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Abstract—The propagation of misinformation adversely af-
fects public health and psychosocial well-being, while compro-
mising social stability and developmental processes. This study
introduces an SQVR model incorporating positive information
dissemination within digital networks, adopting a victim-centric
analytical framework. The proposed model quantifies the mit-
igating effects of verified information on both affected pop-
ulations and rumor disseminators, establishing mathematical
proof for the existence and stability of system equilibria. An
optimization-based control strategy was developed to simulta-
neously curb rumor diffusion and minimize victimization rates.
Numerical simulations validated the theoretical propositions
and parameter sensitivity profiles. Comparative evaluation with
the SIR epidemiological framework demonstrated the SQVR
model’s accelerated convergence to equilibrium. The findings
substantiate that enhancing verified information dissemination
effectively contains rumor epidemics, facilitates victim recovery,
and alleviates resultant societal damages.

Index Terms—rumor victims, rumor propagation model,
positive media effects, optimum control.

I. INTRODUCTION

RUMOR is a type of news or story that lacks substan-
tial evidence and is often widely spread by people.

It can cause harm to individuals, groups, and society by
confusing public opinion, leading to misunderstandings and
unnecessary panic. When the coronavirus disease 2019 began
breaking out in December 2019, not only did the virus itself
spread rapidly, but also a series of rumors. These rumors
hindered the progress of epidemic prevention and control,
causing unnecessary harm and panic to the public [1]-
[2]. Maintaining social security and stability is the primary
condition for economic development, therefore, reducing the
spread of rumors is of great significance.

Previous studies have found astonishing similarities be-
tween rumor spreading and infectious disease transmission.
Thus, infectious disease models are often used to improve
the study of rumor spreading [3]. Infectious disease trans-
mission is one of the first communication problems studied
by scholars, and commonly used infectious disease models
include SI models, SIS models and SIR models [4], [5], [6].

In recent years, significant academic efforts have been
devoted to modeling infectious disease transmission mech-
anisms. Isuntier et al. [7] developed a dual-population dy-
namic model to elucidate critical control mechanisms in
cholera transmission through differential equation analy-
sis. Concurrently, Zhang et al. [8] innovatively proposed
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a fractional-order SIQR epidemiological model that incor-
porates network propagation characteristics; their computa-
tional simulations not only predicted viral diffusion patterns
but also provided mathematical foundations for enhanc-
ing cybersecurity in wireless sensor networks. Furthermore,
Anggrim et al. [9] established a multi-pathway Zika virus
transmission model employing optimal control theory, which
quantitatively evaluated intervention efficacy through param-
eter sensitivity analysis and stability proofs.

While studying the spread of viruses, researchers have also
studied the spread of rumors. The classic models for rumor
propagation are the DK and MT models, both of which
date back to the 1960s [10]-[11]. Utilizing these models,
numerous scholars have conducted extensive research to
refine rumor propagation models, resulting in numerous new
breakthroughs. Scholars have examined various types of
rumor propagation models.

Some have researched on homogeneous networks, while
others have conducted research on heterogeneous networks
[12]-[13]. Tong et al. [14] focused on the mechanism of
public opinion dissemination in the era of social networks.
They proposed innovative solutions to address the issue of
traditional models overlooking emotional drivers, introducing
extreme emotional mechanisms to uncover the influence
of speech dissemination in high emotional states. Nsikan
Nkordeh et al. [15] explored the double-edged sword effect
of social media on the reading habits of Nigerian youth,
revealing both its educational potential and usage challenges.
Kunwar et al. [16] innovatively modeled alcoholism behavior
as a ”social infectious disease” and uncovered its trans-
mission patterns and control mechanisms through nonlinear
dynamics analysis.

To improve the existing theories of rumor spreading,
other researchers have considered factors such as nonlinear
propagation rates [17]-[18], the credibility of information
[19], the attitude of the audience [20], and the effects of
media reporting methods [21]. The study of these influencing
factors has added new content to existing theories of rumor
spreading. The above studies help us understand how rumors
spread in different contexts [22], [23], [24].

In the era of the Internet, the Internet has greatly promoted
cultural dissemination and information exchange, becoming
a bridge for global connectivity. The spread of rumors has
become more rapid, widespread, and difficult to control.
Therefore, scholars have begun to study the laws, character-
istics, and impact on society of rumor spreading. On the basis
of the forgetting mechanism, Zhao et al. [25]studied a rumor
spreading model on an online social blog platform called
Live Journal, which combines forgetting mechanism and SIR
model of epidemics to provide a more detailed and realistic
description of the rumor spreading process, Then, Zhao et
al. [26] proposed a new rumor spreading model that takes
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into account the mutual influence of forgetting and memory
mechanisms, studying the final scale of rumor spreading
and how to reduce the maximum influence of rumors un-
der different propagation rates, inhibition rates, forgetting
rates, and network averages. Liu et al. [27] proposed an
automated method based on text mining and social network
analysis to detect the source of rumors on Sina Weibo. Del
Vicario et al. [28] explored the mechanism and influencing
factors of rumor propagation on the internet by analyzing
data on Twitter social networks. Pan et al. [29] proposed
a rumor spreading model based on an infectious disease
model, taking into account the impact of media coverage
on the speed and scope of rumor spreading, and analyzed
the dynamic evolution process of rumor propagation through
mathematical modeling and simulation experiments. Kang
et al. [30] compared the phenomenon of super transmission
and asymptomatic infection in the information dissemination
of COVID-19. His results indicate that authoritative super
transmitters have a beneficial effect on information transmis-
sion. In contrast, asymptomatic carriers with lower levels of
individual acceptance have a negative impact on information
dissemination. Then, Kang et al. [31] proposed a stochastic
model that considers the existence of super propagators and
implicit propagators in information propagation, as well as
random perturbations of model parameters. The results of
this study indicate that white noise is beneficial for the
dissemination of information. The intensity of disturbance
is directly proportional to the fluctuation of information
propagation. Controlling random parameters can effectively
promote the dissemination of information. These studies
provide important reference and guidance for us to better
understand rumor propagation, and also help to develop
effective response measures.

