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Abstract— In this paper, we investigate the convergence analysis 

of an iterative scheme for approximating common fixed point of 

nonself mappings in Banach space. We introduce an explicit 

iteration scheme and prove strong convergence theorems for a 

countably infinite family of nonself nearly asymptotically 

nonexpansive mappings. Our results extend and generalize 

several existing theorems in the literature by considering more 

general mappings and a broader class of iterative processes. 

Specifically, we establish conditions under which the proposed 

iterative sequence converges strongly to a common fixed point 

of the given family of mappings. The key tools in our analysis 

include techniques from functional analysis and fixed-point 

theory, combined with careful estimates of the iterative 

sequence. Several corollaries and examples are provided to 

illustrate the applicability and significance of our main results. 

Index Terms— Banach space, fixed point, nearly asymptotically 

nonexpansive mappings, convergence. 

 

I. INTRODUCTION 

HE fixed-point theory has many use-full applications in 

different branches. There are numerous practical 

applications of fixed-point theory in various fields. Numerous 

fixed-point convergence findings on nonexpansive mapping 

defined in accordance with various convex spaces have 

recently been explored in various sorts. Fixed point theory 

serves as a cornerstone of nonlinear analysis, particularly in 

examining the stability and convergence of iterative 

processes in Banach spaces. Over the years, classical fixed 

point theorems have been significantly extended to 

accommodate broader classes of mappings, including nearly 

asymptotically nonexpansive mappings and non-Lipschitzian 

mappings, thereby expanding their applicability in various 

mathematical domains. These generalizations have proven 

instrumental in solving problems related to differential 

equations, dynamical systems, and mathematical 

optimization. Among the foundational results in this field, the 

Banach contraction principle remains pivotal, offering a basis 

for more advanced theoretical developments, particularly in 

fixed point theorem for monotone asymptotically 

nonexpansive mappings in metric spaces Alfuraidan & 

Khamsi [2] in 2018. 
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The geometric nature of metric spaces, defined by their 

curvature-like properties, makes them a natural framework 

for analyzing convergence behavior, especially for 

nonexpansive and asymptotically nonexpansive mappings 

Leustean [13] in 2010. 

Recent studies have expanded fixed point theory to include 

numerous mappings, particularly those that do not adhere to 

strict Lipschitz conditions. For instance, Bachar et al. [5] in 

2018 established the existence of common fixed points for 

monotone Lipschitzian mappings in metric spaces, 

emphasizing the significance of contraction-type conditions 

in ensuring convergence Bachar et al. [5] in 2018. Their 

results were further refined by Aggarwal et al. [1] in 2019, 

who examined monotone nearly asymptotically 

nonexpansive mappings in partially ordered metric spaces, 

proving key existence and convergence theorems Aggarwal 

et al. [1] in 2019. This work provided a critical extension of 

classical contraction principles by permitting small 

asymptotic deviations from nonexpansiveness, making them 

highly relevant in dynamic systems where mappings exhibit 

nonuniform contraction behavior. 

A growing trend in fixed point theory involves utilizing graph 

structures in metric spaces to generalize classical results. 

Unlike partial ordering, graph-based structures offer a more 

flexible framework for studying fixed points. Jachymski [10] 

in 2008 pioneered the contraction principle in metric spaces 

endowed with graphs, inspiring subsequent research in this 

direction Jachymski [10] in 2008. Expanding on this, Bin 

Dehaish & Khamsi [6] in 2015 explored approximate fixed 

points of metric spaces, demonstrating that fixed points can 

be obtained under generalized graph-theoretic conditions Bin 

Dehaish & Khamsi [6] in 2015. The practical implications of 

these findings are vast, particularly in stability analysis of 

iterative algorithms in optimization and game theory. 

In addition to theoretical advancements, recent research has 

focused on iterative approximation methods in metric spaces. 

Song et al. [22] in 2016 and Uddin et al. [23] in 2016 

investigated convergence properties of iterative schemes for 

nonexpansive mappings in ordered Banach spaces, offering 

critical insights into the computational aspects of fixed point 

theory Song et al. [22] in 2016, Uddin et al. [23] in 2016. 

Further developments by Shukla et al. [21] in 2017 extended 

these findings to α-nonexpansive mappings, proving their 

stability in partially ordered metric spaces Shukla et al. [21] 

in 2017. These contributions collectively highlight the 

growing interplay between fixed point theory, metric 

geometry, and computational analysis. 
 

