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Abstract—This paper describes the development of a novel
fourth-order 2-point fractional block method with a variable
step size to approximate the solutions of fractional model of
HIV infection in CD4+T cells. The method is developed using
a fractional linear multistep formula as the basis function.
The necessary conditions for the convergence test and stability
analysis of the method are presented. The study indicates
that the method converges, and its stability region exhibits A-
stability for various fractional order, α. Numerical experiments
are presented to demonstrate the efficiency and accuracy of
the new method in comparison to existing methods in the
literature. The simulation results reveal that memory effects
significantly influence the progression of HIV infection by
delaying the peak viral load and altering the stability behavior
of the system, which cannot be captured by classical models.
The proposed method offers an alternative solver for fractional-
order dynamical systems with memory effects, with potential
applications in modeling other biological phenomena such as
disease transmission.

Index Terms—Linear multistep method, fractional block
method, fractional order, stability, CD4+T-cell, HIV infection.

I. INTRODUCTION

HUMAN immunodeficiency virus (HIV) is a retrovirus
that generates acquired immunodeficiency syndrome

(AIDS) in humans, as indicated by medical definitions,
clinical findings, and virology analysis [1]. According to [2],
the global HIV epidemic remains a substantial public health
challenge, with an estimated 39.9 million individuals living
with HIV in 2023. The HIV epidemic continues to persist,
disproportionately affecting specific populations, despite the
progress made in prevention and treatment. HIV dispropor-
tionately affects women and girls, who represent 53% of
the HIV-positive population. 1.4 million children aged 0-
14 years currently live with HIV, which remains a concern.
The need for better counseling and testing services is under-
scored by the fact that a substantial number of people living
with HIV do not know their status. In numerous regions,
access to antiretroviral therapy (ART) remains a challenge,
particularly for marginalized and vulnerable populations. The
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TABLE I
VARIABLES AND PARAMETER [7].

Symbol Description Constant

ϖ Source term for uninfected CD4+T 1.0E-01/day mm3

cells

ψ Natural death rate of CD4+T cells 2.0E-02/day

υ Growth rate of CD4+T 3.0/day
cells population

Tmax Maximal population level of 1500/day mm3

CD4+T cells

φ Rate of CD4+T cells become 2.7E-03/mm3

infected with virus

ϱ Blanket death rate of I(t) 3.0E-01/day

N Total viral particles produced by 10/mm3

infected CD4+T cells

τ Virus’s clearance rate 2.4/day

HIV epidemic causes far-reaching repercussions, including
increased mortality, economic hardship, and social stigma.
A multifaceted approach that addresses both biological and
social determinants of health is necessary to address the HIV
epidemic.

Mathematical dynamic models, which encompass the fun-
damental principles of analysis of manipulation and avoid-
ance of the transmission of a variety of diseases, have
been the subject of numerous attempts to design, analyse,
simulate, and solve them in recent decades. In this context,
the development of analytical models to investigate the
dynamics of HIV infection is also recognized as a useful and
effective approach [3]–[6]. These models are instrumental in
capturing the interactions between viral load and immune
response. Therefore, this research will consider the following
system of ordinary differential equations (ODEs) to model
the dynamics of the interaction between HIV and CD4+T
cells [7].

T ′(t) =ϖ − ψT + υT

(
1− T + 1

Tmax

)
− φV T,

I ′(t) =φV T − ϱI,

V ′(t) =NϱI − τV.

(1)

where T (t) is the concentration of healthy CD4+T cells at
time t, I(t) is the concentration of infected CD4+T cells at
time t, and V (t) is the concentration of a virus population of
CD4+T cells by HIV in the blood at time t. Meanwhile, the
parameters and their value for (1) are presented in Table I.

It is crucial to recognize that biological systems possess
the ability to retain information and exhibit subsequent
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effects. In models described by ODEs of integer order, such
effects are ignored. Due to the correlation between fractional
calculus and memory systems, fractional models are better
suited for modeling dynamical systems [8]. Therefore, the
following model is established by substituting the Caputo
fractional derivative into equation (1).

CDα1T (t) =ϖ − ψT + υT

(
1− T + 1

Tmax

)
− φV T,

CDα2I(t) =φV T − ϱI,
CDα3V (t) =NϱI − τV.

(2)

where CDα is denoted as the Caputo fractional derivative,
and α ∈ (0, 1]. The system (2) simulated with preliminary
states [T0, I0, V0]

T
= [0.1, 0.0, 0.1]

T for t ∈ [0, 1]. Assume
that the functions of the mathematical model satisfy the
necessary conditions for the existence and uniqueness of the
solution of (2), as described in [9].

Several numerical methods have been developed to
solve the fractional model (2), including fourth-kind
Chebyshev wavelets [8], the multistep differential trans-
form method [10], the piecewise polynomial collocation
method [11], and the Newton polynomial method [12].
However, they still encounter challenges in ensuring stability
and achieving computational efficiency, particularly in bio-
logical applications such as HIV infection. To address these
challenges, this study develops a block method known as
the block backward differentiation formula (BBDF) to solve
the dynamical system (2). The BBDF method is particu-
larly effective for equations involving non-integer solutions.
These types of equations are often seen in fields such as
physics and biology, where systems exhibit memory effects
or long-lasting influences. It has been widely used for ODEs,
especially those with stiff properties that are challenging
for traditional methods to address [13]–[15]. Due to its
stability and accuracy, the BBDF method can handle com-
plex, time-dependent equations with minimal error, closely
approximating exact solutions compared to other methods.
Its adaptability also allows scientists to model systems with
unusual patterns and behaviors. Although it can be computa-
tionally intensive due to its reliance on historical data, various
adjustments enhance its efficiency and reliability.

