈ E (6)

Based on Banach’s fixed point theorem, Zamfirescu [4]
expanded it by including equations 2, 5 and 6. Given a
mapping T : E → E, there are real numbers α, β, γ such
that

0 ≤ γ <
1

2
, 0 ≤ β <

1

2
, 0 ≤ α < 1,

and for each x, y ∈ E, at least one of the following
conditions holds:

(i) d(Tx, Ty) ≤ αd(x, y)
(ii) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)]

(iii) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)]

A Zamfirescu operator is a mapping T : E → E that satisfies
all three of the above conditions. Kannan mappings are
those that satisfy condition (ii), whereas Chatterjea operators
are those that satisfy condition (iii). For references to the
stability and T -Stability outcomes of the Picard iteration
under contractive conditions, see [5]–[15] and the citations
therein.
In order to broaden the concept of metric space, Huang
and Zhang [16] first proposed the concept of cone metric
space. They swapped over the set of real numbers in the
metric space for an ordered Banach space. Furthermore, for
mappings that satisfy different kinds of contractive condi-
tions, they proved several fixed point theorems in this space
and related spcaes. The references [17]–[20], [36]–[38] and
citations therein offer insights into cone metric space.
Subsequently, in the context of cone metric space, Rezapour
and Halbarani [21] omitted the normality assumption. Fol-
lowing that, other articles in cone metric space emerged [22]–
[26], [33]–[35].
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Consider E as a real Banach Space. A subset P of E is
defined as a cone if it satisfies the following condition:

(i) P is a closed set that is non-empty and not equal to
the zero set.

(ii) Let a, b ∈ R such that a, b ≥ 0, and for x, y ∈ P , it
follows that ax+ by ∈ P .

(iii) P ∩ (−P ) = 0.
Let P represent a cone that is contained within E. The partial
ordering ≤ on E with respect to P is defined as follows: for
each x and y in E, x ≤ y if and only if y − x belongs to
P . The notation x < y is used to indicate that x is less than
y, but not equal to y. On the other hand, x << y represents
that the difference y−x belongs to the interior of the set P .
There are two types of cone. There are cones that are
considered normal and cones that are considered non-normal.
A cone P contained in the vector space E is said to be
normal if there exists a positive integer K such that for every
x and y in P , if 0 ≤ x ≤ y, then ∥ x ∥≤ K ∥ y ∥. Put simply,
if xn ≤ yn ≤ zn and the limits as n approaches infinity of xn

and zn are both equal to x, then the limit as n approaches
infinity of yn is also equal to x. If any limited expanding
sequence inside a regular cone P ⊂ E converges, then P is
regular.

Definition 1. [16] Let X be a nonempty set. Suppose the
mapping d : X ×X → E satisfies the following conditions:

(i) 0 < d(u, v) for all u, v ∈ X and d(u, v) = 0 iff u = v.
(ii) d(u, v) = d(v, u) for all u, v ∈ X .

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X .
In this context, d is defined as a cone metric on the set X ,
and the pair (X, d) is referred to as a cone metric space.

Definition 2. [16] Consider a cone metric space (X, d)
where x ∈ X and {xn}n≥1 is a sequence in X . Then,

(i) for any c ∈ E where 0 << c, there exists a nat-
ural integer N such that d(xn, x) << c for every
n ≥ N , {xn}n≥1 converges to x. It is denoted by
limn→∞ xn = x or xn → x.

(ii) there is a natural number N such that for all n,m ≥
N , d(xn, xm) << c for every c ∈ E with 0 << c.
Then the sequence {xn}n≥1 is a Cauchy sequence.

(iii) If every Cauchy sequence converges, then (X, d) is the
complete cone metric space.

Definition 3. [16] Consider be a cone metric space (X, d))
that X contains {xn} and P is a normal cone with normal
constant K. Finally, for every n → ∞, the sequence
{xn} will converge to x if and only if d(xn, x) → 0 or
∥ d(xn, x) ∥→ 0.

