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Abstract—In this article, conditions for the existence of
solution for a Hadamard fractional boundary problem with
infinite point boundary value conditions at resonance will
be established using the coincidence degree theorem due to
Mawhin.

Index Terms—Coincidence degree, Hadamard fractional
derivative, infinite point, resonance.

I. INTRODUCTION

In this research article, we study the following Hadamard
fractional boundary value problem (HFBV) with infinite
point boundary condition

HDα
1+u(t) = w (t, u(t)) , t ∈ [1, e], (1)

u(1) =H Dα−2
1+ u(1) = · · · =H D

α−(M−1)
1+ u(1) = 0,

HI2−α
1+ u(e) =

∞∑
i=1

βH
i Iδ1+u(ζi),

(2)

where HDα
1+ , is the Hadamard fractional derivatives of order

α while HIα1+ is the Hadamard fractional integral, M − 1 <
α ≤ M , 1 < ζ1 < ζ2 < · · · < ζi−1 < ζi < · · · < e, 0 ≤ δ ≤
1, βi ∈ R, {ζi}∞i=1 is a monotone increasing sequence with
limi→∞ ζi = v, v ∈ [1, e], βi ∈ R, and w : [1,+∞)×R2 →
R is a continuous function.

Recently, there has been increased attention paid to re-
search on fractional differential equations as a result of their
wide application in modeling of various processes in different
fields such as in chemistry, physics, biology, mechanical
engineering, economics, biology, system control, etc [4], [5].
There has also been a significant development of the theory
of fractional differential equations. Many researchers have
studied the problem of existence of solutions, oscillation
properties, stability analysis and other qualitative properties
of different types of differential equations. [6]–[13], [15],
[17], [18].

Guo et al [13] studied an infinite point fractional boundary
value problem{

CDα
0+u(t) + f(t, u(t), u(t)) = 0, t ∈ (0, 1),

u(0) = u′′(0) = 0, u′(1) =
∑∞

j=1 ηju(ξj),
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where CDα
0+ is the Caputo fractional derivative of order α,

2 < α ≤ 3, ηj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj <
· · · < 1. The authors obtained existence results using the
Avery-Peterson’s fixed point theorem.

In [14], the authors considered the following fractional
differential equation with infinite point boundary conditions

Dα
0+u(t) + q(t)f(t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,
u(i)(1) =

∑∞
j=1 αju(ξj),

where Dα
0+ is the standard Riemann-Liouville fractional

derivative of order α, α > 2, n− 1 < α ≤ n, i ∈ [1, n− 2]
is a fixed integer, αj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj <
· · · < 1 (j = 1, 2, . . . ). They used fixed-point theorem in a
cone to obtain existence and uniqueness results.

Bohner et al. [16] considered the following Hadamard
fractional differential equation at resonance{

(−HDγu)(t) = f(t, u(t)), t ∈ (1, e),
u(1) = 0, u(e) =

∫ e

1
u(t)dA,

where HDγ is the Hadamard fractional derivative of order
γ, 1 < γ ≤ 2, f : [1, e] × R2 → R satisfies the
Caratheodory conditions and

∫ e

1
u(t)dA is the Riemann-

Stielejes integration. They obtained existence results using
the coincidence degree theory.

Although many researchers have considered Hadamard
fractional differential equations, the Hadamard fractional
differential equations with infinite point boundary conditions
have nor received much attention in literature. Motivated by
the above results, we study the solvability for a Hadamard
fractional differential equation with infinite point boundary
value conditions. The rest of this article is organized as
follows: in Section 2 of this work, required lemmas, theorem
and definitions will be presented, Section 3 contains condi-
tions for existence of solution. An example will be given in
Section 4 to demonstrate the results obtained.