Numerous fixed-point convergence findings on nearly 

asymptotically nonexpansive mapping defined in accordance 

with various convex spaces have recently been explored in 

various sorts. For those applied science situations when one 

is impossible to determine the analytical value of the wanted 

answer, fixed-point theory proposes very fruitful and 
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alternate strategies for existence as well as an iterative 

approximation of desired solutions. To start, the required 

desired answer must be expressed as a fixed point of an 

operator, may be defined on a relevant subset of a Banach 

space. 

 

Let 𝐸 be any Banach space whose convex closed subset of 𝐾 

is not empty. The nonexpansive retraction of 𝐸 to 𝐾 is 

denoted by 𝑅: 𝐸 → 𝐾. A point 𝑎 ∈ 𝐾 where 𝑇(𝑎) = 𝑎 is a 

nonself mapping 𝑇: 𝐾 → 𝐸 with a fixed point of 𝑇. 

Furthermore, the 𝐹(𝑇) represents the set of all fixed points of 

𝑇. The existence theorems of fixed points for asymptotically 

nonexpansive mappings have been studied by a few authors 

[7, 8, 11, 16, 24]. 

Given a Banach space 𝐸 𝑎𝑛𝑑 a nonempty subset 𝐶, fix 

sequence {𝑎𝑛} in [0, ∞] with 𝑎𝑛 → 0. If, for every 𝑛 𝑖𝑛 ℕ, ∃ 

a constant 𝑘𝑛 ≥ 0 such that, for {𝑎𝑛}, a mapping 𝑇: 𝐶 → 𝐶 is 

nearly Lipschitzian 

(1.1)      ‖𝑇𝑛𝑥 − 𝑇𝑛𝑦‖ ≤ 𝑘𝑛(‖𝑥 − 𝑦‖ + 𝑎𝑛),   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐶. 

The nearly Lipschitz constant, represented as 𝜂(𝑇𝑛), is the 

minimum of constants 𝑘𝑛 for which (1.1) is holds. Observe 

that 

𝜂(𝑇𝑛) = 𝑠𝑢𝑝 {
‖𝑇𝑛𝑥 − 𝑇𝑛𝑦‖

‖𝑥 − 𝑦‖ + 𝑎𝑛

: 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦}. 

A nearly Lipschitzian map 𝑇 with sequence {(𝑎𝑛 , 𝜂(𝑇𝑛))} is 

called nearly asymptotically nonexpansive [17], if  

𝜂(𝑇𝑛) ≥ 1, ∀ 𝑛 ∈ ℕ 𝑎𝑛𝑑 lim
𝑛→∞

𝜂(𝑇𝑛) ≤ 1. 

Sahu [17] in 2005, established the class of nearly 

asymptotically nonexpansive mapping. 

Understanding the geometry of spaces, sequence 

convergence, and the demiclosed ness principle of nonlinear 

mappings all depend on the Opial's condition. The Opial's 

condition is satisfied by any space X if a sequence {𝛾𝑛} 

defined on space 𝑋 converges weakly to any 𝛾0 ∈ 𝑋 then 

lim
𝑛→∞

𝑖𝑛𝑓||𝛾𝑛 − 𝛾0|| <  lim
𝑛→∞

𝑖𝑛𝑓||𝛾𝑛 − 𝛾|| ∀𝛾 ∈ 𝑋 𝑎𝑛𝑑 𝛾

≠ 𝛾0 

here, we can establish weak Opial's condition by substituting 

the inequality ≤ for the strict inequality <. 

Let 𝑇: 𝐷 → 𝐸 be a mapping defined from 𝐷 to Banach space 

𝐸 𝑎𝑛𝑑 let 𝐷 be any non-empty subset of Banach space 𝐸. The 

mapping 𝑇 is therefore demiclosed at each 𝑠 ∈ 𝐻 if it satisfies 

the following criterion for any associated sequence 𝑦𝑛 ∈ 𝐷: 

𝑦𝑛 → 𝑏 ∈ 𝐷 𝑎𝑛𝑑 𝑇𝑦𝑛 → 𝑑 ⇒  𝑇𝑏 = 𝑑. 

If : 𝐷 → 𝐸 is a nonexpansive mapping and 𝐷 is a nonempty 

convex closed subset of space 𝐸, then 𝐼 − 𝑇 is demi closed, 

where 𝐼 is the identity mapping. This is an example of an 

Opial's Condition defined on reflexive Banach space 𝐸. 