Let us recall that a mapping T on metric space (X, d) is
called a Kannan [10] contraction if there exists α ∈ [0, 1

2 )
such that

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty)

for all x, y ∈ X .
In the year 2006, Huang and Zhang [16] proved cone version
of Kannan contraction as:

Theorem 4. Consider a complete cone metric space (X, d)
and let P be a normal cone with a normal constant K.
If the contractive condition is satisfied, then the mapping

T : X → X follows:

d(Tx, Ty) ≤ k[d(Tx, x)+d(Ty, y)], for all x, y ∈ X,
(7)

as long as k ∈ [0, 1
2 ). Then there is only one fixed point in

X for T . For any x ∈ X , the iterative process {Tnx} will
reach the fixed point.

In 1972, Chatterjeacite [3] got a similar result by looking at
a constant λ ∈ [0, 1

2 ) and a mapping T : X → X such that

d(Tx, Ty) ≤ λ[d(x, Ty) + d(y, Tx)]

Also, in the year 2006, Huang and Zhang [16] proved cone
version of Chatterjea [3] contraction as:

Theorem 5. Consider a complete cone metric space (X, d)
and let P be a normal cone with a normal constant K.
Assume the mapping T : X → X adheres to the contractive
condition:

d(Tx, Ty) ≤ k[d(Tx, y)+d(Ty, x)], for all x, y ∈ X,
(8)

as long as k ∈ [0, 1
2 ). Then there is only one fixed point in

X for T . For any x ∈ X , the iterative process {Tnx} will
reach the fixed point.

II. DEFINITIONS AND REMARKS

The recognition that cone metric spaces are metrizable has
led to an assumption that fixed point results in these spaces
might simply parallel those in traditional metric spaces [27],
[28]. However, a critical examination reveals a research
gap: the influence of the specific cone used on fixed point
theorems is not universally accounted for. This oversight
suggests that despite their metrizability, the unique character-
istics of cone metric spaces—and how these characteristics
interact with the underlying cones—demand a more tailored
analysis. This gap underscores the need for further research
to understand how the properties of different cones affect
fixed point results, moving beyond the assumption of direct
equivalence to standard metric counterparts.
This study introduces a novel contribution by proposing the
T-stability of Picard’s iteration fixed point in generalized
cone metric spaces, expanding the understanding of stability
within fixed point theory. Moreover, the practical application
of the proposed study has been exemplified. By applying
the theoretical findings to real-world scenarios or specific
mathematical problems, we have showcased the relevance
and usefulness of our research. This demonstration not only
validates the theoretical framework but also illustrates its
potential impact in solving practical problems or addressing
challenges in various fields. This study investigates fixed
points in generalized cone metric spaces with a focus on
T-stability and Zamfirescu contractions, broadening fixed
point theory’s scope and applying it to integral equations to
showcase its practical relevance. Through selected examples,
we demonstrate the theory’s applicability, merging abstract
mathematics with real-world problem solving, and offering
new methods for addressing integral equations.
Let X be a nonempty set and let D : X × X → E be a
given mapping. For every x ∈ X , let us define the set

C(D,X, x) =
{
{xn} ⊂ X : lim

n→∞
D(xn, x) = 0

}
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Definition 6. D is defined as a generalized cone metric on
X if it satisfies the subsequent criteria:

(i) For all (x, y) ∈ X × X , it follows that D(x, y) = 0
implies x = y.

(ii) For all pairs (x, y) ∈ X ×X , it holds that D(x, y) =
D(y, x).

(iii) For any (x, y) ∈ X ×X and {xn} ∈ C(D,X, x), the
inequality D(x, y) ≤ C limn→∞ supD(xn, y) holds.
This inequality is defined by the existence of a real
constant C > 0.

The structure denoted as (X,D) is referred to as a gener-
alised cone metric space.

Remark 7. (X,D) is a generalized cone metric space if and
only if (i) and (ii) of definition 6 are satisfied, indicating that
for any x ∈ X , the set C(D,X, x) is empty.

Definition 8. Let (X,D) be a generalised cone metric space,
let {xn} be a sequence in X and let x ∈ X . We say that
{xn} is D−converges to x in X if {xn} ∈ C(D,X, x).

Remark 9. For every n ∈ N , let {xn} be the sequence
where xn = x. It is true that D(x, x) = 0 if it D-converges
to x.