Grasping the mechanism of rumor spreading, developing
effective rumor spreading control strategies, and reducing the
harm caused by rumors have become urgent issues to be
solved. In current research, some scholars have considered
the laws of rumor spreading under the Internet. However, few
people combine the spreading of information on the internet
with the role of rumor victims. This article establishes a new
rumor propagation model by comprehensively considering
the roles of both in the process of rumor spreading. The
model adopts the positive information dissemination effect
on the internet to help rumor victims get out of trouble and
effectively control rumor spreading.

The remaining organizational parts of this article are as
follows: In the second section, we establish an SQVR model
for rumor victims. In the third section, we introduce the basic
reproduction number, the existence of model equilibrium
points, and the local and global stability of equilibrium
points. In the fourth section, we provide the existence of opti-
mal control for rumor propagation and corresponding control
strategies. In the fifth section, we analyze the influence of
parameters and the selected optimal control variables on
rumor spreading through numerical simulation. In the sixth
section, we conduct sensitivity analysis on the parameters in
the model. The final section is the conclusion.

A. Model description
In an open virtual community, the group size is variable

at any point in time, and the total group size can be

Fig. 1: SQVR rumor victim dissemination model diagram

represented by N(t). Using the method of warehouse model,
the population is divided into four categories: susceptible to
rumors (people who have never been harmed by rumors or
who have never heard of rumors), the rumor spreads (those
who disseminate the rumor), rumor victims (those injured by
rumor) and rumor recoverers (those who recover from the
rumour dilemma or who do not disseminate the rumour), are
expressed as S(t), Q(t), V (t), R(t). The process of SQVR
rumor propagation is shown in Fig. 1. In addition, the rules
governing the spread of rumors in social networks can be
summarized as follows:

• Assuming that individuals enter the rumor spreading
system at a constant rate Λ, and considering that the
ignorant, rumor spreaders, rumor victims, and rumor
recoverers individuals exit the rumor spreading system
for certain specific reasons, it is assumed that they all
have the same migration rate µ. θ indicates the impact
of positive online information on rumor spreaders and
victims.

• When the rumor is ignorant, with a certain probability
β when encountering rumor spreads, some ignorant
individuals who hear rumor information will become
spreads with a probability of α1 and influence other
audiences with a certain probability. Another group of
ignorant individuals may cause psychological harm to
themselves due to rumors and become victims of rumors
with a probability of α2. Some people may become
immune to rumors with a probability of (1− α1 − α2)
due to their strong willpower or lack of interest in
rumors.

• If rumor victims adopt a herd mentality when encoun-
tering rumor spreaders, a portion of rumor victims will
become rumor spreaders with a probability of η to
influence other audiences. However, another group of
rumor victims may be influenced by the positive effects
on the internet, recover from difficulties after receiving
inspiration, and may become rumor recoverers with a
probability of λ2.

• If rumor spreaders are influenced by the positive effects
of the media, a certain proportion of rumor spreaders in
λ1 will become rumor immune individuals.

All parameters are positive in the above analysis, resulting
in a schematic diagram that considers the impact of positive
media coverage on rumor victims.
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TABLE I: Description of parameters in the model.

Parameter Meaning

S(t) Number of rumor ignoramus at time t.
Q(t) Number of rumor spreaders at time t.
V (t) Number of rumor victims at time t.
R(t) Number of immunized individuals

at time t.
Λ Number of entries into the system

per unit time.
θ The degree to which victims and

disseminators are affected by the
dissemination of positive
information on the internet.

α1 Conversion rate from unknown
to rumor spreaders.

α2 Conversion rate from unknown
to rumour victims.

β Contact rate between ignorant and
rumor spreaders.

η Conversion rate from rumour victims
to rumor spreaders.

λ1 Conversion rate from rumor spreaders
to rumour recoverers.

λ2 Conversion rate from rumour victims
to rumour recoverers.

µ Individual mobility.