The fractional BDF (FBDF) method has been developed
by a few researchers [16], [17], but it is not a block-based
approach to the solution of FDEs. The method was developed
using convolution quadrature techniques, which proved to
be an obstacle when attempting to incorporate the technique
into a block method. Therefore, this study introduces the
fractional BBDF method (FBBDF) by adopting the strategies
from [14] and [18] to compute the solution for fractional HIV
infection model of a CD4+ T cell (2). Besides, the results
of this study are intended to provide an alternative solver
for other dynamical systems with memory and give the op-
portunities for future research on its application, such as the
Covid-19 pandemic model [19], cervical cancer model [20],
zika virus fever [21], etc.

The structure of this paper is as follows: The method being
proposed is developed in Section II. Section III outlined
the analysis of the methods by evaluating the order and
error constant, assessing the convergence of the method, and
examining the stability of the methods. The numerical and
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Fig. 1. Illustration for the VS2FBBDF(4) method.

graphical results will be discussed in Section IV. Finally, a
conclusion will be drawn in Section V.

II. CONSTRUCTION OF THE METHOD

In this section, the fourth-order fractional 2-point BBDF
is constructed with variable step size. The method is referred
to as VS2FBBDF(4), and Figure 1 illustrates the visual
representation of the method. In the diagram, the interval rh
denotes the step size of the prior block, whereas h represents
the step size of the block that will be used to approximate
the solution points [22].

The equation for VS2FBBDF(4) is derived by applying a
variable step size approach to the 2FBBDF(4) method [23],
and is defined by the linear difference operator as follows:

Li [y(t);h;α] =
4∑

j=0

γj,iyn+j−2 − hαβifn+i,

=
4∑

j=0

γj,iyn+j−2 − hαβi
CDαyn+i,

=0,

(3)

where the Taylor’s series expansion of yn−2, yn, yn+1, yn+2,
and CDαyn+i about tn given as follows:

yn−2 =yn + (−2rh)y′n +
(−2rh)2

2!
y′′n + · · · ,

yn−1 =yn + (−rh)y′n +
(−rh)2

2!
y′′n + · · · ,

yn =yn,

yn+1 =yn + (h)y′n +
(h)2

2!
y′′n + · · · ,

yn+2 =yn + (2h)y′n +
(2h)2

2!
y′′n + · · · ,

CDαyn+i =
(ih)1−α

Γ(2− α)
y′n +

(ih)2−α

Γ(3− α)
y′′n + · · · .

(4)

Then, equation (4) is substituted into equation (3) yields

γ0,i

[
yn + (−2rh)y′n +

(−2rh)2

2!
y′′n + · · ·

]
+ γ1,i [yn

+(−rh)y′n +
(−rh)2

2!
y′′n +

(−rh)2

2!
y′′′n + · · ·

]
+ γ2,i [yn]

+ γ3,i

[
yn + (h)y′n +

(h)2

2!
y′′n +

(h)2

2!
y′′′n + · · ·

]
+ γ4,i [yn

+(2h)y′n +
(2h)2

2!
y′′n +

(2h)2

2!
y′′′n + · · ·

]
+ hαβi

[
(ih)1−α

Γ(2− α)
y′n

+
(ih)2−α

Γ(3− α)
y′′n +

(ih)3−α

Γ(4− α)
y′′′n + · · ·

]
= 0.

(5)
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Then we collect all the coefficients yn, y′n, y′′n, y′′′n , · · · in
equation (5) and the following expressions are obtained as
in equation (6) where

C0,i :=γ0,i + γ1,i + γ2,i + γ3,i + γ4,i = 0,

C1,i :=(−2r)γ0,i + (−r)γ1,i + γ3,i + 2γ4,i

− (i)1−α

Γ(2− α)
= 0,

C2,i :=
(−2r)2

2!
γ0,i +

(−r)2

2!
γ1,i +

(1)2

2!
γ3,i

+
(2)2

2!
γ4,i −

(i)2−α

Γ(3− α)
= 0,

C3,i :=
(−2r)3

3!
γ0,i +

(−r)3

3!
γ1,i +

(1)3

3!
γ3,i

+
(2)3

3!
γ4,i −

(i)3−α

Γ(4− α)
= 0,

C4,i :=
(−2r)4

4!
γ0,i +

(−r)4

4!
γ1,i +

(1)4

4!
γ3,i

+
(2)4

4!
γ4,i −

(i)4−α

Γ(5− α)
= 0.

(6)

To calculate the first point of the method, yn+1, we substitute
i = 1 and γ3,1 = 1 into equation (6). By solving the system
of equation (6) simultaneously, we obtain the following
coefficients.