 

Theorem 1. [18] Assume that 𝐵 is a Hilbert space 𝑎𝑛𝑑 𝐺 ≠
∅ is convex closed & bounded subset of 𝐵. Let 𝑇 be a 

mapping of nearly asymptotically nonexpansive from 

𝐺 𝑡𝑜 𝐺 with sequence {𝑘𝑛} ⊂ [1, ∞) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥
1, lim

𝑛→∞
= 1 𝑎𝑛𝑑 ∑ (𝑘𝑛

2 − 1) < ∞.∞
𝑛=1  Let {𝛼𝑛} be a sequence 

in [0,1] that, for some constant 𝑎, 𝑏, satisfies the constraint 

0 < 𝑎 ≤ 𝛼𝑛 ≤ 𝑏 < 1, 𝑛 ≥ 1. Then the {𝑥𝑛} sequence 

produced from any 𝑥1 ∈ 𝐾 by 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑛𝑥𝑛 , 𝑛 ≥ 1, 
strongly convergence to any fixed point of 𝑇.  
 

Since then, fixed points in Banach space or Hilbert space that 

are asymptotically nonexpansive mappings have been 

frequently approximated using Schu's iteration [18] process. 

Assume that real linear normed space 𝐸 has a 𝐾 ≠ ∅ subset. 

The nonexpansive retraction of 𝐸 onto 𝐾 is denoted by 

𝑅: 𝐸 → 𝐾. 𝑇: 𝐾 → 𝐸 is a nonself mapping, with the 

subsequent iteration procedure:  

 

𝑥1 ∈ 𝐾, 𝑥𝑛+1 = 𝑅(1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇(𝑅𝑇)𝑛−1𝑥𝑛 ,
𝑛 ≥ 1. 

 

Several theorems of strong 𝑎𝑛𝑑 weak convergence in convex 

Banach spaces for asymptotically nonexpansive mappings 

were developed by Chidume, Ofoedu, and Zegeye [8] in 

2003. 

 

Theorems of strong 𝑎𝑛𝑑 weak convergence on convex 

uniformly Banach spaces 𝑎𝑛𝑑 other convex spaces for 

nonexpansive mappings have been studied by a few authors 

[3, 12, 14, 24, 26].  

 

Wang [14] discussed additional fixed-point results using 

asymptotically nonexpansive mapping. John and Shaini 

recently explored the fixed-point theorems for Suzuki 

nonexpansive mapping in Banach space [20]. For fixed points 

of nonself asymptotically nonexpansive mappings, Wei and 

Jing [15] introduce a novel iteration technique. 

 

Motivated by these concepts, we present an iterative method 

for evaluating the common fixed points convergence theorem 

of an infinite family of mappings {𝑇𝜆: 𝜆 ∈  Λ} formed on 

Banach space that are nearly asymptotically nonexpansive. 

The set of common fixed points of an infinite family of 

nonself nearly asymptotically nonexpansive mappings 
{𝑇𝜆: 𝜆 ∈  Λ} is denoted throughout this paper by 𝐹(𝑇) =
{𝑎 ∈ 𝐾: 𝑇𝑎 = 𝑎, 𝜆 ∈ Λ}. Analysing the convergence of these 

schemes is a crucial part of the work. This study contributes 

to the broader field of fixed point theory by extending 

existing results to a more general class of mappings, offering 

insights into the behaviour of nearly asymptotically 

nonexpansive mappings in the context of common fixed point 

problems. 

II. Preliminaries 

In this section, we provide certain definitions and lemma’s 

in Banach space that will be useful in our main results. 

Definition 2.1. [9] A mapping 𝑇: 𝐶 → 𝐶 defined on space 𝐶 

is called nonexpansive mapping if 
‖𝑇𝜇 − 𝑇𝛾‖ ≤ ‖𝜇 − 𝛾‖ 

, ∀ 𝜇, 𝛾 in space 𝐶. 
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Definition 2.2. [17] Let 𝐸 be a Banach space  with nonempty 

subset 𝐾, fix sequence {𝑎𝑛} in [0, ∞] with 𝑎𝑛 → 0. Let 

nonexpansive retraction 𝑅 from 𝐸 to 𝐾.  A map 𝑇: 𝐾 → 𝐸 is 

called nearly Lipschitzian with {𝑎𝑛} if ∀ 𝑛 ∈
ℕ, ∃ 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑘𝑛 ≥ 0 such that 

(1.2)   ‖𝑇(𝑅𝑇)𝑛−1𝑥 − 𝑇(𝑅𝑇)𝑛−1𝑦‖   ≤ 𝑘𝑛(‖𝑥 − 𝑦‖ + 𝑎𝑛),  

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐾. 