Definition 10. Consider (X,D) as a generalized cone metric
space. A sequence {xn} in X is defined as a D-Cauchy
sequence if

lim
m,n→∞

D(xn, xm, x) = 0.

The space (X,D) is termed D-complete if every Cauchy
sequence in X is D-convergent to an element in X .

Definition 11. Consider (X,D) as a generalized cone metric
space, and let {xn} denote a sequence in the set X . We define
a sequence {xn} as a D−Cauchy sequence in the space X
if

lim
m,n→∞

D(xn, xm, x) = 0.

Proposition 12. The set C(D,X, x) is non-empty if and only
if the condition D(x, x) = 0 holds true.

Proof: If C(D,X, x) ̸= ϕ, then a sequence {xn} ⊂ X
can be determined such that

lim
n→∞

D(xn, x) = 0.

Using property 3, We acquire

D(x, x) ≤ C lim
n→∞

supD(xn, x),

and therefore, D(x, x) = 0. Assume that D(x, x) = 0.For
every n ∈ N , the sequence {xn} ⊂ X converging to x is
defined as xn = x, which ends the proof.
The focus of this work is on the cone version contraction
types of Kannan and Chatterjea [2], [3]. We prove certain
fixed point findings in the recently released generalized cone
metric spaces. In order to demonstrate the usefulness of the
outcomes, we also provide a few instances.

III. FIXED POINT THEOREMS

Proposition 13. Consider the generalized cone metric space
(X,D) and the mapping T : X → X that satisfies inequality

7 for some λ ∈ [0, 1
2 ). Then any fixed u ∈ X corresponds to

T and satisfies

D(u, u) < ∞ ⇒ D(u, u) = 0.

Proof: Take a fixed point of T to be u ∈ X for which
D(u, u) < ∞. Utilizing 1, we derive

D(u, u) = D(Tu, Tu)

= λ(D(u, Tu) +D(u, Tu))

= 2λD(u, u)

Since 2λ ∈ [0, 1), we have D(u, u) = 0.

For every x ∈ X, we define

δ(D,T, x) = sup
{
D(T ix, T jx) : i, j ∈ N

}
.

Theorem 14. Let (X,D) be a complete generalised cone
metric space and let T be a self-mapping on X satisfying 7
for some constant λ ∈ [0, 1

2 such that Cλ < 1. If there exists
an element x0 ∈ X such that δ(D,T, x0) < ∞, whenever{
Tn

}
converges to u ∈ X . Additionally, u is a fixed point

of T only if D(u, Tu)
infty. In addition, we have u = u

′
for any fixed point u

′
of

T in X where D(u
′
, u

′
)

infty.

Proof: Consider the set N where n ≥ 1. We may say
that for every i, j ∈ N ,

D(Tn+ix0, T
n+jx0) ≤ λ[D(Tn+i−1)x0, T

n+ix0

+D(Tn+j−1)x0, T
n+jx0]

and then

D(Tn+ix0, T
n+jx0) ≤ 2λδ(D,T, Tn−1x0),

which gives

δ(D,T, Tnx0) ≤ 2λδ(D,T, Tn−1x0).

Consequently, we obtain

δ(D,T, Tnx0) ≤ (2λ)nδ(D,T, x0)

and

D(Tnx0, T
mx0) ≤ δ(D,T, Tnx0) ≤ (2λ)nδ(D,T, x0)

(9)
for every integer m where m > n. Given that

δ(D,T, x0) < ∞

and 2λ ∈ [0, 1), we derive

lim
m,n→∞

D(Tnx0, T
mx0) = 0.

Consequently, the sequence {Tnx0} is regarded as a D-
Cauchy sequence, implying the existence of an element
u ∈ X such that

lim
n→∞

D(Tnx0, u) = 0

and
D(Tu, u) ≤ C lim

n→∞
supD(Tu, Tn+1x0 (10)

By 1, we have

D(Tn+1x0, Tu) ≤ λ(D(Tn+1x0,

Tnx0) +D(u, fu)) (11)
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From references 3 and 5, we derive

lim
n→∞

D(Tw, Tn+1x0) ≤ λD(u, Tu).