Based on these elements, we can model and analyze the
process of rumor spreading and diffusion in the crowd. We
constructed an SQVR model that considers the relationship
between rumor victims and positive information effects on
the network. The system dynamics equation is described as
follows 

dS

dt
= Λ− βSQ− µS

dQ

dt
= α1βSQ+ ηQV − λ1θQ− µQ

dV

dt
= α2βSQ− ηQV − λ2θV − µV

dR

dt
= (1− α1 − α2)βSQ+ λ1θQ

+ λ2θV − µR

(1)

The initial conditions are met:
S(0) = S0 ≥ 0, Q(0) = Q0 ≥ 0,

V (0) = V0 ≥ 0, R(0) = R0 ≥ 0
(2)

and
S(t) +Q(t) + V (t) +R(t) = N(t) (3)

II. MODEL ANALYSIS

For a population dynamics system, studying its basic
regeneration number and equilibrium point is a prerequisite
for predicting the population development trend within the
system.

A. Basic regeneration number R0

Firstly, the basic reproduction number R0 of system (1) is
obtained by the next generation matrix method.

Let X = (Q,V, S,R)T

Where

F (X) =


α1βSQ+ ηQV

0
0
0

 (4)
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Fig. 2: Stability of the rumor free equilibrium point E0

V (X) =


λ1θQ+ µQ

−α2βSQ+ ηQV + λ2θV

−Λ + βSQ+ µS

(1−α1−α2)βSQ−λ1θQ−λ2θV +µR


(5)

By calculation

F =

(
α1β

Λ
µ 0

0 0

)
, V =

(
λ1θ + µ 0
−α2β

Λ
µ λ1θ + µ

)
. (6)

Therefore,we can obtain the inverse matrix of V (x)

V −1 =

( 1
λ1θ+µ 0

α2βΛ
µ(λ1θ+µ)(λ2θ+µ)

1
λ2θ+µ

)
(7)

The next generation matrix is

FV −1 =

(
α1βΛ

µ(λ1θ+µ) 0

0 0

)
(8)

Thus, the spectral radius of the next generation matrix
FV −1 is R0. The maximum value of the characteristic

root of FV −1 is the spectral radius, so R0 can be obtained
through calculation.

R0 =
α1βΛ

µ(λ1θ + µ)
(9)

B. Equilibrium point and its stability

When R0 <1, the rumor propagator disappear, and the
rumor-free equilibrium point of system (1) is denoted as
E0= (Λµ , 0, 0, 0).
Theorem1: If R0 < 1, the rumor-free equilibrium point

of system (1) is locally asymptotically stable.
proof : The Jacobin matrix of system (1) at rumor-free

equilibrium point E0 can be written as:

J(E0) =


−µ −βS0 0 0
0 α1βS0 − a 0 0
0 α2βS0 −b 0
0 p1βS0 + λ1θ λ2θ −µ

 (10)

Among them, we define p1 (1− α1 − α2), a = λ1θ+µ and
b = λ2θ+µ. The characteristic equation of matrix J(E0) is
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(a) The stability of the equilibrium Point E∗
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(b) The change of population density over time in the SIR model

Fig. 3: Density changes of S(t), Q(t), V (t) and R(t) under different parameters

|hE − J(E0)| = 0 (11)

then ∣∣∣∣∣∣∣∣
h+ µ βS0 0 0
0 h− α1βS0 + a 0 0
0 −α2βS0 h+ b 0
0 −p1βS0 + λ1θ λ2θ h+ µ

∣∣∣∣∣∣∣∣
= 0

(12)

By simplification, J(E0) has two negative eigenroots h1 =
h2 = −µ < 0 and the other eigenvalues are the characteristic
roots of |hE − J(E0)|, where∣∣∣∣ h− α1βS0 + a 0

−α2βS0 h+ b

∣∣∣∣ = 0 (13)

It is easy to get other feature roots h3 = −λ1θ − µ <0,
h4 = α1β

Λ
µ − λ1θ − µ <0. If R0 <1, thus, the rumor-free

equilibrium point E0 locally asymptotically stable.
Theorem2: If R0 < 1, then the rumor free equilibrium

point of the system (1) is globally asymptotically stable.
Proof : It is easy to know that N∗ = S∗+Q∗+V ∗+R∗

and satisfy dN
dt = Λ− µS(t) It illustrates that:

lim supN(t) ≤ Λ

µ
(14)

For t ≥ 0. and

T =
{
(S(t), Q(t), V (t), R(t)) ∈ R+

4 :

S(t) +Q(t) + V (t) +R(t) ⩽
Λ

µ

}
(15)

Then, the Lyapunov function L(t) = Q(t)+V (t)+R(t) can
be constructed and L

′
(t) can be computed as:

L
′
(t) =α1βSQ+ ηQV − λ1θQ− µQ+ α2βSQ

− ηQV − λ2θV − µV + (1− α1 − α2)βSQ

+ λ1θQ+ λ2θV − µR

=(βS − µ)Q− µ(V +R)

⩽ (
Λβ

µ
− µ)Q− µ(V +R)

(16)

If Λβ ⩽ µ2, then L
′
(t) ⩽ 0 is valid. Furthermore, L

′
(t) = 0

if and only if Q = V = R = 0. The only solution
of system (1) in Γ on which L

′
(t) = 0 is E0. Thus,

by LaSalle’s Invariance Principle [32], every solution of
system (1) approaches E0 as t → ∞. Hence, E0 is globally
asymptotically stable.