The HFBV (1) − (2) is said to be at resonance because
its associated homogeneous boundary value problem

HDα
1+u(t) = 0, t ∈ [1, e],

u(1) =H Dα−2
1+ u(1) = · · · =H D

α−(M−1)
1+ u(1) = 0,

HI2−α
1+ u(e) =

∞∑
i=1

βH
i Iδ1+u(ζi),

has a nontrivial solution u(t) = c(log t)α−1.
We assume the following throughout this paper:

(A1)
∞∑
i=1

βi(log ζi)
δ+α−2

Γ(δ + α)
= 1;
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(A2) there exists functions σ, φi ∈ G, i = 1, · · · ,M − 1
such that ∀u ∈ R2, t ∈ [1, e]

|w(t, u(t))| ≤ σ + |u|
M−1∑
i=1

φi; (3)

(A3) there exists a constant B > 0 such that for u ∈ dom L,
if
∣∣HDα−1

1+ u(t)
∣∣ ≥ B, ∀ t ∈ [1, e], then∫ e

1

(1− log s)w(s, u(s))
ds

s
−

∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1w(s, u(s))
ds

s
̸= 0;

(4)

(A4) there exists M1 > 0 such that for any u(t) =
c0(log t)

α−1 ∈ kerL with |c0| > M1, either

c0

[∫ e

1

(1− log s)w
(
s, c0(log t)

α−1
) ds

s
−

∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1w
(
s, c0(log t)

α−1,
) ds

s

]
< 0,

(5)
or

c0

[∫ e

1

(1− log s)w
(
s, c0(log t)

α−1
) ds

s
−

∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1w
(
s, c0(log t)

α−1,
) ds

s

]
> 0,

(6)

then the HFBV (1)− (2) has at least one solution in X if

1− 2

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)
M−1∑
i=1

∥φi∥1 > 0. (7)

II. PRELIMINARIES

In this section, we will give definitions, lemmas and
theorems that will be used in this work. Let us start with
some definitions relating to fractional calculus.
Definition 1. [1] The nth Hadamard fractional order deriva-
tive of a function w : (1,+∞) → R is defined by

HDn
1+w(t)

=
1

Γ(a− n)

(
t
d

dt

)a ∫ t

1

(log t− log s)
a−n−1 w(s)

s
ds,

(8)

where n > 0, n = [a]+1, and [a] denotes the largest integer
which is less than or equal to a. Similarly, the nth Hadamard
fractional order integral of a function w : (1,+∞) → R is
defined by

HIn1+w(t) =
1

Γ(n)

∫ t

1

(log t− log s)
n−1 w(s)

s
ds. (9)

Definition 2. [1] Let n > 0, n = [a] + 1, then

HIn1+
HDn

1+w(t) = w(t) +
n∑

j=1

cj(log t)
n−j . (10)

Also, if HDn
1+w(t) = 0, then

w(t) =
n∑

j=1

cj(log t)
n−j , (11)

where cj = 1, 2, . . . , n are some real numbers and n− 1 <
j < n.

Definition 3. [2] Given a, α, β > 0, then

(i)
(
HIα1+ (log t− log a)

β−1
)
(x)

=
Γ(β)

Γ(β + α)
(log t− log a)

β+α−1
,

(12)

(ii) HDα
1+

HDβ
1+w(t) =

H Dα+β
1+ w(t) where HD =

d

dt
.

(13)

The following are notations about coincidence degree theo-
rem that will be used throughout this work.

Let X and G be real Banach spaces and L : dom L ⊂
X → G be a Fredholm map of index zero. Let the operators
P : X → X and Q : G → G be continuous projectors such
that Im L = kerQ, kerP = Im P , X = kerL⊕kerP , G =
Im L ⊕ Im Q. Then, the operator L|dom L∩kerP : dom L ∩
kerP → Im L is invertible and its inverse is denoted by
Kp. Let the set Ω ⊂ X be open and bounded, then the map
N is L-compact on Ω if QN(Ω) is bounded and KP,QN =
KP (I −Q)N : Ω→ X is compact.