Using 4, We obtain

D(u, Tu) ≤ CλD(u, Tu).

Since Cλ < 1 and D(u, Tu) < ∞, we deduce that
D(u, Tu) = 0, which implies that Tu = u. If u

′
is any

fixed point of T such that D(u
′
, u

′
) < ∞, we obtain

D(u, u
′
) = D(Tu, Tu

′
)

≤ λ(D(Tu, u) +D(Tu
′
, u

′
))

≤ λ(D(u, u) +D(u
′
, u

′
))

≤ 0

which implies u
′
= u.

Example 15. Consider the set X = [0, 1] and the set E =
[0,∞). Define the mapping D : X ×X → E as follows:

D(u, v) = u+ v, if u ̸= 0 and v ̸= 0

D(0, u) = D(u, 0) =
u

2
, for all u ∈ X.

Conditions (i) and (ii) of definition 6 are satisfied without
difficulty. According to proposition 13, it is necessary to
verify condition (iii) of definition 6 solely for elements x
in X where D(u, u) = 0, indicating that u = 0. Suppose
{un} ⊂ X is a sequence such that

lim
n→∞

D(un, 0) = 0

is the case. Assuming n ∈ N and v ∈ X , the following
holds:

D(un, v) = un + v, if un ̸= 0

D(un, v) =
v

2
, if un = 0.

Then
v

2
≤ D(un, v),

this means that

D(0, v) =
v

2
≤ lim

n→∞
supD(un, v).

It follows that (X,D) is not a standard metric space but
rather a generalized cone metric space as the triangle
inequality is not true: We may say that if u, v ∈ X − {0},
then

D(u, v) = u+ v

and
D(u, 0) +D(0, v) =

u+ v

2
,

and thus
D(u, v) > D(u, 0) +D(0, v).

Be aware that (X,D) is D-complete. Establish the mapping
f on X via

f(u) =
u

u+ 2
for all u ∈ X

This holds true for every u ∈ X:

D(f(u), f(0)) = D(
u

u+ 2
, 0) =

u

2(u+ 2)

and

D(f(u), u) +D(0, T (0)) = D(
u

u+ 2
, u) +D(0, 0)

=
u

u+ 2
+ u.

Then

D(f(u), f(0)) ≤ 1

3
(D(f(u), u) +D(0, f(0))).

We find that for any u, v ∈ X − {0},

D(f(u), f(v)) = D(
u

u+ 2
,

v

v + 2
)

=
u

2(u+ 2)
+

v

2(v + 2)

and

D(f(u), u) +D(v, f(v)) = D(
u

u+ 2
, u)

+D(v,
v

v + 2
)

=
u

u+ 2
+

v

v + 2
+ u+ v.

Then

D(f(u), f(v)) ≤ 1

3
[D(f(u), u) +D(v, f(v))].

Everything stated in Theorem 13 is true. Because D is
bounded and f(0) = 0, we may deduce that f has only
one fixed point.

Example 16. Let X = {p, q, r} and define f on X by
f(p) = p, f(q) = q and f(r) = p. There is no metric
for which f is a Kannan contraction on X . We define
D : X ×X → [0,+∞] by

D(p, p) = D(q, q) = 0 and D(q, q) = +∞;

D(p, q) = D(q, p) = 1;

D(p, r) = D(r, p) = 2;

D(q, r) = D(r, q) = 3

Then (X,D) is a complete generalised cone metric space,
f is a Kannan contraction on (X,D) for any λ ∈]0, 1

2 [ and
we can apply theorem 14.

Lemma 17. Assuming that 0 ≤ λ < 1, for any real number
λ and for any sequence of positive real numbers {bn} such
that limn→∞ bn = 0. Hence, we have limn→∞ an = 0 for
every positive integer sequence {an} that satisfies

an+1 ≤ λan + bn for all n ∈ N.