When R0 >1, the rumor will be spread, the rumor-
existence equilibrium point of system (1) can be expressed
as E∗ = (S∗, Q∗, V ∗, R∗) , which means the rumor will
spread widely. The rumor-existence equilibrium E∗ should
satisfy:

Λ− βS∗Q∗ − µS∗ = 0

α1βS
∗Q∗ + ηQ∗V ∗ − λ1θQ

∗ − µQ∗ = 0

α2βS
∗Q∗ − ηQ∗V ∗ − λ2θV

∗ − µV ∗ = 0

(1−α1 −α2)βS
∗Q∗ +λ1θQ

∗ +λ2θV
∗ −µR∗ = 0

(17)
From the above equations, S∗, V ∗ and R∗ can be repre-

sented by Q∗:

S∗ =
Λ

(βQ∗ + µ)

V ∗ =
(λ1θ + µ)(βQ∗ + µ)− α1βΛ

η(βQ∗ + µ)

R∗ =
[Λ (1− α1 − α2)β + λ1θ(βQ

∗ + µ)]Q∗ + λ2θV
∗

µ(βQ∗ + µ)

Where

Q∗ =
−[ηµ+ β(λ2θ + µ)(λ1θ + µ)] + ηβΛ(α1 + α2) +

√
∆

2ηβ(λ1θ + µ)

and
∆ =

√
m2 − n2

So Q∗ > 0, when m > n, where,

m = ηµ+ β(λ2θ + µ)(λ1θ + µ)− ηβΛ(α1 + α2)

n = 2
√
ηβ(λ1θ + µ)(λ2θ + µ)[µ(λ1θ + µ)− α1βΛ]

Theorem3: If R0 >1, when conditions
2µ+ λ1θ > (α1 + α2)βΛ and α1β > ηα2 are satisfied, the
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rumor-existence equilibrium point of system (1) is locally
asymptotically stable.

Proof : The Jacobin matrix of system system (1) at
equilibrium point E∗ can be written as:

J(E∗)=


−βQ∗ − µ −βS∗ 0 0

α1βQ
∗ p3 − a ηQ∗ 0

α2βQ
∗ α2βS

∗ − ηV ∗ p2 0

p1βQ
∗ p1βS

∗ + λ1θ λ2θ −µ


(18)

Among them, we define p2 = −ηQ∗− b and p3 = α1βS
∗+

ηV ∗. The characteristic equation of matrix J(E∗) is∣∣∣∣∣∣∣∣∣∣
h+ βQ∗ + µ βS∗ 0 0

−α1βQ
∗ h− p3 + a −ηQ∗ 0

−α2βQ
∗ −α2βS

∗ + ηV ∗ h− p2 0

−p1βQ
∗ −p1βS

∗ − λ1θ −λ2θ h+ µ

∣∣∣∣∣∣∣∣∣∣
= 0

(19)

By calculation, we obtain one of the characteristic roots
as h1 < 0 and obtain a univariate cubic equation con-

structed as a3x
3 + a2x

2 + a1x+ a0 = 0, where

a3 = 1 > 0

a2 = (β + η)Q∗ + (λ2θ + µ) + µ > 0

a1 = (βQ∗ + µ)(ηQ∗ + λ2θ + µ)

+ ηQ∗(ηV ∗ − α2βS
∗) + α1β

2S∗Q∗ > 0

a0 = ηQ∗(ηV ∗ − α2βS
∗)(βQ∗ + µ)

+ [η(α1 + α2) + α1(λ2θ + µ)]β2S∗Q∗2 > 0

(20)

a2a1 − a3a0 =[βQ∗ + ηQ∗ + (λ2θ + µ)µ]

[(βQ∗ + µ)(ηQ∗ + λ2θ + µ)]

+ ηQ∗(ηQ∗ + λ2θ + µ)

(ηV ∗ − α2βS
∗) + µα1β

2S∗Q∗

+ (α1β − ηα2)β
2S∗Q∗2

> 0

(21)

When two conditions 2µ+λ1θ > (α1+α2)βΛ and α1β >
ηα2 are satisfied, a3, a2, a1, a0 > 0 and a2a1 > a3a0 is true.
At this time, according to Routh–Hurwitz criterion [33], the
equilibrium point E∗ of system (1) is locally asymptotically
stable.