Theorem 1. [3] Let the set Ω ⊂ X be bounded and open,
L : dom L ⊂ X → G be a Fredholm operator of index
zero and N : X → G be L-compact on Ω. If the following
conditions are satisfied:

(i) Lu ̸= λNu for every (u, λ) ∈ [(dom L\ kerL)∩∂Ω]×
(0, 1);

(ii) Nu /∈ Im L for every u ∈ kerL ∩ ∂Ω;
(iii) deg(QN |kerL, kerL ∩ Ω, 0) ̸= 0, where Q : G → G

is a projection such that kerQ = Im L,
then, the operator equation Lu = Nu has at least one
solution in dom L ∩Ω.

We define the spaces

X = {u(t) : u(t),H Dα−i
1+ u(t) ∈ C[1, e],

i = 1, 2, . . . ,M − 1},

with norm

∥u∥X = ∥u∥∞ +
∥∥HDα−1

1+ u
∥∥
∞ + · · ·+

∥∥∥HD
α−(M−1)
1+ u

∥∥∥
∞

,

where ∥u∥∞ = supt∈[1,e] |u(t)| then (X, ∥ · ∥X) is a Banach
space.

Let G = L1[1, e], with the norm ∥g∥G = ∥g∥1 =∫ t

1
|g(t)| dtds . Then (G, ∥ · ∥1) is a Banach space.
We define the operator L : dom L ⊂ X → G as

Lu =H Dα
1+u, (14)

where

dom L =

{
u ∈ X :H Dα

1+u(t) ∈ G,

u(1) =H Dα−2
1+ u(1) = · · ·H D

α−(M−1)
1+ u(1) = 0,

HI2−α
1+ u(e) =

∞∑
i=1

βH
i Iδ1+u(ζi).

}
We also define the operator N : X → G by

Nu = w(t, u(t),H Dα−1
1+ u(t),H Dα−2

1+ u(t), . . . ,

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2423-2428

 
______________________________________________________________________________________ 



HD
α−(M−1)
1+ u(t)).

Hence, the HFBV (1) − (2) is written in abstract form as
Lu = Nu.

For easy of computation, for g ∈ G, we define operator A
by

Ag(t) =

∫ e

1

(1− log s) g(s)
ds

s

−
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s
.

Lemma 1. Let the operator L be as defined in (14), then

kerL = {u(t) ∈ dom L : u(t) = c(log t)α−1, c ∈ R,
∀t ∈ [1, e]},

and
Im L = {g ∈ G : Ag(t) = 0}.

Proof: By (10) and (14), the kernel can easily be
obtained as

kerL =
{
u(t) ∈ dom L : u(t) = c(log t)α−1, c ∈ R

}
.

Next, we find Im L. Let

g(t) = w(t, u(t),H Dα−1
1+ u(t),H Dα−2

1+ u(t), . . . ,

HD
α−(M−1)
1+ u(t)), t ∈ [1, e],

then (1) can be written as

HDα
1+u = g(t) (15)

with u(t) as the solution of (15) subject to (2). By (10), we
obtain from (14)

u(t) =H Iα1+g(t) + c1(log t)
α−1 + · · ·+ cN (log t)α−M .

By u(1) =H Dα−2
1+ u(1) = · · · =H D

α−(N−1)
1+ u(1) = 0, we

obtain c2 = · · · cM = 0, which implies

u(t) =H Iα1+g(t) + c1(log t)
α−1.

Let B(δ, α) be the beta function, then by HI2−α
1+ u(e) =∑∞

i=1 β
H
i Iδ1+u(ζi), we have

HI21+g(e) + c1Γ(α)

=

∞∑
i=1

βi

(
HIα+δ

1+ g(ζi) + c1I
δ
1+(log ζi)

α−1
)

=
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s

+
∞∑
i=1

βic1
Γ(δ)

∫ ζi

1

(log ζi − log s)δ−1(log s)α−1 ds

s

=
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s

+
∞∑
i=1

βic1(log ζi)
δ+α−2

Γ(δ)

×
∫ ζi

1

(
1− log s

log ζi

)δ−1(
log s

log ζi

)α−1
ds

s

=
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s

+
∞∑
i=1

βic1(log ζi)
δ+α−2

Γ(δ)
B(δ, α)

=
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s

+ c1Γ(α).

Therefore,∫ e

1

(1− log s)g(s)
ds

s

−
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s
= 0.