γ0,1 =
α(α2r − 6αr − 2α+ 8r + 5)

4r2
(
2α3r2 − 16α2r2 − 6α2r + 38αr2

+33αr − 24r2 + 6α− 36r − 12

) ,
γ1,1 =− α(2r + 1)(2α2r − 12αr − 2a+ 16r + 5)

r2(r + 2)

(
2α3r2 − 16α2r2 − 6α2r + 38αr2

+33αr − 24r2 + 6α− 36r − 12

) ,

γ2,1 =−


6α3r4 + 3α3r3 − 50α2r4 − 6α3r2

−39α2r3 + 128αr4 − 3α3r + 33α2r2

+144αr3 − 96r4 + 24α2r − 18αr2

−144r3 + 2α2 − 39αr − 48r2 − 5α


4r2

(
2α3r2 − 16α2r2 − 6α2r + 38αr2

+33αr − 24r2 + 6α− 36r − 12

) ,

γ4,1 =−
α(2r + 1)

(
α2r2 − 7αr2 + 12r2

−3αr + 12r + 3

)
4(r + 2)

(
2α3r2 − 16α2r2 − 6α2r + 38αr2

+33αr − 24r2 + 6α− 36r − 12

) ,
β1 =− (2r2 + 3r + 1)Γ(5− α)

2

(
2α3r2 − 16α2r2 − 6α2r + 38αr2

+33αr − 24r2 + 6α− 36r − 12

) .
(7)

To obtain the coefficients for the second point of the
method, yn+2, the unknowns of γ4,2 and i in the system
of equation (6) are set to be 1 and 2, respectively. Then,
the value of r in the coefficients is substituted with 1, 2,
and 10/19. Therefore, the VS2FBBDF(4) method is given as
follows for r = 1, r = 2, and r = 10/19:

1) For r = 1:

yn+1 =− α(α2 − 8α+ 13)

4(2α3 − 22α2 + 77α− 72)
yn−2

+
α(6α2 − 42α+ 63)

6α3 − 66α2 + 231α− 216
yn−1

− 30α2 − 210α+ 288

4(2α3 − 22α2 + 77α− 72)
yn

+
α(3α2 − 30α+ 81)

4(6α3 − 66α2 + 231α− 216)
yn+2

− 3Γ(5− α)

2α3 − 22α2 + 77α− 72
hαCDαyn+1,

yn+2 =
α(3α2 − 21α− 36

3α3 − 33α2 + 48α+ 432
yn−2

− 8α(α2 − 5α− 8)

α3 − 11α2 + 16α+ 144
yn−1

+
60α2 − 420α+ 144

α3 − 11α2 + 16α+ 144
yn

+
8α(3α2 − 39α+ 144)

3α3 − 33α2 + 48α+ 432
yn+1

+
6(2α)Γ(5− α)

α3 − 11α2 + 16α+ 144
hαCDαyn+2.

(8)

2) For r = 2:

yn+1 =− α(2α2 − 14α+ 21)

16(8α3 − 76α2 + 224α− 180)
yn−2

+
α(20α2 − 130α+ 185)

4(32α3 − 304α2 + 896α− 720)
yn−1

+
90α3 − 930α2 + 3045α− 2880

16(8α3 − 76α2 + 224α− 180)
yn

+
α(20α2 − 170α+ 375)

4(32α3 − 304α2 + 896α− 720)
yn+2

− 15Γ(5− α)hαCDαyn+1

2(8α3 − 76α2 + 224α− 180)
,

yn+2 =
α(8α2 − 40α− 64)

4(20α3 − 160α2 + 80α+ 1440)
yn−2

− 2α(2α2 − 8α− 12)

(4α3 − 32α2 + 16α+ 288)
yn−1

+
72α3 − 840α2 + 2784α− 1152

4(4α3 − 32α2 + 16α+ 288)
yn

+
8α(16α2 − 160α+ 432)

20α3 − 160α2 + 80α+ 1440
yn+1

+
12(2α)Γ(5− α)hαCDαyn+2

4α3 − 32α2 + 16α+ 288
.

(9)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2404-2415

 
______________________________________________________________________________________ 



3) For r = 10/19:

yn+1 =

− 6859α(10α2 − 98α+ 175)yn−2

400 (200α3 − 2740α2 + 12236α− 13572)

+
6859α(780α2 − 6162α+ 9945)yn−1

100(9600α3 − 131520α2 + 587328α− 651456)

− 305370α3 − 1857102α2 − 39585α+ 5428800

400(200α3 − 2740α2 + 12236α− 13572)
yn

+
α(3900α2 − 49530α+ 177957)yn+2

4(9600α3 − 131520α2 + 587328α− 651456)

− 1131Γ(5− α)hαCDαyn+1

2(200α3 − 2740α2 + 12236α− 13572)
,

yn+2 =

6859α(480α2 − 5088α− 9216)yn−2

100(3900α3 − 63960α2 + 205608α+ 1302912)

− 13718α(10α2 − 68α− 116)yn−1

25(100α3 − 1640α2 + 5272α+ 33408)
+

375840α3 − 1188768α2 − 14153856α+ 3340800

100(100α3 − 1640α2 + 5272α+ 33408)
yn

+
8α(4800α2 − 88320α+ 484416)yn+1

3900α3 − 63960α2 + 205608α+ 1302912

+
1392(2α)Γ(5− α)hαCDαyn+2

100α3 − 1640α2 + 5272α+ 33408
.