The nearly Lipschitz constant, represented as 𝜂(𝑇𝑛), is the 

infimum of constants 𝑘𝑛 for which (1.2) is holds. Observe 

that 

𝜂(𝑇𝑛) = 𝑠𝑢𝑝 {
‖𝑇(𝑅𝑇)𝑛−1𝑥 − 𝑇(𝑅𝑇)𝑛−1𝑦‖

‖𝑥 − 𝑦‖ + 𝑎𝑛

: 𝑥, 𝑦 ∈ 𝐶, 𝑥

≠ 𝑦}. 

A nearly Lipschitzian mapping 𝑇 with sequence 

{(𝑎𝑛, 𝜂(𝑇𝑛))} is said to be  

a) nearly contraction if 𝜂(𝑇𝑛) < 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 
b) nearly nonexpansive if 𝜂(𝑇𝑛) ≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 
c) nearly asymptotically nonexpansive, if 

𝜂(𝑇𝑛) ≥ 1, ∀ 𝑛 ∈ ℕ 𝑎𝑛𝑑 lim
𝑛→∞

𝜂(𝑇𝑛) ≤ 1, 

d) nearly uniformly 𝑘-Lipschitzian if 

𝜂(𝑇𝑛) ≤ 𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ, 
e) nearly uniform 𝑘-contraction if 

𝜂(𝑇𝑛) ≤ 𝑘 < 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ. 

Result 2.3. [25] Let 𝐸 be a Banach space with 𝐾 be nonempty 

convex closed subset of 𝐸. 𝐾 is a nonexpansive retract of 

Banach space 𝐸 with nonexpansive retraction 𝑅. Let 

{𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . } be a countable subset of 

{𝑇𝜆: 𝜆 ∈ Λ}. Define mapping 𝑇𝜆 from 𝐾 to Banach space 𝐸. 

Then the explicit iteration scheme is  

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

where {𝑝𝑛} is a sequence in [𝛼, 1 − 𝛼] for some 𝛼 ∈ (0, 1) 

and 𝑇𝑛
∗ = 𝑇𝑖𝑛

 such that 𝑖𝑛 and 𝑚𝑛 are the solutions of 𝑛 = 𝑖 +
(𝑚−1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 ∈ ℕ. 

Lemma 2.4. [4] Let {𝑎𝑛}, {𝛿𝑛}, and {𝑏𝑛} be sequence of real, 

nonnegative numbers satisfying 

𝑎𝑛+1 ≤ (1 + 𝛿𝑛)𝑎𝑛 + 𝑏𝑛 , ∀ 𝑛 ≥ 1 

if ∑ 𝛿𝑛
∞
𝑛=1 < ∞ and ∑ 𝑏𝑛

∞
𝑛=1 < ∞, then lim

𝑛→∞
𝑎𝑛 exists. 

 Lemma 2.5. [19] Let 𝐸 be a real Banach space that is 

uniformly convex, and let 𝑎 and 𝑏 be two constants such that 

0 < 𝑎 < 𝑏 < 1. Assume that there are two sequences in 𝐸, 
{𝑥𝑛}, {𝑦𝑛} and that {𝑡𝑛} ⊂ [𝑎, 𝑏] is a real sequence. Then  

lim
𝑛→∞

‖𝑡𝑛𝑥𝑛 + (1 − 𝑡𝑛)𝑦𝑛‖ = 𝑑, 

  lim sup
𝑛→∞

‖𝑥𝑛‖ ≤ 𝑑, lim sup
𝑛→∞

‖𝑦𝑛‖ ≤ 𝑑      

imply that 

lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = 0, 

where 𝑑 ≥ 0 is a constant. 

Lemma 2.6. [8] Let 𝐸 be a real uniformly convex Banach 

space, 𝐾 a nonempty closed subset of 𝐸, and let 𝑇: 𝐾 → 𝐸 be 

a nonself nearly asymptotically nonexpansive mapping with 

a sequence {𝑘𝑛} ⊂ [1, ∞) 𝑎𝑛𝑑 𝑘𝑛 → 1 𝑎𝑠 𝑛 → ∞. Then 𝐼 −
𝑇 is demiclosed at zero.  