(16)

On the other hand, suppose (16) holds, let

u(t) =H Iα1+g(t) + c(log t)α−1

where c is an arbitrary constant, then u ∈ dom L and
Lu(t) =H Dα

1+u(t) = g(t). Hence, g(t) ∈ Im L and

Im L = {g ∈ G : Ag(t) = 0}.

The proof is concluded.
Lemma 2. The operator L : dom L ⊂ X → G defined in
(14) is a Fredholm mapping of index zero and the linear
continuous projectors P : X → X and Q : G → G can be
defined as

Pu(t) =
1

Γ(α)

H

Dα−1
1+ u(1)(log t)α−1, ∀t ∈ [1, e],

Qg(t) = Q = dAg(t)

where d =

(
1

2
−

∞∑
i=1

βi(log ζi)
α+δ

Γ(α+ δ + 1)

)−1

, g(t) ∈ G.

In addition, the linear operator KP : Im L → dom L ∩
kerP can be defined as KP g(t) =

H Iα1+g(t).
Proof: For any g(t) ∈ G, we have

Q2g(t) = Qg(t) · dA = Qg(t).

Let g1 = g −Qg then

Ag1(t) = Ag(t)−AQ(t) = d−1(Qg(t)−Q2g(t)) = 0,

implying g1 ∈ Im L. Hence, G = Im L + Im Q. Since,
Im L∩ Im Q = {0}, we have G = Im L⊕ Im Q. Therefore,

dimkerL = dim Im Q = codim Im L = 1.

Thus, L is a Fredholm operator of index zero.
For any u ∈ X ,

P (Pu) = P

(
1

Γ(α)

H

Dα−1
1+ u(1)(log t)α−1

)
=

1

Γ(α)

H

Dα−1
1+ (log t)α−1 = Pu.

Thus, P 2 = P .
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For u ∈ X , we have

∥Pu∥X =
1

Γ(α)
|HDα−1

1+ u(1)| · ∥(log t)α−1∥X

=
1

Γ(α)

∣∣HDα−1
1+ u(1)

∣∣ · [∥∥(log t)α−1
∥∥
∞

+
∥∥HDα−1

1+ (log t)α−1
∥∥
∞ + · · ·

+
∥∥∥HDα−1

1+ (log t)α−(M−1)
∥∥∥
∞

]
=

(
M−1∑
i=1

|(log t)i−1|
Γ(i)

+
1

Γ(α)

)∣∣HDα−1
1+ u(1)

∣∣
≤

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)∣∣HDα−1
1+ u(1)

∣∣
(17)

From u = u − Pu + Pu, we can see that X = kerP +
kerL. Let u ∈ kerL ∩ kerP , then u = c1(log t)

α−1. From
HDα−1

1+ c1(log t)
α−1

∣∣
t=e

= 0, we can obtain c1 = 0, hence,

X = kerL⊕ kerP.

Let us define KP : Im L → dom L ∩ kerP by KPu =H

Iα1+u, then for g ∈ Im L, we have

LKP g =H Dα
1+

HIα1+g(t) = g(t). (18)

Now, for u ∈ dom L∩kerP , we have u(1) =H Dα−1
1+ u(1) =

· · · =H D
α−(N−2)
1+ u(1) = 0. By (10), we obtain

HDα
1+

HIα1+Lu(t) =
H Dα

1+
HIα1+

HDα
1+u(t)

=H Iα1+g(t) + c1(log t)
α−1 + · · ·+ cN (log t)α−N

where c1, . . . , cN ∈ R. For u ∈ dom L, the constants
c2, . . . , cN are all equal to zero, therefore

KPLu = HIα1+
HDα

1+u(t) = u. (19)

By (18) and (19), we see that KP = (L|dom L∩kerP )
−1.