Theorem4: If R0 > 1 , the rumor-existence equilibrium
point E∗ = (S∗, Q∗, V ∗, R∗) of system (1) is globally
asymptotically stable.
Proof : We construct the Lyapunov function

L(t) =[(S(t)− S∗) + (Q(t)−Q∗)+

(V (t)− V ∗) + (R(t)−R∗)]2
(22)

L(t)
′
=2[(S(t)− S∗) + (Q(t)−Q∗)

+ (V (t)− V ∗) + (R(t)−R∗)]

[S(t)
′
+Q(t)

′
+ V t)

′
+R(t)

′
]

=2[(S(t)− S∗) + (Q(t)−Q∗)

+ (V (t)− V ∗) + (R(t)−R∗)]

[Λ− µS − µQ− µV − µR]

(23)

Because of the existence of E∗ = (S∗, Q∗, V ∗, R∗), we can
know that Λ − µS∗ − µQ∗ − µV ∗ − µR∗ = 0, so Λ =
µS∗ − µQ∗ − µV ∗ − µR∗

Then,this equation can be computed as:

L(t)
′
=2[(S(t)− S∗) + (Q(t)−Q∗) + (V (t)− V ∗)

+ (R(t)−R∗)][µS∗ + µQ∗ + µV ∗ + µR∗

− µS − µQ− µV − µR]

=− 2µ[(S − S∗) + (Q−Q∗) + (V − V ∗)

+ (R−R∗)]2

< 0

(24)

When W (t)
′
= 0 hold if and only S(t) = S∗, Q(t) =

Q∗, V (t) = V ∗, R(t) = R∗. Therefore, the rumor-existence
equilibrium point E∗ = (S∗, Q∗, V ∗, R∗) of system (1) is
globally asymptotically stable.

III. PROBLEMS RELATED TO RUMOR VICTIM OPTIMAL
CONTROL

On the basis of the rumor model established above, three
control goals are proposed, and in the control process,
the goal is to control the number of rumor victims and
rumor spreaders under the condition of consuming mini-
mal resources. Within the limited control time, we aim to
reduce the number of spreaders, increase the number of
immunizers, and prevent more people from being harmed
by rumors and increase the number of people recovering
from rumors. Therefore, the corresponding optimal control
problem is proposed for the model. Considering that the
three proportionality constants β, η and θ in the mind of the
model have the greatest influence on the rumor propagation
model constructed in this paper. Therefore, β, η and θ are
chosen to transform into control variables β(t), η(t) and θ(t).
Control variables β(t) are used to control the proportion of
ignorant groups and rumor propagators contacted, control
variables η(t) are used to control the proportion of victims
of rumors who become rumor propagators, and control
variables θ(t) is used to control the consumption of positive
network information resources, methods such as publicizing
the harm of rumor dissemination and refuting rumors are
adopted through official channels or authoritative figures to
improve the public’s ability to judge rumors. In this way,
people who have not been exposed to rumor information
will consciously identify rumor information when they are
exposed to rumor information, thereby reducing the harm
caused by rumors to them and reducing the number of rumor
spreaders. Find the optimal control strategy with the smallest
objective function in the control time interval. Therefore,
the following dual-effect objective functional with discount
coefficient is proposed

J(β, η, θ) =

∫ tf

0

e−αt[Q(t) + V (t) + z]dt (25)

In formula (25), we define

z =
c1
2
β2(t) +

c2
2
η2(t) +

c3
2
θ2(t)
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Fig. 4: Density changes of S(t), Q(t), V (t) and R(t) under different parameters

The variables within the target functional satisfy the follow-
ing equation

dS

dt
= Λ− β(t)SQ− µS

dQ

dt
= [α1β(t)S + η(t)V − λ1θ(t)− µ]Q

dV

dt
= α2β(t)SQ− η(t)QV − λ2θ(t)V − µV

dR

dt
= (1− α1 − α2)β(t)SQ

+ (λ1Q+ λ2V )θ(t)− µR

(26)

The initial conditions for system (26) are satisfied:

S(0)=S0 ≥ 0, Q(0) = Q0 ≥ 0,

V (0) = V0 ≥ 0, R(0) = R0 ≥ 0
(27)

Where
β(t), η(t), θ(t) ∈ U (28)

and

U
∆
= [β, η, θ) |β(t), η(t), θ(t) measurable,

[0 ≤ β(t), η(t), θ(t) ≤ 1,∀t ∈ [0, tf ]]
(29)

U is the control allowable set. tf is the end of the
controlled time interval, assuming that the starting point of

the controlled time interval is zero moment. The positive
parameter ci, (i = 1, 2, 3) is the weight factor, which reflects
the strength and importance of the three different control
measures.

A. Existence of optimal control.

Theorem5: In the case that system (29) and the initial
condition (27) are met, there is an optimal control

u∗= (β∗,η∗,θ∗) ∈ Us.t.J(β∗,η∗,θ∗)

= minJ(β(t),η(t),θ(t), µi(t) ∈ U)

Proof : To prove the existence of optimal control, only
the following five conditions need to be verified:

• Both control and state variables are non-null.
• The control allowable set U is a convex set and a closed

set.
• The integrable function in the objective functional is

convex in the allowable set U .
• The right end of the state system is a linear bounded

function about control variables and state variables.
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Fig. 5: The density of S(t), Q(t),V (t), R(t) in the control variable β(t) changes over time

• There is a normal number d1, d2 > 0, ξ > 1. Such that
the integrable function in the target functional

L(t, β, η, θ)
∆
=e−αt[Q(t) + V (t) + z]

is satisfied

L(t, β, η, θ) ≥ d1(|β|2 + |η|2 + |θ|2)
ξ
2 − d2

The first three conditions mentioned above are clearly
valid, and only the next two conditions need to be verified.
As mentioned earlier, all four state variables have an upper
bound N , and the following inequality can be obtained:

S(t)′ ≤ Λ

Q(t)′ ≤ α1β(t)SQ+ η(t)QV

V (t)′ ≤ α2β(t)SQ

R(t)′ ≤ (1− α1 − α2)β(t)SQ

+ (λ1Q+ λ2V )θ(t)

(30)

Thus, the fourth condition is also true. For the last condi-
tion

L(t;β; η; θ) ≥ d1(|β|2 + |η|2 ++|θ|2)
ξ
2 − d2 (31)

Let d1 = e−αt

2 min {c1, c2, c3},∀d2 ∈ R+, ξ = 2. Then the
last condition is satisfied. Therefore, the optimal control can
be realized.