Definition 2.7. [8] Let 𝐸 be a Banach space and 𝐾 subset of 

Banach space 𝐸, subset 𝐾 is called retract of 𝐸 if ∃ a 

continuous 𝑅: 𝐸 → 𝐾 such that 𝑅𝑥 = 𝑥, ∀𝑥 ∈ 𝐾. Every 

closed convex set of a uniformly convex Banach space is a 

retract. A mapping 𝑅: 𝐸 → 𝐸 is called retraction if 𝑅2 = 𝑅. It 
follows that if a map 𝑅 is a retraction then 𝑅𝑧 = 𝑧, ∀ 𝑧 𝑖𝑛 the 

range of 𝑅. 

III. Main Results 

In this theorem, we demonstrate that our iteration process 

converges to a fixed point. 

Theorem 3.1. Let a Banach space 𝐸, whose nonempty 

convex closed subset 𝐾 is a nonexpansive retract of 𝐸 with 

nonexpansive retraction 𝑅. Let {𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . } 

be a countably finite subset of the nonself nearly 

asymptotically nonexpansive mapping {𝑇𝜆: 𝜆 ∈  Λ} defined 

from 𝐾 𝑡𝑜 𝐸 with corresponding sequence {𝑘𝑛
(𝑖)

} ⊂

[1, ∞) 𝑎𝑛𝑑 {𝑎𝑛
(𝑖)} ⊂ [0, ∞) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ ∑ (𝑘𝑛

(𝑖)
−∞

𝑛=1
∞
𝑖=1

1) < ∞ and ∑ ∑ 𝑝𝑛𝑎𝑛
(𝑖) < ∞∞

𝑛=1
∞
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 1. Suppose 

that {𝑧𝑛} be a sequence which is explicit iteration scheme 

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

where {𝑝𝑛} is a sequence in [𝛼, 1 − 𝛼] for some 𝛼 ∈ [0, 1) 

and 𝑇𝑛
∗ = 𝑇𝑖𝑛

 such that 𝑖𝑛 and 𝑚𝑛 are the solutions of 𝑛 = 𝑖 +
(𝑚−1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 ∈ ℕ. If 𝐹(𝑇) ≠ ∅, then lim

𝑛→∞
‖𝑧𝑛 − 𝑥‖ exists 

for each fixed point in 𝐹(𝑇). 

Proof: Let {𝑧𝑛} be a sequence which satisfy the explicit 

iteration scheme is  

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

then, for any fixed-point x, we have  

‖𝑧𝑛 − 𝑥‖ = ‖𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1)

− 𝑅𝑥‖ 

                 ≤  ‖(1 − 𝑝𝑛)(𝑧𝑛−1 − 𝑥) + 𝑝𝑛(𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1

− 𝑥)‖ 

    ≤ (1 − 𝑝𝑛 + 𝑝𝑛𝐾𝑚𝑛

(𝑖𝑛)
) ‖𝑧𝑛−1 − 𝑥‖ + 𝑝𝑛𝑎𝑚𝑛

(𝑖𝑛)
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         ≤ (1 + 𝑢𝑚𝑛

(𝑖𝑛)
)‖𝑧𝑛−1 − 𝑥‖ + 𝑝𝑛𝑎𝑚𝑛

(𝑖𝑛)
     … … (1)                     

where 

𝐾𝑚𝑛

(𝑖𝑛)
= 1 + 𝑢𝑚𝑛

(𝑖𝑛)
, ∀ 𝑛 ∈ ℕ 

and 𝑖𝑛 , 𝑚𝑛 satisfies the positive integer equation  

𝑛 = 𝑖 +
(𝑚 − 1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 ∈ ℕ. 

Now, 

                 

∑ 𝑢𝑚𝑛

(𝑖𝑛)

∞

𝑛=1

= ∑ ∑(𝐾𝑛
(𝑖)

− 1)

∞

𝑛=𝑖

∞

𝑖=1

≤ ∑ ∑(𝐾𝑛
(𝑖)

− 1) < ∞

∞

𝑛=1

∞

𝑖=1

 … … (2)  

∑ 𝑝𝑛𝑎𝑚𝑛

(𝑖𝑛)

∞

𝑛=1

= ∑ ∑ 𝑝𝑛−1

∞

𝑛=𝑖

∞

𝑖=1

𝑎𝑛
(𝑖)