Furthermore, ∀ g ∈ Im L,

∥KP g∥X = ∥HIα1+g∥X = ∥HDα−1
1+

HIα1+g∥∞ + · · ·
+ ∥HD

α−(N−1)
1+

HIα1+g∥∞ + ∥HIα1+g∥∞

=

∥∥∥∥∫ t

1

g(s)
ds

s

∥∥∥∥
∞

+ · · ·

+
1

Γ(N − 1)

∥∥∥∥∫ t

1

(log t− log s)M−2g(s)
ds

s

∥∥∥∥
∞

+
1

Γ(α)

∥∥∥∥∫ t

1

(log t− log s)α−1g(s)
ds

s

∥∥∥∥
∞

≤

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)
∥g∥1.

(20)

The proof is concluded.
Lemma 3. Suppose Ω ⊂ X is an open and bounded subset
such that dom L∩Ω ̸= ∅, then the operator N is L-compact
on Ω.

Proof: Since w is continuous, it can be shown that
QN(Ω) and KP (I−Q)N(Ω) are bounded. Also, there exists
ϕ > 0 such that |(I −Q)Nu| ≤ ϕ, ∀x ∈Ω, t ∈ [1, e]. Thus,
by the Arzela-Ascoli theorem, we require only to prove that
KP (I −Q)N(Ω) ⊂ X is equicontinuous.

For 1 ≤ et1 ≤ et2 ≤ e and u ∈Ω, we have

|KP (I −Q)Nu(et2)−KP (I −Q)Nu(et1)|

≤ ϕ

Γ(α)

∫ et1

1

[(log t1 − log s)α−1 − (log t2 − log s)α−1]
ds

s

+
ϕ

Γ(α)

∫ et2

et1
[(log t2 − log s)α−1 ds

s

=
ϕ

Γ(α+ 1)
[tα1 − tα2 + 2(tα2 − tα1 )]

≤ ϕ

Γ(α+ 1)
[tα2 − tα1 + 2(tα2 − tα1 )]

≤ ϕ

Γ(α+ 1)

[
tα2

(
1− tα1

tα2

)
+ 2tα2

(
1− t1

t2

)α]
≤ 3ϕtα2

Γ(α+ 1)

Similarly, we have

|HDα−i
0+ KP (I −Q)Nu(et2)−H Dα−i

0+ KP (I −Q)Nu(et1)|

≤ ϕ

Γ(i)

∫ et1

1

[(log t1 − log s)i−1 − (log t2 − log s)i−1]
ds

s

+
ϕ

Γ(i)

∫ et2

et1
[(log t2 − log s)i−1 ds

s

=
ϕ

Γ(i+ 1)
[ti1 − ti2 + 2(ti2 − ti1)]

≤ ϕ

Γ(i+ 1)
[ti2 − ti1 + 2(ti2 − ti1)]

≤ ϕ

Γ(i+ 1)

[
ti2

(
1− ti1

ti2

)
+ 2ti2

(
1− t1

t2

)i
]

≤ 3ϕti2
Γ(α+ 1)

where i = 1, 2, . . . ,M − 1. From the uniform continuity of
tα and ti on [1, e], we can obtain KP (I −Q)N : Ω→ G is
compact. The proof is concluded.

III. MAIN RESULTS

In this section, we will state and prove conditions for
existence of solution for the HFBV (1) − (2). We start by
stating some lemmas that are required to prove existence of
solutions.
Lemma 4. Let E1 = {u ∈ dom L\ kerL : Lu =
λNu for some λ ∈ [0, 1]}, then E1 is bounded.

Proof: Let ∈ E1, then λ ̸= 0, Lu = λNu, and Nu ∈
Im L. Therefore, by Lemma 1 we have∫ e

1

(1− log s) g(s)
ds

s

−
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1g(s)
ds

s
= 0.

By (A2), there exists r ∈ [1, e] such that |HDα−1
1+ u(r)| ≤ B.

Since HDα−1
1+ is absolutely continuous where u ∈ E1, by

(II) we have HDHDα−1
1+ u(t) = HDα

1+u(t), then

HDα−1
1+ u(1) =H Dα−1

1+ u(r)−
∫ r

1

HDα
1+u(t)dt.