B. Optimal control strategy.

The optimal control expression defines an enlarged Hamil-
tonian with a penalty term as follows:

L =
e−αt

2

[
Q(t) + V (t) + z

]
+ δ1

[
Λ− (β(t)Q+ µ)S

]
+ δ2

[
α1β(t)S + η(t)V − λ1θ(t)− µ

]
Q

+ δ3
[
α2β(t)SQ− (η(t)Q+ λ2θ(t) + µ)V

]
+ δ4

[
(1− α1 − α2)β(t)SQ+ (λ1Q+ λ2V )θ(t)− µR

]
− ω11β(t)− ω12(1− β(t))

− ω21η(t)− ω22(1− η(t))

− ω31θ(t)− ω32(1− θ(t))
(32)

where

ωij ≥ 0(i = 1, 2, 3; j = 1, 2) is a penalty operator and
satisfies

ω11β(t)=ω12(t)(1−β(t)) = 0 (33)
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Fig. 6: The density of S(t), Q(t),V (t), R(t) in the control variable η changes over time
.

ω21η(t)=ω22(t)(1−η(t)) = 0 (34)

ω31θ(t)=ω32(t)(1−θ(t)) = 0 (35)

where in system (33) is at optimal control β∗, system (34) is
at optimal control η∗ and system (35) is at optimal control θ∗.

Theorem6: The optimal control pair for system (26)
(β∗,η∗,θ∗) and state solution S(t), Q(t), V (t), R(t), there
is a covariate variable δi(i = 1, 2, 3, 4) that satisfies the
equation



δ′1 = δ1µ+ (δ1 − δ4)β(t)Q+ (δ4 − δ2)α1β(t)Q

+ (δ4 − δ3)α2β(t)Q

δ′2 = −e−αt + (δ1 − δ4)β(t)S

+ (δ4 − δ2)α1β(t)S

+ (δ4 − δ3)α2β(t)S + (δ3 − δ2)η(t)V

− δ4λ2θ(t) + δ2(λ1θ(t) + µ)

δ′3 = −e−αt + (δ3 − δ2)η(t)Q+ δ3(λ1θ(t) + µ)

− δ4λ2θ(t)

δ′4 = δ4µ

(36)

And cross-sectional conditions δi(tf ), (i = 1, 2, 3, 4),
what is more, the optimal control pair expression



β(t)∗ = min

(
1,max

(
0,

1

c1e−αt

[
(δ1 − δ4)Q

+(δ4 − δ2)α1Q+ (δ4 − δ3)α2Q
]))

η(t)∗ = min

(
1,max

(
0,

1

c2e−αt
(δ3 − δ2)QV

))
θ(t)∗ = min

(
1,max

(
0,

1

c3e−αt

[
(δ2 − δ4)λ1Q

+(δ3 − δ4)λ2V
]))

(37)

Proof : According to Pontryagin’s Maximum principle,
the derivative of Hamiltonian operator for each state variable
can be used to calculate the covariate system. The covariate
system is

δ1
′
= −∂L

∂S
, δ2

′
= − ∂L

∂Q
, δ3

′
= − ∂L

∂V
, δ4

′
= − ∂L

∂R
(38)

The conditions for determining the solution of covariate
system are

δi(tf )=0, i = 1, 2, 3, 4 (39)
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Then, take the derivative of the Hamiltonian operator L with
respect to the state variable a and set it to zero, i.e



∂L

∂β
= c1e

−αtβ +
[
(δ4 − δ1)− (δ2 − δ4)α1

+ (δ3 − δ4)α2

]
SQ− ω11 + ω12 = 0

∂L

∂η
= c2e

−αtη − (δ2 − δ3)QV − ω21 + ω22 = 0

∂L

∂θ
= c3e

−αtθ − (δ4 − δ2)λ1Q+ (δ4 − δ3)λ2V

− ω31 + ω32 = 0

(40)

Find the optimal control expression from it



β∗ =
1

c1e−αt

[
(δ1 − δ4)Q+ (δ4 − δ2)α1Q

+ (δ4 − δ3)α2Q+ ω11 − ω12

]
η∗ =

1

c2e−αt

[
(δ3 − δ2)QV + ω21 − ω22

]
θ∗ =

1

c3e−αt

[
(δ2 − δ4)λ1Q+ (δ3 − δ4)λ2V

+ ω31 − ω32

]
(41)

First of all, consider β∗, to obtain the final expression
of the optimal control without penalty terms, consider the
following three situations.