≤ ∑ ∑ 𝑝𝑛

∞

𝑛=1

∞

𝑖=1

𝑎𝑛
(𝑖)

< ∞ … … (𝐴) 

from lemma 2.4, we know that if  

𝑐𝑛+1 ≤ (1 + 𝛿𝑛)𝑐𝑛 + 𝑏𝑛 , ∀ 𝑛 ∈ ℕ  

such that ∑ 𝛿𝑛 < ∞∞
𝑛=1  and ∑ 𝑏𝑛 < ∞∞

𝑛=1  then lim
𝑛→∞

𝑐𝑛 exists 

where 

 𝛿𝑛 = 𝑢𝑚𝑛

(𝑖𝑛)
, 𝑏𝑛 = 𝑝𝑛𝑎𝑚𝑛

(𝑖𝑛)
 𝑎𝑛𝑑 𝑐𝑛 =  ‖𝑧𝑛−1 − 𝑥‖.  

So, from equation (1), (2) and (𝐴), we get lim
𝑛→∞

‖𝑧𝑛 − 𝑥‖ 

exists. 

In this theorem, we demonstrate an approximate fixed point 

exists for our iteration process.                                

Theorem 3.2. Let a Banach space 𝐸, whose nonempty 

convex closed subset 𝐾 is a nonexpansive retract of 𝐸 with 

nonexpansive retraction 𝑅. Let {𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . } 

be a countably finite subset of the nonself nearly 

asymptotically nonexpansive mapping {𝑇𝜆: 𝜆 ∈  Λ} defined 

from 𝐾 𝑡𝑜 𝐸 with corresponding sequence {𝑘𝑛
(𝑖)

} ⊂

[1, ∞) 𝑎𝑛𝑑 {𝑎𝑛
(𝑖)} ⊂ [0, ∞) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ ∑ (𝑘𝑛

(𝑖)
−∞

𝑛=1
∞
𝑖=1

1) < ∞ and ∑ ∑ 𝑝𝑛𝑎𝑛
(𝑖) < ∞∞

𝑛=1
∞
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 1. Suppose 

that {𝑧𝑛} be a sequence which is explicit iteration scheme 

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

where {𝑝𝑛} is a sequence in [𝛼, 1 − 𝛼] for some 𝛼 ∈ (0, 1) 

and 𝑇𝑛
∗ = 𝑇𝑖𝑛

 such that 𝑖𝑛 and 𝑚𝑛 are the solutions of 𝑛 = 𝑖 +
(𝑚−1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 ∈ ℕ. If 𝐹(𝑇) ≠ ∅ then 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≥ 1, ∃ a 

corresponding {𝑧𝑛𝑖
}

𝑛𝑖∈ℕ
 subsequence  𝑜𝑓 {𝑧𝑛} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ = 0. 

Proof. According to theorem 3.1, we known that for any 

fixed-point 𝑥 ∈ 𝐹,  

lim
𝑛→∞

‖𝑧𝑛 − 𝑥‖ = 𝐶. 

Let {𝑧𝑛} be a sequence which satisfy the explicit iteration 

scheme 

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

then, for any fixed-point 𝑥, we have   

‖𝑧𝑛+1 − 𝑥‖ = ‖𝑅((1 − 𝑝𝑛+1)𝑧𝑛

+ 𝑝𝑛+1𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛) − 𝑅𝑥‖ 

                      ≤  ‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)
+ 𝑝𝑛+1(𝑇𝑛+1

∗ (𝑅𝑇𝑛+1
∗ )𝑚𝑛+1−1𝑧𝑛 − 𝑥)‖ 

taking both sides lim inf, we get 

lim
𝑛→∞

𝑖𝑛𝑓 ‖𝑧𝑛+1 − 𝑥‖

≤ lim
𝑛→∞

inf‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)

+ 𝑝𝑛+1(𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛 − 𝑥)‖ 

𝐶 ≤ lim
𝑛→∞

𝑖𝑛𝑓‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)

+ 𝑝𝑛+1(𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛

− 𝑥)‖       … … (3) 

in addition, we have  

(1 + 𝑢𝑚𝑛+1

(𝑖𝑛+1)
)‖𝑧𝑛 − 𝑥‖ + 𝑝𝑛+1𝑎𝑚𝑛+1

(𝑖𝑛+1)