That is∣∣HDα−1
1+ u(1)

∣∣ = B + ∥Lu∥1 ≤ B + ∥Nu∥1. (21)
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Also, for u ∈ E1 and u ∈ dom L\ kerL, we have (I−P )u ∈
dom L ∩ kerP and LPu = 0, therefore from (20)

∥(I − P )u∥X = ∥KPL(I − P )u∥X

≤

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)
∥L(I − P )u∥1

≤

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)
∥Nu∥1.

(22)

In addition, by (A2)

∥Nu∥1 =

∫ e

1

(
σ + |u|

M−1∑
i=1

φi

)
ds

s

≤ ∥σ∥1 + ∥u∥X
M−1∑
i=1

∥φi∥1

(23)

Then by (17), (21), (22) and (23)

∥u∥X = ∥Pu+ (I − Pu)∥X ≤ ∥Pu∥X + ∥(I − Pu)∥X

≤

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)(∣∣HDα−1
1+ u(1)

∣∣+ ∥Nu∥1
)

≤ B

(
M−1∑
i=1

1

Γ(i)
+

1

Γ(α)

)
+ 2

(M−1∑
i=1

1

Γ(i)

+
1

Γ(α)

)[
∥σ∥1 + ∥∥u∥X

M−1∑
i=1

∥φi∥1

]
.

Setting z =

M−1∑
i=1

1

Γ(i)
+

1

Γ(α)
, we have

∥u∥X ≤ Bz + 2z∥σ∥1
1− 2z

∑M−1
i=1 ∥φi∥1

,

hence, (7) holds and E1 is bounded. The proof is concluded.

Lemma 5. The set E2 = {u ∈ kerL : Nu ∈ Im L} is
bounded if (A3) holds.

Proof: Let u ∈ E2, we have u(t) = c(log t)α−1, c ∈ R
and Nu ∈ Im L. Then∫ e

1

(1− log s)w
(
s, c(log t)α−1

) ds
s

−
∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1w
(
s, c(log t)α−1

) ds
s

= 0.

From (A3), we obtain |c| ≤ B
Γ(α) . Thus, E2 is bounded. The

proof is concluded.
Lemma 6. The set E3 = {u ∈ kerL : νλu+ (I −Q)Nu =
0, λ ∈ [0, 1]} is bounded if (A4) holds where

ν =

{
1, if (5) holds,
−1, if (6) holds. (24)

Proof: Let u ∈ E3, then u ∈ kerL with

u(t) = c0(log t)
α−1, c ∈ R

and

λνc0(log t)
α−1

+ (1− λ)d

(∫ e

1

(1− log s)w
(
s, c(log t)α−1

) ds
s

−
∞∑
i=1

βi

Γ(α+ δ)∫ ζi

1

(log ζi − log s)α+δ−1w
(
s, c(log t)α−1

) ds
s

)
= 0

(25)

If λ = 0, then |c0| ≤ M1. If λ = 1, we have c0 = 0. For
λ ∈ (0, 1) and |c0| > M1,

νλc20(log t)
α−1

+ (1− λ)d

(∫ e

1

(1− log s) c0w
(
s, c(log t)α−1

) ds
s

−
∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1c0w
(
s, c(log t)α−1

) ds
s

̸= 0

)
,

which contradicts (25). Therefore, E3 is bounded. The proof
is concluded.
Theorem 2. The HFBV (1) − (2) has at least one solution
in X if (A1)-(A4) hold.

Proof: Let E ⊂ X be an open and bounded such that
∪3
n=1En ⊂ E. It follows from Lemma 2 that the operator L

is a Fredholm mapping of index zero while Lemma 3 shows
that the operator N is L-compact. By Lemmas 4 and 5, we
see that the following conditions of Theorem 1 are satisfied:

(i) Lu ̸= λNu for every (u, λ) ∈ [(dom L\ kerL)∩∂Ω]×
(0, 1);

(ii) Nu /∈ Im L for every u ∈ kerL ∩ ∂Ω.
Next, we will verify statement (iii) of Theorem 1. Let

H(u, λ) = ±(1− λ)QNu.