Theorem 18. Assume that (X,D) is a complete generalized
cone metric space with λ ∈ [0, 1

2 ), and that T is a self-map
on X such that

D(Tx, Ty) ≤ λ(D(y, Tx) +D(x, Ty)) (12)

for every x, y. The {Tnx0} sequence converges to u ∈ X if
and only if there is a point x0 ∈ X such that δ(D,T, x0) <
∞. In addition, if the distance between x0, Tu is finite, then
u is a fixed point in T . For any fixed point u

′
in T where

the distance between u and u
′

is finite, we may deduce that
u = u

′
.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2390-2397

 
______________________________________________________________________________________ 



Proof: Then, n ∈ N , where n ≥ 1. Given any two
numbers i, j, we can deduce

D(Tn+ix0, T
n+jx0) ≤ λ[D(Tn+ix0, T

n+j−1x0)

+D(Tn+i−1x0, T
n+jx0)]

which implies that

D(Tn+ix0, T
n+jx0) ≤ 2λδ(D,T, Tn−1x0)

Hence

δ(D,T, Tnx0) ≤ 2λδ(D,T, Tn−1x0),

as a result;

δ(D,T, Tnx0) ≤ (2λ)nδ(D,T, x0)

This inequality implies that

D(Tnx0, T
mx0) ≤ δ(D,T, Tnx0) ≤ (2λ)nδ(D,T, x0)

in the case when m > n and n and m are integers. We may
deduce that δ(D,T, x0) < ∞ and 2λ ∈ [0, 1) mean that

lim
m,n→∞

D(Tnx0, T
mx0) = 0

The D-Cauchy sequence {Tnx0} follows, and as a result,
there exists u ∈ X such that

lim
n→∞

D(Tnx0, u) = 0

By 3 we have

D(Tnx0, u) ≤ C lim
n→∞

supD(Tnx0, T
mx0)

≤ (2λ)nCδ(D,T, x0)

≤ Cδ(D,T, x0)

Then
D(Tnx0, u) < ∞ for all n ∈ N

By 6 we have

D(Tn+1x0, Tu) ≤ λ[D(Tn+1x0, u) +D(Tnx0, Tu)]

Given that
D(x0, Tu) < ∞,

it follows that D(Tnx0, Tu) < ∞ for all n ∈ N. According
to lemma 17, we derive

lim
n→∞

D(Tnx0, Tu) = 0

It follows that Tu = u. Let u
′

denote any fixed point in X .
We have

D(u, u
′
) = D(Tu, Tu

′
)

≤ λ(D(Tu, u
′
) +D(Tu

′
, u))

≤ λ(D(u, u
′
) +D(u

′
, u))

≤ 2λD(u, u
′
).

Since D(u, u
′
) < ∞, we obtain D(u, u

′
) = 0 which

concludes the proof.

Example 19. Consider X = [0, 1], E = [0,∞) be defined
by

D(u, 1) = D(1, u) = ∞ for all x ∈ [0, 1]

D(u, v) = u+ v if u ̸= 1 and v ̸= 1.

It is trivial to demonstrate that (X,D) is a D-complete
generalized cone metric space with C = 1. Let the function
f : [0, 1]. → [0, 1] given by

f(u) =
1

2
u if u ∈ [0, 1[,

f(1) = 1.

The function f satisfies 6 with λ = 1
3 in (X,D). The theorem

18 states that f has a fixed point.

Definition 20. Consider a generalized cone metric space
(X,D). A self-mapping f on X is known as a Hardy-Roger
contraction if there exist non-negative real constants. λi for
i = 1, 2, 3, 4, 5 where λ = Σi=5

i=1λi ∈ [0, 1] and

D(fx, fy) ≤ λ1D(x, y) + λ2D(x, fx) (13)
+ λ3D(y, fy) + λ4D(y, fx)

+ λ5D(x, fy)

for every x, y ∈ X.

Proposition 21. Consider a Hardy-Rogers contraction f :
X → X and assume that (X,D) is a generalized cone
metric space. Consequently, any fixed point u ∈ X of f
satisfies

D(u, u) < ∞ ⇒ D(u, u) = 0.

Proof: Consider a fixed point u ∈ X of f such that
D(u, u) < ∞. We have

D(u, u) = D(fu, fu)

≤ λ1D(u, u) + λ2D(u, fu) + λ3D(u, fu)

+ λ4D(u, fu) + λ5D(u, fu)

= λD(u, u).