≥ ‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)
+ 𝑝𝑛+1(𝑇𝑛+1

∗ (𝑅𝑇𝑛+1
∗ )𝑚𝑛+1−1𝑧𝑛 − 𝑥)‖ 

taking both sides lim sup, we get 

lim
𝑛→∞

𝑠𝑢𝑝 (1 + 𝑢𝑚𝑛+1

(𝑖𝑛+1)
)‖𝑧𝑛 − 𝑥‖ + 𝑝𝑛+1𝑎𝑚𝑛+1

(𝑖𝑛+1)

≥ lim
𝑛→∞

𝑠𝑢𝑝 ‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)

+ 𝑝𝑛+1(𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛 − 𝑥)‖   

𝐶 ≥ lim
𝑛→∞

𝑠𝑢𝑝 ‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥)

+ 𝑝𝑛+1(𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛

− 𝑥)‖       … … (4) 

hence, from equation (3) and (4) we get 

lim
𝑛→∞

‖(1 − 𝑝𝑛+1)(𝑧𝑛 − 𝑥) + 𝑝𝑛+1(𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛

− 𝑥)‖ = 𝐶      … (5) 

since 

 lim
𝑛→∞

‖𝑧𝑛 − 𝑥‖ = 𝐶 𝑎𝑛𝑑  

lim
𝑛→∞

𝑠𝑢𝑝‖𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛 − 𝑥‖ ≤ 𝐶, 

from Lemma 2.5, we get 

lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛‖ = 0        … … (6) 
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hence,  

‖𝑧𝑛+1 − 𝑧𝑛‖ ≤ 𝑝𝑛+1‖𝑧𝑛 − 𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛‖ 

lim
𝑛→∞

‖𝑧𝑛+1 − 𝑧𝑛‖ ≤ lim
𝑛→∞

𝑝𝑛+1‖𝑧𝑛 − 𝑇𝑛+1
∗ (𝑅𝑇𝑛+1

∗ )𝑚𝑛+1−1𝑧𝑛‖ 

lim
𝑛→∞

‖𝑧𝑛+1 − 𝑧𝑛‖ ≤ 0              … … (7) 

lim
𝑛→∞

‖𝑧𝑛+1 − 𝑧𝑛‖ tends to zero as n tends to infinity 

now,  

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ ≤ ‖𝑧𝑛 − 𝑇𝑖(𝑅𝑇𝑖)𝑚𝑛+1−1𝑧𝑛‖
+ ‖𝑇𝑖(𝑅𝑇𝑖)𝑚𝑛+1−1𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ 

therefore, from equation (5), (6) and (7) we get 

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ ≤ 0 

lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ ≤ 0 

lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ = 0 

hence, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≥ 1, ∃ a corresponding 

{𝑧𝑛𝑖
}

𝑛𝑖∈ℕ
 subsequence such that ‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ = 0. 

In this theorem, we demonstrated strong converges of 

common fixed point for infinitely family of nearly 

asymptotically nonexpansive mappings. 

Theorem 3.3. Let a Banach space 𝐸, whose nonempty closed 

convex subset 𝐾 is a nonexpansive retract of 𝐸 with 

nonexpansive retraction 𝑅. Let {𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . } 

be a countably finite subset of the nonself nearly 

asymptotically nonexpansive mapping {𝑇𝜆: 𝜆 ∈  Λ} defined 

from 𝐾 𝑡𝑜 𝐸 with corresponding sequence {𝑘𝑛
(𝑖)

} ⊂

[1, ∞) 𝑎𝑛𝑑 {𝑎𝑛
(𝑖)} ⊂ [0, ∞) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ ∑ (𝑘𝑛

(𝑖)
−∞

𝑛=1
∞
𝑖=1

1) < ∞ and ∑ ∑ 𝑝𝑛𝑎𝑛
(𝑖) < ∞∞

𝑛=1
∞
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 1. Suppose 

that {𝑧𝑛} be a sequence which is explicit iteration scheme 

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

≥ 1 

where {𝑝𝑛} is a sequence in [𝛼, 1 − 𝛼] for some 𝛼 ∈ (0, 1) 

and 𝑇𝑛
∗ = 𝑇𝑖𝑛

 such that 𝑖𝑛 and 𝑚𝑛 are the solutions of 𝑛 = 𝑖 +
(𝑚−1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 ∈ ℕ. If 𝐹(𝑇) = {𝛼 ∈ 𝑘| 𝑇(𝛼) = 𝛼} ≠ ∅ 

and ∃ a mapping 𝑇𝑖𝜖{𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . } and the 

function defined 𝑓: [0, ∞) → [0, ∞) is a nondecreasing such 

that 𝑓(0) = 0 𝑎𝑛𝑑 𝑓(𝑟) > 0, ∀ 𝑟𝜖(0, ∞) with 𝑓(𝑑(𝑧𝑛, 𝐹)) ≤
‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖, ∀ 𝑛𝜖𝑁 then the {𝑧𝑛} sequence strongly 

convergent to some fixed point of the mapping {𝑇𝜆1
,  𝑇𝜆2

,

𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . }. 