(10)

III. ANALYSIS OF THE METHOD

Numerous researchers have conducted analyses of the
properties of the BBDF method [24]–[26] by examining the
method’s stability properties and convergence characteristics.
Thus, the following subsection will present how to determine
the order and error constant of the VS2FBBDF(4) method,
as these results will be utilized in the subsequent process.

A. Order and Error Constant

The order and error constant for variable step size will
be figured out by employing the subsequent definition. Basi-
cally, the formula to determine the order and error constant
for the method is identical to the method used to determine
the coefficient of the method [27].

Definition 1: [23] FLMM (8)-(10) are considered to have
an order of p if, in (12), C0 = C1 = · · · = Cp = 0, Cp+1 ̸= 0
where,

C0(n, α) =
n∑

j=0

γj ,

Cp(n, α) =
2∑

j=0

((j − 2)r)
p

p!
γj +

n∑
j=3

(j − 2)
p

p!
γj

− 1

Γ (p+ 1 + α)

n∑
j=0

(j − 2)
p−α

βj ,

(11)

where p = 1, 2, 3, · · · . By employing Definition 1 in this
part, the order and error constant of VS2FBBDF(4) method
can be determined by substituting n = 4 in (11). Then the

calculation is demonstrated below.

C0(4, α) =
4∑

j=0

γj =

[
0
0

]
,

C1(4, α) =
2∑

j=0

((j − 2)r) γj +
4∑

j=3

(j − 2) γj

−
4∑

j=0

(j − 2)
1−α

Γ (2 + α)
βj =

[
0
0

]
,

C2(4, α) =
2∑

j=0

((j − 2)r)
2

2!
γj +

4∑
j=3

(j − 2)
2

2!
γj

−
4∑

j=0

(j − 2)
2−α

Γ (3 + α)
βj =

[
0
0

]
,

C3(4, α) =
2∑

j=0

((j − 2)r)
3

3!
γj +

4∑
j=3

(j − 2)
3

3!
γj

−
4∑

j=0

(j − 2)
3−α

Γ (4 + α)
βj =

[
0
0

]
,

C4(4, α) =
4∑

j=0

((j − 2)r)
4

4!
γj +

4∑
j=3

(j − 2)
4

4!
γj

−
4∑

j=0

(j − 2)
4−α

Γ (5 + α)
βj =

[
0
0

]
,

C5(4, α) =
2∑

j=0

((j − 2)r)
5

5!
γj +

4∑
j=3

(j − 2)
5

5!
γj

−
4∑

j=0

(j − 2)
5−α

Γ (6 + α)
βj =

[
E1

E2

]
̸=

[
0
0

]
,

(12)

where E1 and E2 denote the error constant for the first point,
yn+1, and the second point, yn+2, respectively. By using the
calculation outlined in equation (12), the results are

1) When α = 0.90

• For r = 1,

E1 =
39961

868380
, and E2 = − 284578

3421655
.

• For r = 2,

E1 =
6349

38868
, and E2 = − 286076

1591005
.

• For r = 10/19,

E1 =
537341

29305980
, and E2 = − 8025808

159683315
.

2) When α = 0.92

• For r = 1,

E1 =
4689953

96811940
, and E2 = − 4272043

49867205
.

• For r = 2,

E1 =
5941981

34017952
, and E2 = −17160944

92553695
.

• For r = 10/19,

E1 =
6579355367

343539931760
, and

E2 = − 9164494624

177148401995
.
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3) When α = 0.94

• For r = 1,

E1 =
75101723

1471583540
, and E2 = − 560084054

6350135365
.

• For r = 2,

E1 =
23709949

126659008
, and E2 = − 561892708

2940192115
.

• For r = 10/19,

E1 =
911158027

45539774560
, and

E2 = − 10366869712

194777129435
.

4) When α = 0.96

• For r = 1,

E1 =
1173677

21811960
, and E2 = − 2239724

24675815
.

• For r = 2,

E1 =
738602

3672259
, and E2 = − 4489196

22801255
.

• For r = 10/19,

E1 =
43608721

2085751505
, and E2 = − 63331592

1157089835
.

5) When α = 0.98

• For r = 1,

E1 =
75081083

1322112340
, and E2 = − 587320468

2896828415
.

• For r = 2,

E1 =
2943038

13578421
, and E2 = − 586675334

6283628165
.

• For r = 10/19,

E1 =
6647305847

304149831910
, and

E2 = − 315480029648

5607396652115
.

6) When α = 1.00

• For r = 1,

E1 =
3

50
and E2 = − 12

125
.

• For r = 2,

E1 =
15

64
and E2 = − 24

115
.

• For r = 10/19,

E1 =
426387

18656480
and E2 = − 322944

5586475
.

Referring to the results above, the error constants obtained
are presented at C5. Thus, the method is of order 4.

B. Convergence of the Method

Theorem 1: [25] FLMM (8)-(10) is convergent if and
only if it satisfies the following conditions:

1) consistency, and
2) zero stability.