By Lemma 6, we see that

H(u, λ) ̸= 0, ∀ u ∈ ∂E ∩ kerL.

Therefore, by the homotopy property of degree, we obtain

deg(QN |kerL , E ∩ kerL, 0) = deg(H(·, 0), E ∩ kerL, 0)

= deg(H(·, 1), E ∩ kerL, 0)

= deg(±I, E ∩ kerL, 0) ̸= 0.

Hence, statement (iii) of Theorem 1 is satisfied. Therefore,
since statements (i) − (iii) of Theorem 1 are satisfied, the
operator equation Lu = Nu has at lest one solution in
dom L ∩E, implying that the HFBV (1) − (2) has at least
one solution in X . The proof is concluded.

IV. EXAMPLE

Consider the following Hardamard fractional boundary
value problem for t ∈ [1, e]

HD3.5
1+ =1− (log t)2 +

1

27
HD2.5

1+ u(t) +
sin
(
HD1.5

1+ u(t)
)

27

+
1

34

H

D0.5
1+ u(t) +

cos2 u(t)

28
,

(26)
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subject to the boundary conditions

u(1) =H D1.5
1+ u(1) =H D1.5

1+ u(1) = 0,

HI−2.5
1+ u(e) =

∞∑
i=1

βH
i Iδ1+u(ζi),

(27)

where, βi =
543
2i/2

, ζi = 2i+1
i+2 and δ = 1.

Corresponding to HFBV (26)− (27), we have α = 3.5, and
w(t, a, b, c, f) = 1− (log t)2 + cos2 a

28 + b
27 + sin c

27 + f
34 then

|w(t, a, b, c, f)| = |a|
18 + |b|

27 + |c|
27 + |f |

34 .
Taking φ1 = 1

18 , φ2 = 1
3 , φ3 = 1

17 , φ4 = 1
14 , then

1 − 2
(∑N−1

i=1
1

Γ(i) +
1

Γ(α)

)∑N−1
i=1 ∥φi∥1 = 1 − 0.8262 =

0.1738 > 0.
∞∑
i=1

βi(log ζi)
δ+α−2

Γ(δ + α)
=

∞∑
i=1

543
2i/2

(
log 2i+1

i+2

)2.5
Γ(3.5)

= 1.00.

If we choose B = 51. For HDα−1
1+ > 51, we have

w(t, a, b, c, f) > 1
28 +

51
27 +

1
27 +

1
34 > 0. Also, if HDα−1

1+ <
−51 then w(t, a, b, c, f) > 1

28−
51
27+

1
27+

1
34 < 0. Therefore,

if |HDα−1
1+ | > B > 51, then∫ e

1

(1− log s)w(s, u(s))
ds

s

−
∞∑
i=1

βi

Γ(α+ δ)

∫ ζi

1

(log ζi − log s)α+δ−1w(s, u(s))
ds

s
̸= 0.

Hence, (A3) is satisfied.
Let u ∈ kerL and u(t) = c0Θ = c0(log t)

α−1, we choose
|c0| > 0, then

c0

[∫ e

1

(1− log s)w
(
s, c0(log t)

α−1
) ds

s
−

∞∑
i=1

βi

Γ(α+ δ)

×
∫ ζi

1

(log ζi − log s)α+δ−1w
(
s, c0(log t)

α−1,
) ds

s

]
> 0.

since w
(
s, c0Θ,HDα−1

1+ c0Θ,HDα−2
1+ c0Θ,HDα−3

1+ c0Θ
)

=

1 − (log t)2 + c0Γ(α)
27 +

√
sin c0(Γ(α)(log t))

27 + c0Γ(α)(log t)2

34Γ(3) +
cos2 c0(log t)α−1)

28 > 1− 1 + |c0|Γ(α)
27 + |c0|(Γ(α))

27 + |c0|Γ(α)
34Γ(3) +

|c0|
28 = |975811c0|

25704 > 0, implying that |c| > 0. Therefore,
condition (A4) is satisfied. Hence by Theorem 3.1, HFBV
(26)− (27) has at least one solution.
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