Proof: We know that for any subsequence {𝑧𝑛𝑖
} of {𝑧𝑛} 

we have  

lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖ = 0 

and 𝑓(𝑥) is a non-decreasing function satisfying the condition 

𝑓(𝑑(𝑧𝑛 , 𝐹)) ≤ ‖𝑧𝑛 − 𝑇𝑖𝑍𝑛‖ 

lim
𝑛→∞

𝑓(𝑑(𝑧𝑛 , 𝐹)) ≤ lim
𝑛→∞

‖𝑧𝑛 − 𝑇𝑖𝑧𝑛‖   

lim
𝑛→∞

𝑓(𝑑(𝑧𝑛, 𝐹)) ≤ 0   

lim
𝑛→∞

𝑓(𝑑(𝑧𝑛, 𝐹)) = 0, 𝑆𝑖𝑛𝑐𝑒 𝑓(𝑟) ≥ 0    

and 𝑓(0) = 0. Thus, we get 

𝑑(𝑧𝑛, 𝐹) = 0                      … … (8) 

now, we will show that the subsequence {𝑧𝑛𝑖
} is a Cauchy 

sequence by theorem 3.1, ∃ a natural number M such that  

‖𝑧𝑛 − 𝑥‖ ≤ 𝑀‖𝑧𝑚 − 𝑥‖       … … (9) 

for fixed-point 𝑥 ∈ 𝐹 and for all 𝑛 > 𝑚. 

For any positive 𝜖 > 0, ∃ 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 ℕ such that 

𝑑(𝑧𝑛, 𝐹) <
𝜖

𝑀
, ∀ 𝑛 ≥ ℕ 

then 

‖𝑧𝑛 − 𝑧𝑚‖ ≤ ‖𝑧𝑛 − 𝑥‖ + ‖𝑧𝑚 − 𝑥‖ 

‖𝑧𝑛 − 𝑧𝑚‖ ≤ 𝑀‖𝑧𝑛 − 𝑥‖ 

‖𝑧𝑛 − 𝑧𝑚‖ ≤ 𝑀𝑑(𝑧𝑁 , 𝐹) 

                            ‖𝑧𝑛 − 𝑧𝑚‖ ≤ 𝜖                         … … (10) 

hence, from equation (10), we will say that the subsequence 
{𝑧𝑛} is a Cauchy sequence. 

Therefore, ∃ 𝑝 ∈ 𝐾 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑧𝑛 tends to 𝑝 as 𝑛 tends to 

infinity and lim
𝑛→∞

𝑑(𝑧𝑛 , 𝐹) = 0 which given that  

𝑑(𝑝, 𝐹) = 0        … … (11) 

so, equation (10) and (11) we will say that 𝑝 ∈ 𝐹 and 𝐹 is 

closed set. Which implies that the lim
𝑛→∞

‖𝑧𝑛 − 𝑝‖ exists as 

subsequence 𝑧𝑛 tends to 𝑝 and n tends to infinity. 

Hence, the subsequence 𝑧𝑛 strongly convergent to fixed-point 

𝑝 of the mapping {𝑇𝜆1
,  𝑇𝜆2

, 𝑇𝜆3
, … ….  𝑇𝜆𝑛

… . }. 

IV. CONCLUSION 

In this research, we have discussed the iterative scheme for 

identifying the convergence of common fixed-point of 
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infinite family of nearly asymptotically nonexpansive 

mapping defined on Banach space. We obtained some 

convergence results concerning the exhibition of iterative 

method obtained by satisfy the explicit iteration scheme 

𝑧𝑛 = 𝑅((1 − 𝑝𝑛)𝑧𝑛−1 + 𝑝𝑛𝑇𝑛
∗(𝑅𝑇𝑛

∗)𝑚𝑛−1𝑧𝑛−1), 

for all 𝑛 ≥ 1 on the nearly asymptotically nonexpansive 

mapping on Banach space. 
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