Definition 2: [25] FLMM (8)-(10) is considered consis-
tent if its order is greater than or equal to p, where p ≥ 1.

Convergence is an essential characteristic that must be
considered during the development of an LMM. The purpose
of this is to verify that the developed method can accurately
approximate a solution to any desired level of accuracy [7].
Since we have demonstrated that the method is of order
p = 4, which is greater than or equal to 1, we can conclude
that the method is consistent, as defined in Definition 2. Next,
the discussion focuses on the zero stability of the method in
order to establish the second characteristic of Theorem 1.

Definition 3: FLMM (8)-(10) is considered to be zero
stable when all roots of the characteristic polynomial have
moduli equal to or greater than one, and each root with a
modulus of one is a simple root.
The VS2FBBDF(4) method (8)–(10) is transformed into a
general form of the method for all values of r, which results
in

yn+1 =A0yn−2 +A1yn−1 +A2yn +A3yn+2

+B1h
αCDαyn+1,

yn+2 =A4yn−2 +A5yn−1 +A6yn +A7yn+1

+B2h
αCDαyn+2.

(13)

By applying the test equation, CDαy(t) = λy(t) into
equation (13) where λ ∈ C, and Re(λ) < 0, yielding the
following form;

yn+1 =A0yn−2 +A1yn−1 +A2yn +A3yn+2

+B1h
αλyn+1,

yn+2 =A4yn−2 +A5yn−1 +A6yn +A7yn+1

+B2h
αλyn+2.

(14)

By substituting the actual values hαλ = H into equa-
tion (14), we obtain the equation in a matrix form as:[

1−B1H −A3

−A7 1−B2H

] [
yn+1

yn+2

]
=

[
A1 A2

A5 A6

] [
yn−1

yn

]
+

[
0 A0

0 A4

] [
yn−3

yn−2

]
,

(15)

which is similar to PYm = QYm−1 +RYm−2 where

P =

[
1−B1H −A3

−A7 1−B2H

]
, Q =

[
A1 A2

A5 A6

]
,

R =

[
0 A0

0 A4

]
, Ym =

[
yn+1

yn+2

]
, Ym−1 =

[
yn−1

yn

]
,

Ym−2 =

[
yn−3

yn−2

]
.

(16)

The stability polynomial of the method is then determined
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by applying the formula

π (x;H) =det
∣∣Px2 −Qx−R

∣∣
=det

∣∣∣∣[1−B1H −A3

−A7 1−B2H

]
x2 −

[
A1 A2

A5 A6

]
x

−
[
0 A0

0 A4

]∣∣∣∣ .
(17)

By substituting H = 0 into equation (17), we determine the
zero stability, resulting in:

1) When α = 0.90:
• r = 1: Roots, xs = 0, 1,−0.2669, and 0.01574.
• r = 2: Roots, xs = 0, 0.002303, 1, and −0.05935.
• r = 10/19: Roots, xs = 0, 0.06876, 1, and

−0.9946.
2) When α = 0.92:

• r = 1: Roots, xs = 0, 0.01661, 1, and −0.2633.
• r = 2: Roots, xs = 0, 0.002459, 1, and −0.05833.
• r = 10/19: Roots, xs = 0, 0.07187, 1, and

−0.9854.
3) When α = 0.94:

• r = 1: Roots, xs = 0, 0.01755, 1, and −0.2593.
• r = 2: Roots, xs = 0, 0.002630, 1, and −0.05716.
• r = 10/19: Roots, xs = 0, 0.07512, 1, and

−0.9748.
4) When α = 0.96:

• r = 1: Roots, xs = 0, 0.01856, 1, and −0.2547.
• r = 2: Roots, xs = 0, 0.002819, 1, and −0.05584.
• r = 10/19: Roots, xs = 0, 0.07852, 1, and

−0.9628.
5) When α = 0.98:

• r = 1: Roots, xs = 0, 0.01963, 1, and −0.2497.
• r = 2: Roots, xs = 0, 0.003027, 1, and −0.05435.
• r = 10/19: Roots, xs = 0, 0.08208, 1, and

−0.9494.
6) When α = 1.00:

• r = 1: Roots, xs = 0, 1,−0.2442, and 0.0208.
• r = 2: Roots, xs = 0, 1,−0.05272, and 0.00326.
• r = 10/19: Roots, xs = 0, 1,−0.9346, and

0.0858.
The VS2FBBDF(4) method (8)-(10) has been demon-

strated to be zero-stable, with the condition that the absolute
value of the roots, |xs| ≤ 1, and it satisfies the criteria
outlined in Definition 3. As a result, the VS2FBBDF(4)
method (8)-(10) is convergent. Subsequently, the method’s
stability regions will be examined in the following subsec-
tion.

C. Stability Properties

This subsection primarily investigates the stability proper-
ties of method (8)-(10) and the values of fractional-order,
α, in the method is restricted to the (0,1]. To make a
comparison with the existing method, the stability of the
proposed method will be studied for α in between 0.90 and
1.00. Some important stability requirements for a numerical
method are examined, including A-stable, and absolutely-
stable.

 

 

 

Fig. 2. Stability region of the method for r = 1 with α ∈ [0.90, 1.00].