Since λ ∈ [0, 1[, we have D(u, u) = 0.

IV. T-STABILITY OF PICARD’S ITERATION

This section outlines the process for iteration in generalised
cone metric spaces. This is an attempt to elaborate on
recent findings about T-stability. Consider a metric space
(X,D) that is equipped with a generalised cone structure.
Consider a series {Tn}n of self-maps of X such that the
intersection of the sets {F (Tn)} is not empty. Consider a
point x0 in the set X . Let us assume that the iteration
technique yn+1 = F (Tn, yn) involves the sequence {Tn}n
and generates a sequence {yn} of points from X.
Typically, one may get a series {zn} using the following
method. Consider a point y0 belonging to the set X . Assign
the value of yn+1 to be equal to the function f(Tn, yn).
Define y0 to be equal to z0. Currently, the value of y1 is
determined by the function f with inputs T0 and y0. As a
result of rounding errors made when computing the function
T0 produces a new value z1. that is nearly equal to y0 may
be obtained instead of f(T0, y0). To estimate the value of z1,
we calculate f(T1, y1) to get z2, with respect to f(T1, z1),
which is approximated. The purpose of this calculation is
as an approximation of {yn} in order to obtain {zn}, and
the result is stored for future use. Recent results on Stability
and T -Stability under iterative procedure can be found in
[30]–[32] and related sources.
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Definition 22. Define a generalized cone metric (X,D) and
a self-mapping function T on X . We assert that

(i) T is continuous if

lim
n→∞

D(xn, x) = 0 ⇒ lim
n→∞

D(T (xn), T (x)) = 0

for all x ∈ X;
(ii) for every {xn} sequence where {T (xn)} converges,

{xn} converges, we say that T is sequentially conver-
gent;

(iii) for any {xn} sequence where {T (xn)} converges,
{xn} has a convergent subsequence for T to be sub-
sequentially convergent.

Definition 23. The iteration defined as {Tn} is defined
as vn+1 = F (Tn, vn) with regard to {Tn}-semistable (or
semistable)as {vn} approaches a fixed point. If {zn} is a
sequence in X with limn→∞ and q in

⋂
n F (Tn) ̸= ϕ,

then if we have zn → z for some sequence tn ⊂ R+

and D(vn, f(Tn, zn)) = o(tn), then we may deduce that
f(Tn, vn) is equal to zero.

Definition 24. If the sequence {zn} converges to a fixed
point q in

⋂
n F (Tn) ̸= ∅ and

lim
n→∞

D(vn, f(Tn, zn)) = 0,

then zn → z, and the iteration vn+1 = F (Tn, vn) is
considered {Tn}-stable or stable with respect to {Tn}.

Remark 25. The notion of T-stability states that Tn is equal
to T for all values of n.

Theorem 26. Let (X,D) be a complete generalised cone
metric space and T : X → X with F (T ) ̸= ϕ. If there exists
c ∈ (0, 1

2 ) such that D(Tu, Tv) ≤ cD(u, v), whenever {vn}
is a sequence with D(vn, T vn) → 0 as n → ∞, and also for
every u, v ∈ X and x ∈ F (T ), Picard iteration is T-stable.

Proof: Let {vn} ⊆ X, ϵn = D(vn+1, T vn) and ϵn → 0
as n → ∞. Tthen we may say that for every n ∈ N,

D(vn+1, x) ≤ D(vn+1, Tun) +D(Tun, x)

−D(Tun, Tun)

⇒ D(vn+1, x) ≤ D(Tvn+1, T
n+1u0) +D(Tn+1u0, x)

−D(Tn+1u0, T
n+1u0)

⇒ D(vn+1, x) ≤ cD(vn, T
nu0) +D(Tn+1u0, x)

∴∥ D(vn+1, x) ∥ ≤ Kc ∥ D(vn, T
nu0) ∥

+ ∥ D(Tn+1u0, x) ∥→ 0

Hence, D(vn+1, x) = 0. But since

D(Tvn+1, T vn+1) ≤ cD(vn+1, vn+1) = 0.