• On set {t |0 < β∗(t) < 1}, let ω11(t) = ω12(t) = 0,
thus the optimal control is

β∗=
1

c1e−αt
[(δ1 − δ4)Q+ (δ4 − δ2)α1Q

+ (δ4 − δ3)α2Q]
(42)

• On set {t |β∗(t)=1},let ω11(t) = 0,therefore

1 = β∗=
1

c1e−αt
[(δ1 − δ4)Q+ (δ4 − δ2)α1Q

+ (δ4 − δ3)α2Q− ω12(t)]
(43)

• On set {t |β∗(t)=0}, let ω12(t) = 0, therefore

0 = β∗=
1

c1e−αt
[(δ1 − δ4)Q+ (δ4 − δ2)α1Q

+ (δ4 − δ3)α2Q+ ω11(t)]
(44)

This indicates that 1
c1e−αt [(δ1 − δ4)Q + (δ4 − δ2)α1Q +

(δ4 − δ3)α2Q ≤ 0, because of ω11(t) ≥ 0.
In summary, the optimal control expression for A is:

β∗ = min

{
1,max

{
0,

1

c1e−αt

[
(δ1 − δ4)Q

+(δ4 − δ2)α1Q+ (δ4 − δ3)α2Q
]}} (45)

Similarly, the optimal control expressions for η∗ and θ∗

are obtained:

η∗ = min

{
1,max

{
0,

1

c2e−αt

[
(δ3 − δ4)QV

]}}
θ∗ = min

{
1,max

{
0,

1

c3e−αt

[
(δ2 − δ4)λ1Q

+(δ3 − δ4)λ2V
]}}

(46)

Any pair of the best control must satisfy the best control
system, therefore, the optimal control system is



dS

dt
= Λ− β(t)∗SQ− µS

dQ

dt
= α1β(t)

∗SQ+ η(t)∗QV − λ1θ(t)
∗Q− µQ

dV

dt
= α2β(t)

∗SQ− η(t)∗QV − λ2θ(t)
∗V − µV

dR

dt
= (1− α1 − α2)β(t)

∗SQ+ λ1θ(t)
∗Q

+ λ2θ(t)
∗V − µR

dδ1
dt

= δ1µ+ (δ1 − δ4)β(t)
∗Q+ (δ4 − δ2)α1β(t)

∗Q

+ (δ4 − δ3)α2β(t)
∗Q

dδ2
dt

= −e−αt + (δ1 − δ4)β(t)
∗S

+ (δ4 − δ2)α1β(t)
∗S + (δ4 − δ3)α2β(t)

∗S

+ (δ3 − δ2)η(t)
∗V − δ4λ2θ(t)

∗

+ δ2(λ1θ(t)
∗ + µ)

dδ3
dt

= −e−αt + (δ3 − δ2)η(t)
∗Q

+ δ3(λ1θ(t)
∗ + µ)− δ4λ2θ(t)

∗

dδ4
dt

= δ4µ

S(0) = S0 ≥ 0, Q(0) = Q0 ≥ 0,

V (0) = V0 ≥ 0, R(0) = R0 ≥ 0

λi(tf ) = 0, i = 1, 2, 3, 4
(47)

IV. NUMERICAL SIMULATION

In this section, we conducted numerical simulations to
validate the established rumor propagation model and its
optimal control problem. we simulated the model parameters
and control scheme, and compared them with theoretical
analysis results to verify the correctness of the model. In
addition, we conducted sensitivity analysis to evaluate the
impact of different parameters on system behavior.

A. Numerical simulation of system stability

Let Λ = 1, β = 0.1, µ = 0.11, α1 = 0.15, η = 0.2, λ1 =
0.22, θ = 0.6, α2 = 0.15, λ2 = 0.22. It was calculated
that R0 = 0.5635 < 1. Then the equilibrium point E0

for no rumour transmission is stable under different initial
conditions. It can be seen from Fig. 2 that the stability of E0

remains unchanged under different initial value conditions.

B. Comparison of results between SIR model and SQVR
model

Let Λ = 1, β = 0.278, µ = 0.17, α1 = 0.2, η =
0.019, λ1 = 0.112, θ = 0.29, α2 = 0.2, λ2 = 0.25. It
was calculated that R0 = 1.6153 > 1. The rumour is
then that the equilibrium point E∗ is stable under different
initial conditions. It can be seen from Fig. 3(a) that the
stability of E∗ remains unchanged under different initial
value conditions.

By comparing Fig. 3(a) and Fig. 3(b), it can be seen that
while maintaining the original parameters unchanged. Al-
though the number of propagators in the SIR model initially
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Fig. 7: The density of S(t), Q(t),V (t), R(t) in the control variable θ changes over time
.

decreases with time, it slightly increases after reaching a
certain point in time. The rumor immune system ultimately
disappears in this model. After adding the impact of rumor
victims and positive online information on disseminators and
victims in this article, the scale of the rumor outbreak (the
peak of the spreader curve) has significantly decreased and
reached stability, and the time of the rumor outbreak has
also been delayed. In addition, when the rumor fades its
heat and reaches a stable state, the number of rumor victims
is effectively controlled, and the number of immunized
individuals in the population is also stabilized.