 

Fig. 3. Stability region of the method for r = 2 with α ∈ [0.90, 1.00].

 

 

 

Fig. 4. Stability region of the method for r = 10/19 with α ∈ [0.90, 1.00].

Definition 4: FLMM (8)-(10) is claimed to be absolutely-
stable in a region R for a given hαλ = H if for that H , all
the roots, xs of the stability polynomial (17) satisfy |xs| < 1
where s = 1, 2, · · · , k.

Definition 5: [25] FLMM (8)-(10) is claimed to be A-
stable if the absolute stability regions cover the whole left
half plane.
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Following that, a series of numerical experiments were
performed to demonstrate the region of the graphs in Fig-
ures 2-4 that are absolutely stable. According to the analysis,
the stable regions are located outside the circles. Thus, it can
be inferred that the VS2FBBDF(4) method (8)-(9) is A-stable
for α ∈ [0.90, 1.00] as the region of absolute stability com-
pletely encompasses the entire left half-plane. Meanwhile,
the method (10) is almost A-stable for α ∈ [0.90, 1.00] as
the region of absolute stability almost covered the region, R,
on the entire left half-plane.

IV. RESULTS AND DISCUSSION

This section presents numerical simulations to validate the
analytical method introduced in the previous section. The
values and parameters in Table I are considered to obtain the
numerical results. In order to assess the effectiveness of the
VS2FBBDF(4) method (8)-(10), the numerical outcomes are
compared with those obtained by the established methods,
as outlined in Tables II-III.

The 2FBBDF(4) [23] and VS2FBBDF(4) methods were
calculated using C++ programming, while the numerical
outcomes for fourth-kind Chebyshev wavelets (FKCW) and
Müntz-Legendre polynomials (MLP) methods were acquired
from [8] and [28], respectively. Table II displays the numer-
ical solution of model (2) when integer order is taken into
consideration. Since the model (2) does not have the exact
solution, we consider the Maple solution as the true value
in order to compute the absolute error, ABERR. Thus, the
following equation represents the formula for ABERR.

ABERRi = |yi(t)− yi(tn)| , i = 1, 2, · · · , n ∈ Z+, (18)

where i is the number of iterations, yi(t) is the Maple
solution, and yi(tn) is the approximate solution. Next, the
outcomes presented in Table II are depicted in Figures 5-
7 to demonstrate the pattern of the proposed method, the
2FBBDF(4) method, the FKCW method, and the solution
from Maple software, which is used as a tool to verify the
solution of the model (2). As shown in the figures, the
2FBBDF(4) and VS2FBBDF(4) methods approximate the
solutions closer to the computed line compared to the FKCW
method. However, the 2FBBDF(4) method appears unstable
because the plotted solution is not aligned with the Maple
solution.

Figures 8-10 present the efficiency curves that compare
the computational performance of the VS2FBBDF(4) method
against the 2FBBDF(4) and FKCW methods when solving
the model with an integer order of α = 1.00. This com-
parison indicates that the 2FBBDF(4) and VS2FBBDF(4)
methods provides more accurate results at α = 1.00 com-
pared to the FKCW method for t ∈ [0, 1]. The solution
is constrained to t ∈ [0, 1] because the code to generate
the solution beyond this interval is not accessible. Hence,
the values reported in the paper were utilized. Concurrently,
the solution for 2FBBDF(4) can be generated for the time
interval t ∈ [0, 4]. It can be observed that the variable step
method demonstrates better accuracy compared to the fixed
step method.

Next, the fractional model (2) is computed using the
VS2FBBDF(4) method with a fractional order of α = 0.90.
The resulting values are presented in Table III along with

TABLE II
THE SOLUTIONS OF THE MATHEMATICAL MODEL (2) FOR α = 1.00.

t Method T (t) I(t) V (t)

0 FKCW 1.00000e-01 0.00000e+00 1.00000e-01
2FBBDF(4) 1.00000e-01 0.00000e+00 1.00000e-01

VS2FBBDF(4) 1.00000e-01 0.00000e+00 1.00000e-01
MAPLE 1.00000e-01 0.00000e+00 1.00000e-01

0.2 FKCW 2.10286e-01 6.09955e-06 6.19989e-02
2FBBDF(4) 2.08288e-01 6.00695e-06 6.18038e-02

VS2FBBDF(4) 2.08808e-01 6.03269e-06 6.18798e-02
MAPLE 2.07668e-01 5.99150e-06 6.17004e-02

0.4 FKCW 4.09688e-01 1.32894e-05 3.83340e-02
2FBBDF(4) 4.05139e-01 1.31118e-05 3.82478e-02

VS2FBBDF(4) 4.06242e-01 1.31582e-05 3.82946e-02
MAPLE 4.02100e-01 1.30162e-05 3.80731e-02

0.6 FKCW 7.72069e-01 2.14336e-05 2.37077e-02
2FBBDF(4) 7.62126e-01 2.11651e-05 2.36754e-02

VS2FBBDF(4) 7.64221e-01 2.12202e-05 2.37038e-02
MAPLE 7.53158e-01 2.09056e-05 2.34989e-02