We have that

D(Tvn+1, T vn+1) = D(Tvn+1, x) = D(x, x) = 0.

This shows that Tvn = x. Therefore,

lim
n→∞

vn = q.

For uniqueness: Let y be another fixed point of T , then

D(x, y) = D(Tx, Ty) ≤ cD(x, y)

Since c < 1 we have D(x, y) = D(x, x) = D(y, y). Hence
x = y. Thus the fixed point of T is unique.

Theorem 27. Let (X,D) be a complete generalised cone
metric space and T : X → X and F (T ) ̸= ϕ. For any u, v
in X and x in F(T), the Picard iteration is T -stable if there
is a c in the interval (0, 1

2 ) such that

D(Tu, Tv) ≤ c(D(Tu, u) +D(Tv, v))

and moreover, for every {vn} that is a sequence with
D(vn, T vn) → 0 as n → ∞, Picard iteration is T -stable.

Proof: Let {vn} ⊆ X, ϵn = D(vn+1, T vn) and ϵn → 0
as n → ∞. So, we may say that for every n ∈ N,

D(vn+1, x) ≤ D(Tvn+1, Tun) +D(Tun, x)

−D(Tun, Tun)

≤ c[D(Tvn+1, un) +D(Tun, un)]

+D(un+1, x)

≤ K
1

1− c
(c ∥ D(un+1, un) ∥

+ ∥ D(un+1, x) ∥) → 0.

Hence, D(Tvn+1, x) = 0. But since

D(Tvn+1, T vn+1) ≤ c[D(Tvn+1, u) +D(Tvn+1, q)]

= 2cD(Tun, x) = 0.

We have that

D(Tvn+1, T vn+1) = D(Tvn+1, x) = D(x, x) = 0.

This shows that Tvn+1 = x. For uniqueness: Let y be
another fixed point of T , then

D(x, y) = D(Tx, Ty) ≤ c[D(Tx, y) +D(Ty, y)] = 0.

Hence D(x, y) = D(x, x) = D(y, y) = 0. We get x = y.
Consequently, the fixed point of T is unique.

Theorem 28. Consider (X,D) as a complete generalized
cone metric space and let T : X → X such that F (T ) ̸= ϕ.
If there exists c ∈ (0, 1

2 ) such that

D(Tu, Tv) ≤ c(D(u, Tv) +D(v, Tu))

for all u, v ∈ X and x ∈ F (T ), and additionally, if {vn} is
a sequence with D(vn, T yn) → 0 as n → ∞, then Picard
iteration is T -stable.

Proof: Let {vn} ⊆ X, ϵn = D(vn+1, T vn) and ϵn → 0
as n → ∞. For any n ∈ N, it follows that

D(vn+1, x) ≤ D(Tvn+1, Tun) +D(Tun, x)

−D(Tun, Tun)

≤ c[D(Tvn+1, Tun) +D(un, T vn)]

+D(un+1, x)

≤ K
1

1− c
(c ∥ D(vn+1, un+1) ∥

+ ∥ D(un+1, x) ∥)

≤ K
1

1− c
(c ∥ D(vn+1, x) ∥

+ ∥ D(un+1, x) ∥) → 0.

Hence, D(Tvn+1, x) = 0. But since

D(Tvn+1, T vn+1) ≤ c[D(Tvn+1, x) +D(Tvn+1, q)]

= 2cD(Tun, x) = 0.
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We have that

D(Tvn+1, T vn+1) = D(Tvn+1, u) = D(x, x) = 0.

This implies that Tvn+1 = x.
For uniqueness: Let y be another fixed point of T , then

D(x, y) = D(Tx, Ty) ≤ c[D(x, Ty) +D(y, Tx)] = 0

Hence D(x, y) = D(x, x) = D(y, y) = 0.
We get x = y. Consequently, T has an unique fixed point.

Example 29. Consider X = [0,∞) and let D be the
generalized cone metric on X defined by

D(x, y) = |u− v|.