C. Numerical simulation of optimization system

In Fig. 4, we observe that the parameter β, η and θ
the impact on rumor spreaders and victims is significant.
Therefore, controlling the number of rumor spreaders is one
of the effective ways to reduce the number of rumor victims.
Meanwhile, the flow of positive information on the internet
can significantly reduce the number of rumor victims and
disseminators. Therefore, in the next section, we choose to
control β, η and θ. To achieve the goal of reducing the spread
of rumors and the number of victims.

Fig. 5 shows the density of S(t), Q(t), V (t) and R(t) in
the control variables β the change over time. The simulation
results show that using the optimal control strategy shown
in Fig. 5 can achieve the optimal density of S(t), Q(t), V (t)
and R(t). In controlling variables β In this case, the number
of rumor spreaders and victims rapidly decreases, indicating
that the control variable β it is effective. Therefore, in
practical life, measures should be taken to control the contact
rate between ignorant individuals and disseminators.

Fig. 6 shows the density of S(t), Q(t), V (t) and R(t) in
the control variables η the change over time. The simulation
results show that using the optimal control strategy shown
in Fig. 6 can achieve the optimal density of S(t), Q(t), V (t)
and R(t), effectively reducing the number of rumor spreaders
and victims, and control variables β the difference is that
in controlling variables η. In this case, the number of
rumor spreaders and victims rapidly decreases but eventually
approaches zero, indicating that the control variable η is
effective. Therefore, in practical life, measures should be
taken to help rumor victims escape the current predicament.

As demonstrated in Fig. 7, Fig. It shows the den-
sity of S(t), Q(t), V (t) and R(t) in the control variables
θ. the proposed optimal control strategy effectively regu-
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Fig. 8: The sensitivity analysis of the basic reproduction
number R0

lates the dynamic trajectories of population densities for
S(t), Q(t), V (t) and R(t) throughout the time horizon. The
simulation results show that increasing the promotion of
positive information on the internet can effectively reduce
the number of rumor spreaders, not only reducing the harm
of rumors to the audience, but also helping rumor victims
recover good mental health as soon as possible.

V. SENSITIVITY ANALYSIS

By calculating R0, consider the parameters separately β
and θ, we can obtain the partial derivative of R0:

∂R0

∂β
=

α1Λ

µ(λ1θ + µ)
> 0 (48)

∂R0

∂θ
= − λ1α1βΛ

µ(λ1θ + µ)
2 < 0 (49)

From (48), it can be seen that if β as the value of increases,
the number of basic regeneration numbers R0 increases,
resulting in an increase in the number of rumor spreaders
and rumor victims. So we need to control β contact rate.

From (49), the basic regeneration number follows θ. The
increase and decrease in the size of rumors and the number
of rumor victims indicate that expanding the dissemination
of positive information on the internet is beneficial for con-
trolling the number of rumor spread and effectively helping
rumor victims out of their predicament.

We plotted R0 and control variables β and θ the three-
dimensional relationship between. In the Fig. 8, in order to
visually see the impact of control parameters on the number
of thresholds. We plotted the three-dimensional curves of
R0, β and θ. As shown in Fig. 8, R0 along β as the
spread of rumors increases, the number of disseminators and
victims will also increase. R0 along θ reduce the spread
of rumors and the number of rumor victims. This means
that effective prevention can better control the spread of
rumors and effectively help rumor victims escape the current
predicament. Further confirms the significance of the control
strategy proposed in this article.

VI. CONCLUSIONS

This study investigates rumor propagation dynamics from
the perspective of affected populations. We developed an
enhanced epidemiological model incorporating the influence
of positive information on both rumor victims and dissemina-
tors. Through analytical methods including next-generation
matrix calculation for basic reproduction number, Routh-
Hurwitz stability criterion, and Lyapunov function construc-
tion, we systematically verified the existence and stability of
equilibrium points. Comparative numerical simulations with
classical SIR models revealed that our proposed framework
demonstrates superior alignment with real-world rumor prop-
agation patterns. The results indicate that expanding popula-
tions of rumor disseminators significantly increase victimiza-
tion risks, suggesting that enhancing the dissemination rate of
positive information serves as an optimal control strategy to
mitigate transmission velocity and reduce victim scale. Our
findings demonstrate that proactive dissemination of verified
positive information through digital platforms substantially
assists affected individuals in overcoming challenges while
effectively containing rumor proliferation. This modeling
approach not only advances understanding of novel rumor
transmission mechanisms but also elevates societal awareness
regarding vulnerable populations in information epidemics.

However, the current research exhibits certain limitations.
The model does not account for rumor typology variations,
audience demographics, credibility assessment mechanisms,
or regulatory impacts from social media platforms. Future
investigations should explore these multidimensional factors
influencing both disseminators and victims. Furthermore,
comprehensive intervention strategies should be developed
to alleviate psychological burdens and facilitate rehabilitation
processes for rumor-affected individuals.
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