0.8 FKCW 1.43043e+00 3.04824e-05 1.46692e-02
2FBBDF(4) 1.40932e+00 3.01294e-05 1.46623e-02

VS2FBBDF(4) 1.41402e+00 3.01699e-05 1.46762e-02
MAPLE 1.38683e+00 2.95926e-05 1.45107e-02

1.0 FKCW 2.62537e+00 4.04365e-05 9.10335e-03
2FBBDF(4) 2.58201e+00 4.00484e-05 9.08966e-03

VS2FBBDF(4) 2.59001e+00 4.00115e-05 9.09656e-03
MAPLE 2.53003e+00 3.90783e-05 8.96951e-03

 

 

Fig. 5. Graph comparing methods for T (t) when α = 1.00.
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Fig. 6. Graph comparing methods for I(t) when α = 1.00.

the numerical results obtained from the MLP and FKCW
methods, and the results are illustrated in Figures 11-13.

As presented in Figures 11-13, comparing all the meth-
ods reveals a consistent pattern that aligns with the Maple
solutions. It should be noted that the solution generated by
Maple is in Figure 11, the VS2FBBDF(4) method provides
a larger approximation of the solution T (t) compared to
the methods of comparison. Additionally, the VS2FBBDF(4)
method provides smaller approximations of the solutions
I(t) and V (t) compared to the methods of comparison. The
graphs’ behavior indicates that the method converges towards
the Maple solution, as depicted in Figures 12-13.

Figures 11-13 illustrate that the comparison of all methods
demonstrates a consistent trend, with the numerical solu-
tions closely aligning with the Maple solution, especially
for the 2FBBDF(4) method. Of all the evaluated methods,
2FBBDF(4) exhibits superior accuracy across all subplots,
closely aligning its trajectories with the Maple curves for
T (t), I(t), and V (t). Nevertheless, additional analysis is
required to thoroughly assess the efficacy of each method
in solving the fractional model (2) for α = 0.9.

Concerning the comparison methods, the VS2FBBDF(4)
method yields a significantly larger approximation of T (t)
than the others, as illustrated in Figure 11. This behavior may
be ascribed to a minor overestimation of the actual solution
in this issue.

Figures 12-13 demonstrate that the MLP and FKCW
methods exhibit inconsistencies after t = 0.6, with their

 

 

 

Fig. 7. Graph comparing methods for V (t) when α = 1.00.

Fig. 8. Efficiency curves for T (t) when α = 1.00.

curves beginning to deviate significantly from the Maple
solution. Conversely, the 2FBBDF(4) and VS2FBBDF(4)
methods maintain alignment with the Maple curve for the
compartments I(t) and V (t).

This analysis indicates that the VS2FBBDF(4) method is
more advantageous for solving the fractional model, due to
the consistency and stability of its solutions compared to the
MLP and FKCW methods. Additionally, the effectiveness in
capturing the memory effects, the computational efficiency
and performance of the 2FBBDF(4) and VS2FBBDF(4)
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Fig. 9. Efficiency curves for I(t) when α = 1.00.

Fig. 10. Efficiency curves for V (t) when α = 1.00.

Fig. 11. Graph comparing methods for T (t) when α = 0.90.

methods with α = 0.90 will be examined further in the
subsequent figures.

Figures 14-16 illustrates the memory effects for α ∈
[0.90, 1.00] values. Figure 14 demonstrates an increase in the
concentration of susceptible T cells over time, as indicated
by the observed data. Upon infection of CD4+T cells with

TABLE III
THE SOLUTIONS OF THE MATHEMATICAL MODEL (2) FOR α = 0.90.

t Method T (t) I(t) V (t)

0 MLP 1.00000e-01 0.00000e+00 1.00000e-01
FKCW 1.00000e-01 0.00000e+00 1.00000e-01

2FBBDF(4) 1.00000e-01 0.00000e+00 1.00000e-01
VS2FBBDF(4) 1.00000e-01 0.00000e+00 1.00000e-01

0.2 MLP 2.50116e-01 7.76924e-06 5.67019e-02
FKCW 2.52768e-01 7.89591e-06 5.68077e-02

2FBBDF(4) 2.04161e-01 5.81088e-06 6.22635e-02
VS2FBBDF(4) 2.74649e-01 8.76520e-06 5.16876e-02

0.4 MLP 5.30988e-01 1.67537e-05 3.58789e-02
FKCW 5.37760e-01 1.69991e-05 3.58936e-02

2FBBDF(4) 3.83358e-01 1.24271e-05 3.97642e-02
VS2FBBDF(4) 6.09259e-01 1.82731e-05 2.96256e-02

0.6 MLP 1.07850e+00 2.81650e-05 2.40146e-02
FKCW 1.09486e+00 2.85826e-05 2.40055e-02

2FBBDF(4) 6.96496e-01 1.99079e-05 2.53896e-02
VS2FBBDF(4) 1.29687e+00 2.95340e-05 1.71539e-02

0.8 MLP 2.14892e+00 4.34646e-05 1.68397e-02
FKCW 2.18700e+00 4.41504e-05 1.68260e-02

2FBBDF(4) 1.24674e+00 2.82923e-05 1.62198e-02
VS2FBBDF(4) 2.72148e+00 4.28239e-05 9.94345e-03

1.0 MLP 4.24091e+00 6.50302e-05 1.23158e-02
FKCW 4.32723e+00 6.67043e-05 1.24822e-02

2FBBDF(4) 2.20707e+00 3.76022e-05 1.02969e-02
VS2FBBDF(4) 5.66549e+00 5.84521e-05 5.78131e-03

Fig. 12. Graph comparing methods for I(t) when α = 0.90.