Let a function T : X → X defined as follows:

Tu =


1 ifu ∈ {0, 1} ∪ [ 1

2m+1 ,
1

2m )

m ifu ∈ [ 1
2m , 1

2m−1 ),m ≥ 1
1
m ifu ∈ (m− 1, n],m ≥ 2

Then D(Tu, 1) ≤ D(u, Tu) for each u ∈ [0,∞). If Tu = 1,
Consequently, the inequality of Theorem 26 holds valid. If
u ∈ [ 1

2m , 1
2m−1 ), n ≥ 1, then Tu = m and

D(Tu, 1) = m− 1 ≤ m− 1

2m− 1
< m− u = D(u, Tu).

If u ∈ (m− 1,m]),m ≥ 2, then Tu = 1
m and

D(Tu, 1) = 1− 1

m
<

u− 1

m
= D(u, Tu).

for each u ∈ X , where q = 1 ∈ F (T ) and It is evident that
the Picard iteration um+1 = Tum converges to 1 for every
initial value u0 ∈ X . Let

v2m =
1

2m
, v2m+1 =

1

4m+ 4
, m ≥ 1.

Then

D(v2m+1, T y2m) =
1

2m
− 1

(4m+ 4)
=

(m+ 2)

[4m(m+ 1)]

and

D(v2m+2, T v2m+1) = 2m+ 2− 2m− 2 = 0,

so D(vm+1, T vm) → 0.

V. APPLICATIONS

Theorem 30. Consider X = C[0, 1],R where

∥ f ∥∞= Sup0≤u≤1 | f(u) |

for all f ∈ X . Define T : X → X as

Tf(u) =

∫ 1

0

F (u, f(t))dt,

where
∥∞= Sup0≤u≤1 | f(u) |:

1) a continuous function is F : [0, 1]× R → R.
2) for any c in the interval [0, 1, there is a | Fv(u, v) |≤ c,

indicating that the partial derivative Fv of F over v
exists.

3) for any pair u, v ∈ [0, 1], there exists a such that au ≤
F (u, av), where a is a real number between 0 and 1.

Consider P = {(u, v) ∈ R2 : u, v ≥ 0} be a cone and
(X,D) the complete generalized cone metric space defined
as D(f, g) = (∥ f − g ∥∞, α ∥ f − g ∥∞) in cases when α
is greater than or equal to zero. If the equation 0 ≤ c ≤ 1

2
holds, then Picard’s iteration is T -stable.

VI. CONCLUSION

In this study, we embarked on an exploration of generalized
cone metric spaces, with a focus on the establishment of a
generalized version of Kannan, Chatterjea contraction fixed
point theorems, and the T-stability of Picard’s Iteration. Our
investigation ventured into the nuanced domain of fixed point
theory, extending the conventional boundaries to embrace a
more inclusive spectrum of spaces and contraction condi-
tions. Through a meticulous examination and application of
Zamfirescu contractions, we have unfolded new theoretical
landscapes that affirm the existence and uniqueness of fixed
points in generalized cone metric spaces. The significance of
our findings is twofold. Theoretically, we have contributed
to the expansion of fixed point theory by incorporating a
wider array of spaces and contractions, thus providing a solid
groundwork for future mathematical inquiries. Practically,
the application of our theoretical results on T -stability of Pi-
card’s Iteration with generalized cone metric to solve integral
equations introduces a novel approach, bridging the gap be-
tween abstract mathematical theories and tangible problem-
solving scenarios. Our study is further enriched by the
inclusion of specific examples that not only substantiate the
validity of our theorems by demonstrating the existence of
a unique fixed point and the T -stability of Picard’s iteration
but also demonstrate their practical utility in solving integral
equations on generalized cone metric. These examples serve
as a testament to the robustness and relevance of our findings,
highlighting the efficacy of fixed point theory as a powerful
tool for mathematical analysis and problem solving. Our
study advances fixed point theory on but is limited by its fo-
cus on generalized cone metric spaces and certain conditions,
affecting its broader applicability and the range of integral
equations addressed. That succinctly captures the essence of
potential directions for future research, highlighting the need
for exploration beyond current limitations to broaden the
scope of fixed-point theory’s applicability and its integration
with other disciplines for enhanced theoretical understanding
and practical problem-solving.
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