HIV, there was a rapid decrease in the presence of HIV RNA
particles in the blood, as shown in Figure 16. As depicted in
Figure 15, this led to a rapidly increasing number of infected
T cells.

The results demonstrated the behavior of the solution for
1 day, as previously demonstrated in Figures 5-16. In order
to clarify the dynamical behavior, the fractional model (2)
is solved by increasing a number of time with t = 24
days. Then, the results are compared to the code available
in MATLAB, which is referred to as fde12.m (FDE12). This
code is taken into consideration because it is accessible on
the MathWorks website.

The dynamic behavior of a model that represents HIV
infection of CD4+T cells is illustrated in Figures 17-19.
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Fig. 13. Graph comparing methods for V (t) when α = 0.90.

Fig. 14. The numerical behavior for T (t) when α ∈ [0.90, 1.00].

Fig. 15. The numerical behavior for I(t) when α ∈ [0.90, 1.00].

The comparison involves numerical solutions obtained using
the FDE12, 2FBBDF(4), and VS2FBBDF(4) methods, with
the Maple solution serving as the benchmark. The fractional
model (2) is solved with a fractional order of α = 0.9.
Accordingly, Figure 17 illustrates the concentration rate of
healthy CD4+T cells, (T (t)); Figure 18 shows the concen-
tration rate of infected CD4+T cells, (I(t)); and Figure 19

Fig. 16. The numerical behavior for V (t) when α ∈ [0.90, 1.00].

presents the concentration of a virus population of CD4+T
cells by HIV in the blood, (V (t)).

As seen in Figure 17, the FDE12, 2FBBDF(4), and
VS2FBBDF(4) methods initially align closely with the
Maple solution. However, there is a slight divergence as
time progresses, particularly around day 10 to day 18 for
the FDE12 and VS2FBBDF(4) methods. It is different
for the 2FBBDF(4) method, the method slightly overes-
timates the solution starting from day 10. Nevertheless,
the VS2FBBDF(4) method generally maintains a trajectory
that converges towards the Maple solution throughout the
simulation.

In Figure 18, which depicts the dynamics of infected cells,
I(t), the VS2FBBDF(4) method exhibits a more signifi-
cant phase shift compared to the FDE12 and 2FBBDF(4)
methods, yet its trend continues to align closely with the
Maple solution. Similarly in Figure 19, which illustrates
the virus population, V (t), the VS2FBBDF(4) method once
again demonstrates superior agreement with the benchmark.
In contrast, the FDE12 method diverges more significantly
as time increases, and the 2FBBDF(4) method continues to
slightly overestimate the values.

These findings indicate that the proposed method
(VS2FBBDF(4)) can be considered a solution for the frac-
tional model (2), as it effectively captures the memory effects
of the model more effectively than the 2FBBDF(4) and
FDE12 methods within the interval t ∈ [0, 24] days. This
emphasizes the significance of selecting suitable numerical
methods for fractional-order models to guarantee the reliable
simulation of complex biological systems, such as the dy-
namics of HIV infection. Furthermore, the pattern of memory
effects must adhere to the hypothesis of stability graphs. As
illustrated in Figures 2-4, the numerical solution of the model
with α = 0.9 should converge towards the Maple solution
and not exceed the benchmark curves. Consequently, the
analysis indicates that the VS2FBBDF(4) method is more
appropriate for solving the fractional mathematical model (2)
than the 2FBBDF(4) method.

V. CONCLUSION

As a conclusion, this study presents the derivation of a
fourth-order 2-point fractional BBDF method with a variable
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Fig. 17. The dynamical behavior for T (t) when α = 0.90.

Fig. 18. The dynamical behavior for I(t) when α = 0.90.

Fig. 19. The dynamical behavior for V (t) when α = 0.90.

step (VS2FBBDF(4)) to solve the fractional HIV model (2).
An extensive analysis is conducted on the stability properties
of the method, and the conditions that are both necessary and
sufficient for its convergence are discussed. When consider-
ing various values of r, it is observed that the formula is
A-stable for r equal to 1 and 2 and almost A-stable when r
is equal to 10/19. According to the classical BBDF method

theory, it is essential for achieving optimal performance
for a numerical scheme, especially when dealing with stiff
system problems, that the method be A-stable. In addition,
we have examined the impact of fractional derivatives on
the concentration of CD4+T cells in individuals infected
with HIV over time. Comparisons with alternative methods,
such as the FKCW, MLP, FDE12, and 2FBBDF(4) methods,
revealed that the VS2FBBDF(4) method offers enhanced
precision and stability, especially in fractional models. As
a result, we assert that this study is significant because it
can serve as an alternative solver for acquiring numerical
solutions for various types of dynamical system problems.
Furthermore, the proposed method can be expanded to deal
with FDEs with time delays in future research.
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